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Abstract
Methods to predict the effort needed to post-edit a given machine translation (MT) output are
seen as a promising direction to making MT more useful in the translation industry. Despite the
wide variety of approaches that have been proposed, with increasing complexity as regards their
number of features and parameters, the problem is far from solved. Focusing on post-editing
time as effort indicator, this paper takes a step back and analyses the performance of very
simple, easy to interpret one-parameter estimators that are based on general properties of the
data: (a) a weighted average of measured post-editing times in a training set, where weights
are an exponential function of edit distances between the new segment and those in training
data; (b) post-editing time as a linear function of the length of the segment; and (c) source and
target statistical language models. These simple estimators outperform strong baselines and
are surprisingly competitive compared to more complex estimators, which have many more
parameters and combine rich features. These results suggest that before blindly attempting
sophisticated machine learning approaches to build post-editing effort predictors, one should first
consider simple, intuitive and interpretable models, and only then incrementally improve them
by adding new features and gradually increasing their complexity. In a preliminary analysis,
simple linear combinations of estimators of types (b) and (c) do not seem to be able to improve
the performance of the single best estimator, which suggests that more complex, non-linear
models could indeed be beneficial when multiple indicators are used.

1 Introduction

Over the last decade, the interest of the industry in machine translation (MT) has grown, mainly
as a consequence of high demand and improvements in translation quality. Modern MT systems
have proven to lead to productivity gains (Plitt and Masselot, 2010; Guerberof Arenas, 2009)
when used to generate draft translations that are then post-edited (corrected) before publishing
(Krings and Koby, 2001; O’Brien and Simard, 2014). However, not all the translations produced
by MT systems are worth post-editing. In some cases, it would be faster to translate them
from scratch. As a result, a strong focus has been put into developing methods for estimating
the quality of machine-translated sentences (Blatz et al., 2004; Specia et al., 2009) to identify
those translations that may harm productivity if provided to post-editors. Several methods are
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proposed every year and compared in the framework of the WMT series of Workshops on
Machine Translation.1

Most approaches to MT quality estimation (QE) work at the sentence level, although there
are also approaches that try to estimate the quality at the word or document levels. Sentence-level
QE models predict translation quality in terms of post-editing (PE) time, number of edits needed,
and other related metrics (Specia, 2011; Bojar et al., 2014). This paper focuses on sentence-level
MT QE and measures quality in terms of PE time. This setting has the important advantage
that the time predicted for each machine-translated sentence can be directly used to budget a
translation job.

As will be discussed below, existing PE time estimators use many parameters and combine
rich features extracted from source sentences and their raw MT output, often with the help of
one or more pseudo-references obtained using additional MT systems. They are, however, still
far from producing human-like predictions (with Pearson correlations between predicted and
human effort metrics plateauing around 0.65, (Bojar et al., 2013, 2014)). To try to understand
the problem better, we explore the use of three types of very simple, one-parameter, black-box
PE time estimators: (a) a weighted average of PE times in the training set, where weights
are an exponential function of edit distances computed between the current sentence (source
or raw MT) and training sentences (source or raw MT), so that the contribution of nearest
examples is more important; (b) a simple model that learns a unit PE time, either per character
or per word, and multiplies it by the length of the current sentence (source or raw MT); and (c)
logarithmic probabilities obtained by applying a statistical language model of the source or the
target language respectively to the source or raw MT.2

The results show that some of these very simple models outperform not only rather strong
baselines, but also some complex, multi-parameter estimators participating in the WMT13 (Bojar
et al., 2013) and WMT14 (Bojar et al., 2014) PE time estimation contests. Results can be taken
as an indication that one should take a step back and first analyse simple models with intuitive
interpretations, to only then carefully and gradually increase their complexity, before blindly
attempting sophisticated machine learning approaches. In a preliminary analysis, simple linear
combinations of estimators of types (b) and (c) above does not seem to be able to improve the
performance of the single best estimator, which may be taken as an indication that more complex,
non-linear models should be considered when multiple indicators are used.

