
 1

Using MDA in Web Software Architectures

SANTIAGO MELIA, CRISTINA CACHERO AND JAIME GOMEZ1
Universidad de Alicante, Spain

The new challenges posed by the Internet market have increased the need for Web Applications that require more
development efforts and guarantee a higher quality level. In order to contribute to this goal, in this position paper
we present a new proposal called WebSA which proposes the inclusion of a software architecture models to
complement the specification of Web Applications. This strategy, together with the definition of the different
models following the MDA standard provides the proposal with the necessary mechanisms to (1) improve the pace
at which Web Applications are developed, (2) ease its integration with other systems and (3) cutting off the web
application development cost.

1. Introduction
During the last years, in the context of the development of Web Applications many different

methodologies, most of them partly or fully based on UML (see e.g. OO-H [Cachero 2003], UWE [Koch
and Kraus 2003], OHDM [Schwabe et all. 1999]) have been proposed for the high-level and platform-
independent specification of the different software components that build up a typical Web application,
covering the presentation tier, the business tier, and the data tier. Common to all the design proposals is the
goal of expressing in a formal yet intuitive way “how” a Web application works, so to achieve higher
design quality, more pervasive code generation, better documentation, and easier maintenance.

However, less attention has been paid to the problem of software architecture for Web applications,
defined as that of identifying and formalizing “what” subsystems, components and connectors (software or
hardware) the application should have. In particular, the process of integrating non-functional requirements
into the design of a web application that conform to them is still largely unsupported. The methodology
gap between software architectures and web application design diminishes the benefits of pervasive Web
methodologies, increases the time to market of Web applications, and opens the way to misalignments
between non functional requirements and design schemes.

In this context, this paper describes a new proposal called WebSA (Web Software Architecture) which
proposes the inclusion of a software architecture model to complement other proposals in the specification
of Web Applications, and the use of the MDA standard [OMG 2001] to formalize and describe such
models. Furthermore, the use of MDA to define the web software architecture provides WebSA with three
important features: to (1) improve the pace at which Web Applications are developed, (2) ease the
integration of web-aware interfaces with pre-existing modules, and (3) cutting off the web application
development cost.

The remaining of the article is structured as follows: section 2 presents how a web architecture can be
formalized with MDA describing the different views that make up a software architecture. In particular, we
describe the logical architectural view that structures the subsystems, modules and connectors a web
application should have. Section 3 proposes a set of extensions in the architecture for MDA models to
describe software architectural issues. Finally section 5 sketches the conclusion and further work.

2. Web Architecture expressed with MDA
As we have stated above, WebSA is based on the specification of a software architecture for Web

Applications, where by software architecture we mean: “the description of the subsystems and components
of a software system and the relationships between them, typically represented in different views to show
the relevant functional and non functional properties “[Buschman et all. 1996]. This definition introduces
both the main architecture elements (subsystems, components, connectors), how to represent them (by
means of a set of different views) and what they actually reflect (both functional and non functional
requirements).

1 Authors addresses: Santiago Meliá, Cristina Cachero, and Jaime Gomez, Universidad de Alicante,
España, http://www.ua.es, {santi, ccachero, jgomez}@dlsi.ua.es.

 2

In this way, WebSA relies on the separation of the web software architecture description in several
concurrent views. Such views are defined in WebSA based on the MDA standard. Although, in the
traditional use of MDA, software architecture has not been a main concern, it is also true that, as it is
mentioned in its specification [OMG 2001] when referring to quality attributes, “it is desirable to support
and integrate such features in the modeled applications”. Such integration can be achieved, as stated in
[Bass et all. 2000], by specifying the system software architecture.

There are previous works that have successfully tackled the specification of the application architecture
in terms of a set of different views that make it up, among which we could cite [Kruchten 1995] , who
defines 4+1 concurrent views in order to define a system and [Hofmeister et all. 1999], who splits the
software architecture into 4 views. Unlike WebSA, both approaches are exclusively based on UML, and are
defined to express any type of architecture. On the contrary, WebSA uses MDA and centers on the web
domain, which permits a higher level of detail in the specification process.

