
Improving Long-Term Online Prediction with
Decoupled Extended Kalman Filters?

Juan Antonio Pérez-Ortiz1, Jürgen Schmidhuber2, Felix A. Gers3, and
Douglas Eck2

1 DLSI, Universitat d’Alacant, E-03071 Alacant, Spain
2 IDSIA, Galleria 2, 6928 Manno, Switzerland

3 Mantik Bioinformatik GmbH, Neue Gruenstrasse 18, 10179 Berlin, Germany

Abstract. Long Short-Term Memory (LSTM) recurrent neural net-
works (RNNs) outperform traditional RNNs when dealing with sequences
involving not only short-term but also long-term dependencies. The de-
coupled extended Kalman filter learning algorithm (DEKF) works well
in online environments and reduces significantly the number of train-
ing steps when compared to the standard gradient-descent algorithms.
Previous work on LSTM, however, has always used a form of gradient
descent and has not focused on true online situations. Here we combine
LSTM with DEKF and show that this new hybrid improves upon the
original learning algorithm when applied to online processing.

1 Introduction

The decoupled extended Kalman filter (DEKF) [4,8] has been used successfully
to optimize the training of recurrent neural networks (RNNs). In such a frame-
work, DEKF considers learning as a filtering problem in which the optimum
weights of the network are estimated efficiently in a recursive fashion. The al-
gorithm is especially suitable for online learning situations, where weights are
adjusted in a continuous fashion.

With DEKF it should be possible for a RNN to learn optimal weights for
many difficult problems. However, RNNs in general [1,7,9] are hampered by van-
ishing gradients [5] that make networks unable to deal correctly with long-term
dependencies. A recent novel RNN called Long Short-Term Memory (LSTM) [6]
overcomes this problem and learns previously unlearnable solutions to numer-
ous tasks [6,2,3], including tasks that require storing relevant events for more
than 1000 subsequent discrete time steps without the help of any short training
sequences.

In this study we use LSTM with forget gates [2] to predict subsequent sym-
bols of a continual input stream (not segmented a priori into subsequences with

? Work supported by the Generalitat Valenciana through grant FPI-99-14-268, by the
Spanish Comisión Interministerial de Ciencia y Tecnoloǵıa through grant TIC2000-
1599-C02-02, and by the Swiss National Foundation through grant 2100-49’144.96.



clearly defined ends) with long-term dependencies. Thus, unlike previous ap-
proaches with LSTM, the focus is on true online processing.

Gers et al. [2] studied a similar problem using a different setup. In their
simulations, weight updates were performed after each new symbol presentation,
a strategy from online learning. However, when network error became too high,
a reset was done (clearing activations, states and partial derivatives) and the
symbol stream was started over, a heuristic that presents information to the
network in a way similar to batch learning. Thus, the previous attempt can be
considered as half-way between online and offline learning. Here we apply the
same LSTM architecture to the same kind of sequences, but with a pure online
approach: there is only one single input stream; learning continues even when the
network makes mistakes; and training and testing are not divided into separate
phases.

All previous LSTM implementations have used a form [6] of gradient descent
to adjust the weights of the network. In this paper we apply the DEKF training
algorithm to the LSTM architecture for the first time; we compare experimental
results obtained with the gradient descent algorithm to those of DEKF, and also
comment on much worse results obtained with traditional RNNs.

2 LSTM Networks Trained by DEKF

Gradient descent algorithms, such as the original LSTM training algorithm, are
usually slow when applied to time series because they depend on instantaneous
estimations of the gradient: the derivatives of the error function with respect
to the weights to be adjusted only take into account the distance between the
current output and the corresponding target, using no history information for
weight updating.

DEKF [8,4] overcomes this limitation. It considers training as an optimal
filtering problem, recursively and efficiently computing a solution to the least-
squares problem. At any given time step, all the information supplied to the
network up until now is used, including all derivatives computed since the first
iteration of the learning process. However, computation is done such that only
the results from the previous step need to be stored.