2 Settings and models

2.1 Corpora

We have conducted experiments using the data sets for English-to-Spanish (en→es) translation,
which are publicly available as part of the quality estimation shared Task 1.3 of WMT133

(Bojar et al., 2013) and WMT144 (Bojar et al., 2014); Table 1 describes these data sets. For
the experiments in this paper the corpora were pre-processed using the vanilla word tokenizer
available in the Python NLTK package (Bird et al., 2009).

2.2 Notation and evaluation

The training data consists of a set of N triplets {(si,MT(si), ti)}Ni=1 where si is a source
sentence, MT(si) its raw MT output, and ti the time taken to post-edit MT(si) into an adequate

1Last edition: http://www.statmt.org/wmt17/quality-estimation-task.html
2Language model features have already been proven to be the single best predictors in previous work, see e.g. (Felice

and Specia, 2012; Shah et al., 2015).
3http://www.statmt.org/wmt13/quality-estimation-task.html
4http://www.statmt.org/wmt14/quality-estimation-task.html
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Translation No. of segments
direction Training Test

WMT13 en→es 803 284
WMT14 en→es 650 208

Table 1: Translation direction and number of training and test instances for the corpora used in the
experiments.

translation of si. The goal is to predict the PE time for a new set of M source sentences and their
translations, {(sj ,MT(sj))}Mj=1.

As in the WMT13 and WMT14 contests, performance will be measured over the test set as
the mean absolute error (MAE) of the prediction t̂j , that is,

MAE =
1

M

M�

j=1

|t̂j − tj |.

In addition to this, Pearson’s correlation r between the predicted and measured times will also
be reported as a secondary comparison metric.

The best parameter for each model will be determined through minimization of the MAE
over the training set, as will be explained in the next section.

2.3 Models
In what follows we describe the three one-parameter models we experimented with in order to
predict PE time.

2.3.1 Weighted-average model (Avg)
This model estimates the PE time needed to turn MT(sj) into an adequate translation of sj as
the weighted average

Avgu(α, xj) =
N�

i=1

w(α, xi, xj) ti,

controlled by a single parameter α, whose weights w(α, xi, xj) depend on edit distances through

w(α, xi, xj) = e−αEDu(xi,xj)/

N�

i=1

e−αEDu(xi,xj),

where EDu(xi, xj) is the edit distance between xi and xj , u is the unit used to compute it, either
characters (u = c) or words (u = w), and xi (resp. xj) is either the source sentence si (resp. sj)
or its machine translation MT(si) (resp. MT(sj)). For positive values of α, the contribution
w(α, xi, xj) of ti diminishes with the distance between either the source sentences or between
their raw machine translations. In particular:

• When α = 0, Avgu(0, xj) = 1
N

�N
i=1 ti for all j, that is, the arithmetic average of

measured PE times; we will refer to this as the naïve zero-parameter average;

• When α → +∞, the ti corresponding to the minimum ED(xi, xj), that is, the nearest
neighbour, is selected. In what follows, this predictor will be referred to as NNu(xj).

It is expected that a careful choice of α in [0,+∞) will give a better estimate by assigning
a higher weight to closer examples. The weighted average effectively acts as a “soft nearest-
neighbour” predictor.
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To find the optimum value of α, the training corpus is randomly split in two sets: 80% of the
samples are used to compute the edit distances and the remaining 20% are used as a development
set.

The idea behind the weighted-average model bears some resemblance to the work by
Béchara et al. (2016), where a semantic textual similarity (between the source sentences) is used
to select a close example: instead of predicting time, Béchara et al. (2016) predict the BLEU
score for sentences that do not have a reference translation available, using as reference that
for the close example. Note the weighted-average model is clearly a black-box model, as it
does have access to the inner workings of the MT system whose quality is being predicted. It is
also an example-based model that computes a prediction for the current segment by looking up
measured times for existing segments in a training set.

2.3.2 Models based on the PE time per segment length unit (TLen)
These very simple, one-parameter estimators predict the PE time tj as

TLenu(a, xj) = a lenu(xj),

where xj is a source sentence sj , or its machine translation MT(sj), and lenu(xj) is the length
of xj in characters (u = c) or words (u = w). Note that the coefficient a, which is obtained
by directly minimizing the MAE over the whole training corpus, has an easy interpretation in
seconds per character or seconds per word, respectively. Again, this is a black-box model, which,
in addition, only looks at one property of the source or machine-translated segment: its length.
When xj = sj , it simply predicts that PE time grows linearly with the source sentence. When
xj = MT(sj), the estimate is similar if one assumes that target-segment length grows linearly
with source-segment length. Note, however, that this predictor pays very little attention to the
actual post-editability of the translation:

• Any MT output having the same length would have the same post-editing time, regardless
of the actual target words.