Next we will present the main views considered in WebSA in order to get the software architecture of
a web application. These views are formalized by means of a UML metamodel.

2.1 The view model
The view model shows the links among the different views (regarded as a set of artifacts created

during the software development process) that make up a web application software architecture. In WebSA,
the web application model is made up of 8 views, further grouped in viewpoints. A viewpoint is a set of
views that share concerns. Fig. 1 we can observe a UML diagram that depicts the set of viewpoints and
views in WebSA, as well as the relationships among them.

Functional ViewPoint

Conceptual
View

Presentation
View

Process View Navigational
View

Architectural ViewPoint

Physical
Architectural View

Logic A rchitectural
View

Requirements ViewPoint

Functional
Requirements View

Non-Functional
Requirements View

Figure 1.The View Model in WebSA.

The requirements viewpoint gathers the information needed to specify the system: in particular the set
of use cases scenarios (functional requirements view) and quality scenarios (non-functional requirements
view) are captured.

Departing from the requirement engineering phase, the functionality of a web system is defined by
means of a Functional Viewpoint. That functionality is captured by means of the corresponding views
defined by the web engineering community for web applications. In particular, the conceptual view
captures the structure of the information system that lies behind the application. The navigation view

 3

specifies the interactions that the user may perform in order to step through the different application
scenarios. The presentation view is concerned with the general appearance of the application and the
functionality associated with this appearance. Finally, the process view gathers process activities and flows.

Also, WebSA includes an architectural viewpoint to explicitly address the architectural issues.
Departing from non-functional requirements a set of architectural patterns can be inferred to gather the
logical and physical architecture views. The first one gathers the set of logical components (subsystems,
modules and/or software components) and the relationships among them. The last one describes which are
the physical components that integrates the final representation (clients, servers, networks, etc…).

Note that the interdependency between the functional and the architectural viewpoints (expressed with
the double arrow in Fig. 1 implies that on some occasions it will be advisable to take architectural decisions
based on functional features and vice versa.

The existing relationships among the different WebSA views are formalized in a common metamodel,
that permits the establishment of a traceability between the elements in the different views. WebSA, aiming
at being compliant with MDA, defines a conservative extension of the UML metamodel in the context of a
UML profile.

Next, we will center on the architectural viewpoint defined in WebSA, and we will incorporate the
necessary concepts to the model architecture defined in MDA. Due to space constraints, inside this
viewpoint we will only focus on the logical architectural view.

2.2 Logical architecture view in MDA
As commented above, the logical architecture can be initially inferred from the non-functional

requirements, gathered during the requirement phase. The matching between non functional requirements
and the logical architecture may be undertaken by the application of a set of architectural patterns. Such
patterns are defined at different levels of abstraction in each model, and suggest which are the relevant set
of requirements to be taken into account for each architectural level. On the other hand, the functional
requirements determine the connection between architectural and functional components, and will be
defined according to the relationships established among the views in the WebSA metamodel.

There are several techniques and languages devoted to the specification of the logical architecture of a
web application based on UML notation [Conallen 2002][Hassan and Holt 2002]. However, none of them
use a notation according to the MDA standard. Such situation imposes a set of restrictions that have been
taken into account when defining WebSA.

In our approach, the logical architecture is divided in three models, each one corresponding to each of
the three phases in the architectural design. Each phase is located in a different level of abstraction, and
reflects different architectural features, possibly influenced by a different set of user requirements. These
three models are:

1. Subsystem Model: also known as structural design, determines which are the subsystems that
make up our application. It makes use of the set of architectural patterns defined in [Renzel
and Keller 1997], which determine which is the best distribution in layers of our system. Such
distribution patterns define not only reusable elements but also permit the matching of non-
functional requirements with the Web Application logical architecture.

2. Web Component Configuration Model: consists on the refinement of each subsystem by its
decomposition in a set of abstract components that are particular to the web domain. They are
defined by means of a web component ontology, where each component type has established
its relationships at metamodel level with the functional view, which in turns makes possible
the mapping between the architectural and the functional features. In this case the reuse
elements are the architectural patterns defined by authors like [Buschman et all. 1996] and
[Conallen 2002] for the web.