Lack of space prohibits a complete description of DEKF; we refer the reader
to previous citations for details. The extended Kalman filter is used for training
neural networks (recurrent or not) by assuming that the optimum setting of the
weights is stationary. However, when considering all the weights of the network
together, the resulting matrices become so unmanageable (even for networks
with moderate sizes) that a node-decoupled version of the algorithm is usually
used instead to make the problem computationally tractable. The decoupled
approach applies the extended Kalman filter independently to each neuron in
order to estimate the optimum weights feeding it. By proceeding this way, only
local interdependences are considered. The equations for iteration t of a DEKF
minimizing the typical quadratic error measure can be formulated as follows:



Gi(t) = Ki(t− 1)CT
i (t)

[
ng∑

i=1

Ci(t)Ki(t− 1)CT
i (t) + R(t)

]−1

(1)

wi(t) = wi(t− 1) + Gi(t) [d(t)− y(t)] (2)

Ki(t) = Ki(t− 1)−Gi(t)Ci(t)Ki(t− 1) + Qi(t) (3)

where ng is the number of neurons, i defines a particular neuron (with 1 ≤ i ≤
ng), wi is a vector with all the weights leading to neuron i, d(t) is the desired
response, and y(t) is the actual output of the network.

Let ni denote the number of weights leading to neuron i, and nY the number
of output neurons of the network. The Jacobian Ci(t) is an nY × ni matrix
containing the partial derivatives of the function defining the output y(t) of the
network with respect to each weight leading to neuron i. Matrices Gi, Ki, Qi

and R are initialized in a problem-specific manner and denote, respectively, the
Kalman gain, the error covariance matrix, the covariance matrix of artificial
process noise, and the covariance matrix of the measurement noise.

Combining DEKF with the LSTM architecture is straightforward. We con-
sider a group of weights for each neuron in LSTM, that is, a group for each
different gate, cell and output neuron (see previous references on LSTM for a
detailed description of the architecture and how error derivatives are computed).
At time step t we calculate the derivatives required for matrix Ci(t) exactly the
same way as the original LSTM gradient-descent training algorithm does, and
then apply equations (1)–(3) in order to update weights wi(t).

It should be noted that DEKF’s time complexity [4, p. 771] is much larger
than that of gradient descent because DEKF not only has to compute the same
derivatives, but also many matrix operations at every time step.

3 Experiments

We use LSTM with forget gates to predict subsequent symbols in a sequence
generated by the continual embedded Reber automaton (or grammar) [10] shown
in Fig. 1. Due to existence of long-term dependencies, this task is suitably difficult
to show the power of both LSTM and DEKF. The learning process is completely
online. The network is trained to give in real-time an output as correct as possible
for the input supplied at each time step; after normalization, yi(t) is interpreted
as the probability of the next symbol being the i-th symbol of the alphabet;
symbols, when considered as inputs or targets, are coded with unary vectors by
means of local or exclusive coding.

Network Topology and Parameters. The LSTM network has 4 memory
blocks with 2 cells each. The size of the alphabet of the automaton is 7, so
we consider 7 neurons in the input and output layers. Bias weights to input and



B P E
S

X

T
X

V
V

T

S

P

T
EB

P

T

P
Grammar

Reber

Grammar
Reber

recurrent connection for continual prediction

Fig. 1. Transition diagrams for standard (left) and embedded (right) Reber grammars

output gates are initialized block-wise: −0.5 for the first block, −1 for the second,
−1.5 for the third, and so on. Forget gate biases are initialized with symmetric
values: 0.5 for the first block, 1 for the second, and so on. The rest of the weights
are randomly taken from a uniform distribution in [−0.2, 0.2]. The squashing
function g is set to tanh(x), and h is set to the identity function — see [2,6] for
details on the LSTM architecture. For the gradient-descent algorithm we set the
learning rate to 0.5. In case of DEKF, the parameters of the algorithm suggested
by Haykin [4, p. 771] turned out to be adequate for this task as well.

Training and Testing. We count the number of symbols needed by LSTM to
attain error-free predictions for at least 1000 subsequent symbols (a large period
of time); here “error-free” means that the symbol corresponding to the winner
neuron in the network output is one of the possible transition symbols, given the
current state of the Reber automaton.

Gers et al. [2] considered longer error-free sequences, but learning was not
truly online, and the networks were tested with frozen weights. Therefore, al-
though the criterion for sustainable prediction was stringent, the learning was
easier in principle. On the other hand, when working online, the recurring pres-
ence of particular subsequences usually makes the network forget past history
and trust more recent observations instead. This is what one would expect from
an online model, which is supposed to deal with non-stationary environments.

After an initial training period, LSTM usually makes only few mistakes and
tends to keep making correct predictions. To obtain a tolerant measure of pre-
diction quality we measure the time at which the N -th error takes place after
the first 1000 subsequent error-free predictions: here we consider two possible
values for N , namely, 1 and 10.

4 Results and Analysis

Gradient-Descent LSTM Results. Table 1 shows the results for 9 differ-
ent sequences with 9 independently initialized LSTM networks trained by the
original LSTM training algorithm.1 In one case (row 5) no correct prediction
1 The average number of symbols required for learning to predict accurately in real-

time (thousands of symbols) is much smaller than the number of symbols required
in the offline set-up (millions). This deserves a more profound study.