• Truncated or abnormally short MT outputs would be consistently —and often incorrectly—
estimated to be easier to post-edit.

These models are therefore expected to be very limited predictors of PE time.

2.3.3 Statistical language models
Source-language (SLM) and target-language models (TLM), trained on a subset of the WMT13
translation task data5 (an interpolated combination of Europarl and News Commentary data)
were used to compute the logarithm of the probability of sj and MT(sj), respectively. This
is then multiplied by a coefficient a which is also optimized to minimize MAE on the whole
training set. Language models are common indicators used in QE but also have important
limitations as PE time predictors:

• A TLM basically measures the fluency of the translation (Specia et al., 2013, p. 80), and
would estimate more fluent translations as easier to post-edit, regardless of their actual
semantic relationship to the source sentence.

• A SLM would in contrast measure the complexity of the translation (Specia et al., 2013,
p. 80), or, if the language model was trained on texts similar to those on which the MT
system was trained, its expectedness. Nevertheless, its predictive power may be limited
when applied to a system that was not trained on similar data (or to a rule-based system).

5http://www.statmt.org/wmt13/translation-task.html
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It is however worth mentioning that language models are amongst the best performing
features for sentence-level MT QE (Felice and Specia, 2012; Shah et al., 2015) and are therefore
included in most models submitted to the WMT QE shared tasks.

3 Results and discussion

3.1 Performance of one-parameter predictors
Tables 2 and 3 summarize the results for the one-parameter models, placing them in the context
of the results obtained by other WMT13 and WMT14 participants. The performance of the
zero-parameter naïve average, that is, the one obtained using for all test segments the average
time in the training set as a fixed estimate, and the four nearest-neighbour estimates NNu(xj)
(see Section 2.3.1) are also provided for completeness. The main metric used in the discussion
is MAE, the official metric in WMT13 and WMT14. Pearson correlations, also provided,
roughly follow the same trend, and their comparison would lead to similar conclusions (but see
Section 3.1.3 for a more detailed discussion).

3.1.1 WMT13 results
When ordering results by MAE, as in (Bojar et al., 2013), the one-parameter models (Avg,
TLen, SLM and TLM) outperform at least 2 of the 14 participants, with TLen models actually
outperforming 8 of them and the TLM outperforming 12 of them. The baseline system (Baseline
bb17 SVR), using support vector regression and a well-known set of 17 black-box features
(Specia et al., 2013) also outperforms 8 of the 14 participant models. It is worth mentioning
that language models are also included as features in this baseline set; that is, the baseline
system is a superset of the single-parameter models using LM features. Nevertheless, the TLM
outperforms the baseline by a rather large margin. This result in particular may reveal problems
not only present in the baseline but also in other participating submissions such as (a) additional
features adding noise that the learning algorithm could not adequately handle, (b) the regression
architecture used (for instance, support vector regression in the case of the baseline) not being
adequate, (c) optimization not being good enough (for instance, due to an incorrect choice of
hyperparameters or to incomplete convergence), or (d) over-fitting to a rather small training
set. All these reasons are in principle possible and worth a closer examination. One of the
participating systems is even outperformed by the naïve-average zero-parameter estimate, and
two of them by one of the (also parameterless) nearest-neighbour estimates.

In general terms, computationally simpler (linear) TLen models perform better than the
more complex (sum of exponentials containing edit distances) Avg models, while the outstanding
performance of TLM and SLM may be explained by the fact that they were trained on the same
data as the system whose quality was estimated — therefore, in this last case, the black-box
assumption would not hold entirely.