3. Web Component Integration Model: also known as integration model, due to the fact that it
connects the functional and architectural views under a common set of concrete components
and modules, which will eventually make up the Web Application. This model can be initially

 4

inferred from the relationships that exist between the abstract component types defined in the
configuration model. Such default mapping must be further refined in order to adjust the
system needs. The reuse elements in this level are again the design patterns [Gamma et all.
1995] and [Beck and Johnson 1994].

Fig. 2 depicts such logical architecture refinement process.

D1
<<Dialog Control>>

CWD1 {card=1}
<<ControlACW>>

M1 {card=*}
<<ModelACW>>

VWD1 {card =1}
<<ViewACW>>

SWD1 {card=*}
<<Server PageACW>>

1..1

1..n

<<local>>

1..n 1..n
<<local>>

1..n

1..n

<<local>>

<<ModelCCW>>

1..1 1..n
<< local >>

<<ref ine d>>

<<refined>>

Subsystem Model
Subsystem Model

<<Presentation>>

<<Business Logic>>

<<Dialog Control>>

Web Component
Configuration Model

Fu nctional Viewpoint

<<ref ine d>>

Web Component Integration Model

CCW1

serviceRequest()
navigationRequest()

<<ControlCCW>>
Client

ne wClie nt ()
de let eClie nt ()
checkCl ient()
ge tCl ie nt()

(from ModuleModel1)

<<ModelWeb>>

Cart

newCart()
addItem()
deleteItem()
showAllItems()
generateOrder()

(from ModuleModel 1)

<<ModelWeb>>

Order

newOrder()

(from ModuleModel1)

<< ModelWe b>>

generateOrder

<<local>>

checkClient

<< local>>

newCart
<< local>>

newOrder

<< local>>

Note that, WebS
subsystem model (h
model and that dete
and provide the mec

It is important
anything about imp
architectural models
architectural models
mapping between th
lowest abstraction le
abstraction similar to
for Web Applicatio
automatically provid

However, the fa
traditional model ar
different conceptual
Figure 2. Logical Architecture refinement process
A define the logical architecture by means of a Top-down process that goes from the
igher level of abstraction) to the concrete components that make up the integration
rmine the final application. In each phase WebSA defines a set of reuse mechanisms
hanisms to reflect different sets of requirements.

to stress that the logical architecture centers on design aspects, and does not say
lementation (just components, their interfaces and their relations). In this way the
 are independent from the target platform. This fact makes possible to classify the three
 as PIMs (Platform Independent Model) in the context of MDA. A PIM to PIM
e three models would leave us just a step away from platform considerations. Such
vel is in WebSA the Component Integration Model. This model is defined at a level of
 that of the EDOC profile[OMG 2002]. Due to the fact that the components defined

ns in the business logic layer can be mapped to this profile, WebSA is capable of
e different mappings to PSM models such as EJB, CORBA or .NET.

ct that WebSA considers architectural and functional features in parallel implies that
chitecture defined for MDA must be extended with a new view that will group the
architecture PIMs models. In the next section, we will present that extension.

 5

3. Extension of the architecture for MDA Models
In WebSA, the subsystem model and the abstract component configuration model cannot be integrated

in the traditional views of MDA, due to the fact that they are independent from the problem domain, and
are exclusively influenced by the non functional requirements. This fact implies that such models may be
defined concurrently with those defined to gather the functional features of the Web Application.

Figure 3 shows the proposal to extend the architecture for MDA models [OMG 2001]. It provides a
more rigorous mapping between the analysis phase (represented by the Computation Independent Business
model) and the design phase (represented by Platform Independent Component view model). This mapping
is driven by the Architecture View that makes a progressive refinement of architectural models and that
finishes in a Web Component Integration Model. It is in this last model where the integration of the
architectural model with the business domain model is achieved. The greater effort that must be made in
the abstract modeling phase decreases the amount of work necessary during the design and implementation
phases. Unlike approaches where architecture is always considered independently until reaching the
implementation, the abstract architecture model defined in WebSA permits the unification of functional and
non functional requirements earlier in the process.