Table 1. Time steps required by online LSTM (trained with gradient descent) to
achieve 1000 subsequent correct predictions

Net Sustainable prediction Next 10 errors Next error

1 39229 178229 143563
2 102812 144846 111442
3 53730 141801 104163
4 54565 75666 58936
5 1000000+ – –
6 111483 136038 113715
7 197748 235387 199445
8 54629 123595 123565
9 85707 92312 86742

Table 2. Time steps required by online LSTM (trained by DEKF) to achieve 1000
subsequent correct predictions

Net Sustainable prediction Next 10 errors Next error

1 29304 30953 30347
2 19758 322980 25488
3 20487 24106 22235
4 26175 33253 27542
5 18015 22241 19365
6 16667 1000000+ 29826
7 23277 26664 24796
8 1000000+ – –
9 29742 594117 31535

sequences (for 1000 symbols in a row) are found before the 1000000-th sequence
symbol; this is indicated in the table by 1000000+.

LSTM with DEKF Results. With the DEKF training algorithm, the num-
ber of symbols needed for correct prediction is even lower — compare Table 2.
Although the time required to achieve 1000 error-free predictions in a row is
generally lower than with the original algorithm, the number of symbols before
the 10-th error is also smaller. DEKF seems to reduce the long-term memory
capabilities of LSTM while increasing its online learning speed. There are 3
remarkable cases (rows 2, 6 and 9 in Table 2), however, where a very long sub-
sequence is necessary for the 10-th error to appear; row 6 shows a particularly
good result: only 3 errors occur before the 1000000-th symbol.

LSTM Analysis. Study of the evolution of gate and state activations revealed
that online LSTM learns a behavior similar to the one observed in previous
non-online experiments [2], that is, one memory block specializes in bridging
long-time information, while the others exhibit short-term behavior only.



RTRL-RNNs Results. Experiments with traditional RTRL-trained [11] RNNs
(such as the simple recurrent net [1] or the recurrent error propagation net-
work [9]) demonstrated that they are unable to obtain sustainable error-free pre-
dictions for 1000 subsequent symbols, even after extremely long training times.
Even as few as 100 subsequent correct predictions were extremely rare. DEKF
applied to these architectures, however, did allow for sustainable error-free pre-
dictions. But it always required many more than 100000 symbols.

5 Conclusion

LSTM variants are applicable to true online learning situations with never-
ending continual input streams. On the difficult extended Reber automaton,
online LSTM yields results comparable to that of previous LSTM applications
involving offline learning, and clearly outperforms traditional RNNs.

For the first time the DEKF algorithm was applied to LSTM. This led to
results even better than those obtained with the original training algorithm.
The DEKF-based approach reduces significantly the number of training steps
necessary for error-free prediction when compared to the standard algorithm.
However, it forgets more easily than original LSTM, and requires more opera-
tions per time step and weight.

References

1. Elman, J. L.: Finding structure in time. Cognitive Science 14 (1990) 179–211.
2. Gers, F. A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction

with LSTM. Neural Computation 12, 10 (2000) 2451–2471.
3. Gers, F. A., Schmidhuber, J.: LSTM recurrent networks learn simple context free

and context sensitive languages. IEEE Transactions on Neural Networks 12, 6
(2001) 1333–1340.

4. Haykin, S.: Neural networks: a comprehensive foundation. Prentice-Hall (1999).
5. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies. Kremer, S. C., Kolen, J. F.
(eds.): A field guide to dynamical recurrent neural networks (2001). IEEE Press.

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9,
8 (1997) 1735–1780.

7. Pearlmutter, B. A.: Gradient calculations for dynamic recurrent neural networks:
a survey. IEEE Transactions on Neural Networks 6, 5 (1995) 1212–1228.

8. Puskorius, G. V., Feldkamp, L. A.: Neurocontrol of nonlinear dynamical systems
with Kalman filter trained recurrent networks. IEEE Transactions on Neural Net-
works 5, 2 (1994) 279–297.

9. Robinson, A. J., Fallside, F.: A recurrent error propagation speech recognition
system. Computer Speech and Language 5 (1991) 259–274.

10. Smith, A. W., Zipser, D.: Learning sequential structures with the real-time recur-
rent learning algorithm. Intl. Journal of Neural Systems 1, 2 (1989) 125–131.

11. Williams, R. J., Zipser, D.: A learning algorithm for continually training recurrent
neural networks. Neural Computation 1 (1989) 270–280.