3.1.2 WMT14 results
When ordering results by MAE, as in (Bojar et al., 2014), one-parameter models have a more
modest performance in this dataset, beating only 3 out of the 10 submissions: one of them
(FBK-UPV-UEDIN/NOWP), which uses hundreds of features obtained from the best 100,000
translations produced by a purposely-trained statistical MT system; another one, the baseline, a
rather strong model (17 features), equivalent to the WMT13 baseline. Contrary to what happened
for WMT13, character-level Avg models seem to perform slightly better than the TLen model
and the SLM and TLM models; these language models were trained on the same data as for
WMT13, whereas the MT systems evaluated in WMT14 were not. All zero-parameter models
(naïve average, nearest-neighbour) rank below all participants.

We note that the performance of the official baseline system (Baseline bb17 SVR) is
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particularly poor on this data set. The reason for that were the ranges used for the grid search
to optimize the hyperparameters of the support vector machine model, which were different
from those used in the WMT13 model. If the same ranges are used, the baseline reaches a MAE
of 17.65, which would place it above all of the one-parameter models and above two of the
participating systems. This issue shows further evidence that more complex models need to be
carefully crafted, with special attention dedicated to their hyperparameters.

3.1.3 Analysis
How can length be such a reasonable estimator? In both datasets, length-based TLenu(xj)
estimators show a rather competitive performance, in spite of the obvious limitations discussed
in Section 2.3.2. This may be due to the fact that the output of a single MT system was post-
edited and, therefore MT quality and, consequently, the post-editing effort across the segments
produced by the MT systems is quite stable, effectively yielding a roughly constant per-word or
per-character post-editing time and therefore making length a reasonable estimator in this case.6

It would therefore be reasonable to expect performance to have been clearly worse if output from
at least two MT systems with very different levels of quality had been post-edited.

Pearson correlations between predictions. In addition to the Pearson correlation with the test
set, we have computed the Pearson correlation coefficient between the predictions of participating
submissions —which are available at the WMT137 and WMT148 websites— and our best one-
parameter TLen, Avg, and TLM models. In general terms, systems showing a good correlation
with the one-parameter models happen to perform similarly, an indication that their predictions
are very similar for test sentences. There are, however, interesting exceptions. An example
of moderate correlation among predictors but similar performance is the SHEF FS submission
to WMT13, which has correlation coefficient with Avgc(α = 0.256,MT(sj)) of 0.67 and
an absolute difference in MAE of only 0.70. This may point at a certain complementarity
between the two predictors, which seem to predict differently for many test sentences in spite
of similar MAE performance. Another remarkable exception is the LIMSI elastic submission
to WMT13, which correlates reasonably well with TLenw(a = 3.226,MT(sj)) (r = 0.74),
Avgc(α = 0.256,MT(sj)) (r = 0.75), and specially TLM(a = −1.421,MT(sj)) (r = 0.85)
but performs considerably worse (the absolute differences in MAE are 18.6, 14.0, and 21.8
respectively). As we discuss in what follows, this could be an issue related to inadequate scaling
of predictions.

Correlation and MAE leading to different system rankings: A scaling study. There are
cases in which using the Pearson correlation obtained by participants does not lead to the
same system ranking as that obtained by the official MAE-based ranking. One such a case
is the LIMSI elastic submission, which has a Pearson correlation in the range of participants
getting much lower MAE. Another interesting case is that of FBK-UPV-UEDIN/WP, FBK-
UPV UEDIN/NOWP and RTM-DCU/RTM-RR in WMT14. Again, their Pearson correlation
coefficients are clearly higher than those of other participants having similar MAE.

Discrepancies between MAE and correlation coefficients may easily be explained in terms
of scaling; in fact, by simply scaling the outputs of all participating predictors one can obtain
better MAE results, as shown in tables 2 and 3.

6The actual time per unit, both in the training set and the test set, indeed shows a rather peaked distribution density
around the average values used by the length predictors.