Computation Independent
Business View

Platform Independent
Component View

Platform
Specific

Software Architectural
Model

Computation Independent
Business V iew

Platform Independent
Component View

Platform
Specific

TRADITIONAL ARCHITECTURE
FOR MDA MODELS

EXTENDED ARCHITECTURE
FOR MDA MODELS

Incomplete
Analysis-Design
Mapping Complete

(Analisys+Architecture)-
Design mapping

Summarizing, the advantages of extending the architecture for MDA models can be named as follows:

1. Possibility of capturing the non functional requirements in order to improve the quality of the
resulting Web Applications.

2. The reuse of the architecture models for different systems.

3. A more rigorous mapping between the domain model and the different component view models.

4. A better quality of the generated code, because it permits the definition of a generation mechanism
where the functional and architectural parts are combined.

5. An easier connection with actual approaches that make use of PIMs to PSMs mappings.

This ideas are being applied in the context of the design and implementation of a CASE Tool called
VisualWADE for the Web [VisualWADE 2002]. The goal is to improve the productivity in the
development of web applications. Starting from WebSA, we are working on the definition of a set of MDA
mappings to provide automated code-generation for that kind of applications. Such mappings are based on
a domain-specific strategy (for web applications) as recommended in [Bettin 2002].

 6

4. Conclusions and future work
In this paper we have presented a new proposal called WebSA whose main objective is improving the

quality and the pace of development of Web Applications. This proposal includes, as its main features:

� An extension in the model architecture of MDA with a requirement viewpoint that contains
functional and non functional requirements views.

� A software architecture viewpoint that fills the gap between analysis and design phases.

� A set of new analysis domain specific models for Web applications.

� A set of mapping rules from PIM to PIM and from PIM to PSM that permit to obtain
complete Web Application models that take into account architectural concerns.

This work is far from completed. We are on the process of carrying out a complete definition of the UML
profile of WebSA, which we expect to be incorporating in the VisualWADE CASE tool in the near future.

5. References
[Bass et all. 2000] Bass, L., Klein, M., Bachmann, F. “Quality Attribute Design Primitives” CMU/SEI-
2000-TN-017, Carnegie Mellon, Pittsburgh, December, 2000

[Beck and Johnson 1994] Beck K., Johnson R. Patterns generate architectures. Proceedings of the 8th
European Conference on Object-Oriented Programming. Bologna, Italy. 1994. pp 139-149.

[Bettin 2002] Jorn Bettin. Measuring the potential of domain-specific modelling techniques. DSVL (2002).

[Buschman et all. 1996] Frank Buschman, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal:
Pattern-Oriented Software Architecture – A System of Patterns; John Wiley & Sons Ltd. Chichester,
England, 1996

 [Conallen 2002] Jim Conallen. Building Web Applications with UML Second Edition. Adisón Wesley
Longman. September 2002.

[Gamma et all. 1995] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns :
elements of reusable object-oriented software. Reading, Mass.: Addison-Wesley.

[Hassan and Holt 2002] Admed E Hassan, R.C. Holt. Architecture Recovery of Web Applications.
ICSE’02, May 2002.

[Hofmeister et all. 1999] C. Hofmeister, R. L. Nord, D. Soni. Siemens Corporate Research, Princeton, New
Jersey, USA.. 1999

[Koch and Kraus 2003] Koch N., Kraus A. (2003), The expressive power of UML-based engineering,
Proceedings of the IWWOST’02, CYTED, pp. 105-119

[Kruchten 1995] Kruchten, P. (1995) The 4+1 View Model of Architecture, IEEE Software.

[OMG 2001] Architecture Board ORMSC. Model driven architecture. Technical report, OMG, July 9
2001.Document Number ormsc/2001-07-01.

[OMG 2002] EDOC. UML Profile for Enterprise Distributed Object Computing Specification. Febrary
2002.

[Renzel and Keller 1997] Renzel K., Keller W. Client/Server Architectures for Business Information
Systems. A Pattern Language. PLoP’97 Conference.

[Schwabe et all. 1999] Schwabe, D., Almeida, R., & Moura, I. 1999a. Leveraging Template-based Website
Implementations Using Design Methods. In: 8th International World Wide Web Conference.

[VisualWADE 2002] http://www.visualwade.com