7http://www.statmt.org/wmt13/quality_estimation_data/QE_WMT13_submissions_

task1.3_sentence.zip
8http://www.statmt.org/wmt14/quality_estimation_data/QE_WMT14_submissions_

task1.3_sentence.zip
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System ID MAE r Scaling Scaled MAE ΔMAE
FBK-UEDIN Extra 47.5 0.65 0.909 46.5 1.0
FBK-UEDIN Rand-SVR 47.9 0.66 1.062 47.6 0.3
TLM(a = −1.421,MT(sj)) 48.8 0.65
CNGL SVR 49.2 0.67 1.164 47.6 1.6
CNGL SVRPLS 49.6 0.68 1.104 48.9 0.7
SLM(a = −1.249, sj)) 49.7 0.64
CMU slim 51.6 0.63 0.902 50.6 1.0
Baseline bb17 SVR 51.9 0.61 1.103 51.4 0.5
TLenw(a = 3.226,MT(sj)) 52.0 0.57
TLenw(a = 3.468, sj) 52.3 0.59
DFKI linear6 52.4 0.64 0.857 50.7 1.7
TLenc(a = 0.664, sj) 52.4 0.57
TLenc(a = 0.601,MT(sj)) 52.5 0.57
CMU full 53.6 0.58 1.006 53.6 0.0
DFKI pls8 53.6 0.59 0.874 52.1 1.5
TCD-DCU-CNGL SVM2 55.8 0.47 1.082 55.4 0.4
TCD-DCU-CNGL SVM1 55.9 0.48 1.083 55.5 0.4
SHEF FS 55.9 0.42 0.870 54.7 1.2
Avgc(α = 0.256,MT(sj)) 56.6 0.53
Avgc(α = 0.386, sj) 57.2 0.56
Avgw(α = 1.079,MT(sj)) 61.1 0.52
Avgw(α = 0.612, sj) 61.7 0.59
NNc(sj) 62.5 0.41
SHEF FS-AL 64.6 0.57 1.054 64.4 0.2
NNc(MT(sj)) 67.8 0.35
Naïve zero-parameter average 68.1 —
NNw(sj) 70.1 0.37
LIMSI elastic 70.6 0.58 1.804 54.4 26.2
NNw(MT(sj)) 71.3 0.30

Table 2: Mean absolute error (MAE) and Pearson correlation coefficient (r) for one-parameter (Avg(α, xj),
TLen(a, xj), SLM(a, sj) and TLM(a,MT(sj))) and zero-parameter (naïve average, NNu(xj)) quality
estimators (all shaded) in the context of WMT13 submissions. For WMT13 participants, the results of
oracle scaling (see text) are also given: scaling factor, new MAE and variation of MAE.
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System ID MAE r Scaling Scaled MAE ΔMAE
RTM-DCU/RTM-SVR 16.77 0.63 0.863 16.29 0.48
MULTILIZER/MLZ2 17.07 0.64 0.851 16.22 0.75
SHEFF-lite 17.13 0.61 0.949 17.05 0.08
MULTILIZER/MLZ1 17.31 0.65 0.835 16.43 0.88
SHEFF-lite/sparse 17.42 0.61 0.963 17.38 0.04
FBK-UPV-UEDIN/WP 17.48 0.66 0.812 15.76 1.72
RTM-DCU/RTM-RR 17.50 0.64 0.814 16.16 1.34
Avgc(α = 0.217, sj) 17.69 0.58
Avgc(α = 0.202,MT(sj)) 17.94 0.57
TLM(a = −0.538,MT(sj)) 18.38 0.57
TLenc(a = 0.281,MT(sj)) 18.55 0.58
SLM(a = −0.521, sj) 18.59 0.55
TLenw(a = 1.519,MT (sj)) 18.66 0.55
FBK-UPV-UEDIN/NOWP 18.69 0.62 0.758 16.72 1.97
Avgw(α = 0.794,MT(sj)) 18.75 0.54
TLenc(a = 0.327, sj) 18.80 0.59
TLenw(a = 1.616, sj) 18.84 0.56
Avgw(α = 0.61, sj) 18.86 0.56
USHEFF 21.48 0.57 0.907 21.25 0.23
Baseline bb17 SVR 21.49 0.54 0.906 21.25 0.24
NNc(sj) 21.53 0.37
NNw(MT(sj)) 21.80 0.36
Naïve zero-parameter average 21.93 —
NNw(sj) 22.14 0.31
NNc(MT(sj)) 22.65 0.32

Table 3: Mean absolute error (MAE) and Pearson correlation coefficient (r) for one-parameter (Avg(α, xj),
TLen(a, xj), SLM(a, sj) and TLM(a,MT(sj))) and zero-parameter (naïve average, NNu(xj)) black-
box quality estimators (all shaded) in the context of WMT14 submissions. For WMT14 participants, the
results of oracle scaling (see text) are also given: scaling factor, new MAE and variation of MAE.
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In the case of the LIMSI elastic submission to WMT13, the scaling factor of 1.804 leads
to the best possible test-set MAE of 54.4, which is much better and closer to that of other
systems having similar Pearson’s coefficients. Note that this is an oracle scaling, since the gold-
standard time measurements for the test set are used to obtain the best scaling factor; however,
it is reasonable to expect that linear scaling on the training set would also have improved
this predictor. For the remaining participants in WMT13, oracle scaling factors in the range
[0.857, 1.164] lead to small changes in MAE between 0.3 and 1.7 seconds, that is, around 0.6%
to 3.4%. These changes would be expected to be even smaller or even negligible if scaling had
been learned on the training set.

The scaling picture for WMT14 is also interesting (see Table 3). Oracle scaling factors
in the range [0.758, 0.949] lead to improvements in MAE in the range [0.24 s, 1.97 s], which
are sometimes as large as 12%. The improvements are particularly substantial for FBK-UPV-
UEDIN/NOWP (–1.97 s, scaling 0.758), FBK-UPV-UEDIN/WP (–1.72 s, scaling 0.812) and
RTM-DCU/RTM-RR (–1.34 s, scaling 0.814), which would explain the discrepancies between
Pearson correlation and MAE mentioned above. It is reasonable to expect that a scaling factor
obtained using the training set would have also made a difference in the test-set MAE in these
three cases.

Approximating complex predictors with just one parameter: Finally, it is worth noting
that some systems showing a good Pearson correlation with the models presented in this paper
use very many features and parameters. In particular, the Pearson correlation coefficient of the
RTM-DCU/RTM-SVR submission to WMT14 with TLenc(a = 0.281,MT(sj)) is 0.90 (the
absolute difference in MAE is 1.78) and, while the latter has one feature and a single parameter,
the former uses hundreds of features and several other sources of information. Oracle scaling of
RTM-DCU/RTM-SVR slightly improves its test-set MAE to 16.23 s.

3.2 Performance of few-parameter predictors

In view of the surprisingly competitive results obtained with some of the single-parameter models
presented here, one would immediately ask the following question: would performance improve
further by using linear combinations of them?

We take the following six linear predicting features: the length-based TLenc(sj),
TLenw(sj), TLenc(MT(sj)), and TLenc(MT(sj)), and the two statistical-language models
SLM and TLM. For the study, we leave aside the weighted-average features as they are com-
putationally more intensive to use and to train, do not have a linear form, and need a separate
development set to be trained.

All 26−1 = 63 possible subsets of these 6 features are studied.9 We take linear combinations
of each subset and use the multidimensional downhill simplex algorithm of Nelder and Mead
(1965) as implemented in the Python library scipy to search the coefficients that minimize the
training set MAE. For more than two parameters, the result of the minimization heavily depends
on the starting point (this is expected in view of the strong collinearity, for instance, between
length features). Therefore, and to ensure the best possible training set MAE, for each subset,
50 searches are performed with starting parameters randomly sampled from the zero-average,
unit-variance normal distribution N (0, 1). The results are shown in Table 4.

As expected, the lowest training set MAE is found when all six features are used; however,
the resulting test set MAE does not improve the results obtained with the best single-parameter
predictor: 48.8 s for WMT13 (same as TLM alone) and 18.39 s for WMT14 (almost the same as
TLM alone). Conversely, some combinations having worse training-set MAE get better test set
MAE results, such as 48.22 s for a mixture of just TLenw(sj) and TLM(MT(sj)) in WMT13,

9Exhaustive search in feature spaces is sometimes performed in QE, e.g. (Scarton et al., 2015).
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Dataset Features Best combination Train
MAE

Test
MAE

WMT13

1 TLM 41.3 48.8
2 TLenw(si) + TLM 41.0 48.2
3 TLenw(si)+TLenc(MT(si))+TLM 40.7 49.1
4 TLenw(si)+TLenc(MT(si))+SLM+

TLM
40.6 48.6

5 TLenw(si) + TLenc(MT(si)) +
TLenw(MT(si)) + SLM+TLM

40.5 48.8

6 All 6 40.5 48.8

WMT14

1 SLM 15.92 18.59
2 TLenc(MT(si)) + SLM 15.60 18.44
3 TLenc(MT(si)) + TLenc(MT(si)) +

SLM
15.57 18.51

4 TLenc(si) + TLenc(MT(si)) +
TLenc(MT(si)) + SLM

15.53 18.40

5 TLenc(si) + TLenw(si) +
TLenc(MT(si)) + TLenc(MT(si)) +
SLM

15.53 18.40

6 All 6 15.53 18.39

Table 4: Post-editing time prediction using a small number of linear features: number of features, best
combination, training-set MAE, and test-set MAE.

or 18.2 s for a mixture of TLenw(sj), TLenc(MT(sj)) and TLM(MT(sj)) for WMT14. These
results may be a possible indication of over-fitting or a limitation of a simple linear regressor.

3.3 Budgeting translation jobs

An interesting use of PE time predictors is budgeting a PE job, when post-editors are paid by the
hour. Given a new translation job, an estimate of time to complete that job may easily be obtained
by summing up the predicted PE time over all segments. This is a very practical application of
QE.

Disregarding the actual hourly rate (a constant factor), a good estimate of the usefulness for
budgeting may be given by studying the Pearson correlation between the total time predicted for
a job by a certain estimator and the actual total time for that job.

To simulate that, we repeatedly and randomly extract PE jobs {(sj ,MT(sj), tj)}nj=1 of
n = 100 sentences from each of the test sets without replacement. Over each one of these
sets, we compute the Pearson correlation between the predicted total time and the actual total
measured time. The actual regression coefficients obtained vary with the number of random jobs,
but their values for job sizes of 0.4, 0.8, 1.0, and 2.0 times the size of the test set and for a fixed
number of 1000 jobs show consistent relative trends. The results for a number of jobs equal to
the number of segments in the test set are shown in Table 5.

As can be seen, the Pearson correlation reported for the best single-parameter predictors is
almost the same as that for the winning system in WMT13, and slightly worse in WMT14. This
would suggest that, at least for these datasets, simple predictors could be used instead of very
complex predictors having a large number of features and parameters with a very small loss in
budgeting accuracy.
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Dataset Predictor r

WMT13

FBK-UEDIN Extra (winner) 0.867
TLM(MT(sj)) 0.856
SLM(sj) 0.854
TLenw(MT(sj)) 0.856
Avgc(MT(sj)) 0.806
Baseline 0.849

WMT14

RTM-DCU/RTM-SVR (winner) 0.860
Avgc(sj) 0.821
TLM(MT(sj)) 0.828
TLenc(MT(sj)) 0.827
SLM(sj) 0.819
Baseline 0.730

Table 5: Budgeting Pearson correlation coefficients for selected PE time predictors, computed for a number
of random jobs equal to the number of segments in the test set.

4 Concluding remarks

The results obtained by very simple, one-parameter MT QE models happen to be surprisingly
competitive with those obtained by complex QE models using strong learning algorithms, tens,
hundreds or thousands of features, and, sometimes, additional resources such as existing, custom-
trained, or external MT systems. The findings in this study lead us to make the following
recommendations for researchers in MT QE:

• First, look at what can be done with very simple models before using a sledgehammer
to crack nuts, in order to get an idea of the performance one could obtain and hopefully
improve. As some of the features used in the simple models proposed here are usually
part of participants’ complex models, the modest performance they obtain may be due to
noise introduced by new features that could not be filtered out by the regressors (probably
as a result of a non-optimal training process), to learning problems such as over-fitting
to the training set, to non-optimal hyper-parameter choice, to incomplete convergence, or
to the shortcomings of the regressors used (as revealed by the oracle scaling described in
Section 3.1.3); the actual reasons are probably worth a closer analysis.

• Then, incrementally explore more complex models; linear combinations of a few carefully
selected features do not seem to help much; therefore, one should probably consider simple
non-linear models. The results of this analysis may be expected to shed some light on the
problem.

Finally, a better understanding of the contribution of each feature to the QE models using them
could open the door to using, in real-life QE scenarios, feasible and computationally simpler
predictors.
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