CONFERENCE REVIEW SYSTEM: A CASE OF STUDY

Cristina Cachero', Jaime Gémez', Antonio Pélrraga1 and Oscar Pastor”

: Departamento de Lenguajes y Sistemas Informaticos
Universidad de Alicante. SPAIN
[ccachero, jgomez, aparraga]@dlsi.ua.es

2 Departamento de Sistemas Informaticos y Computacion
Universidad Politécnica de Valencia. SPAIN
opastor@dsic.upv.es

Abstract This report presents the OO-H solution to the Conference
Review System case study proposed in the IWWOST’01. We first
introduce the main concepts of OO-H. We then perform an analysis of
the case study, and establish the functional requirements each actor’s
interface should fulfil. We also present the UML use-case and class
diagrams that constitute the basis on which OO-H defines its own
models. Next, following the OO-H notation, we present the interface
navigation model for each actor of the system. We also briefly illustrate
how these models are transformed into an XML specification that feeds a
model compiler, capable of generating an operative version of the
modelled interface.

1.- A brief introduction to OO-H

The OO-H (Object Oriented Hypermedia) Method is a generic model, based on the
object oriented paradigm, that provides the designer with the semantics and notation
necessary for the development of web-based interfaces and its connection with
previously existing application logic modules.

OO-H defines a set of diagrams, techniques and tools that shape a sound approach
to the modelling of web interfaces. The OO-H proposal includes:

- a Design Process

- aPattern Catalog

- aNavigation Access Diagram (NAD)

- an Abstract Presentation Diagram (APD)

- a CASE tool that allows to automate the development of web applications

In this paper we will focus on the views OO-H defines to extend those provided by
‘traditional software’ production environments, namely (1) the Navigational Access
Diagram (NAD), that defines a navigation view, and (2) the Abstract Presentation
Diagram (APD), that gathers the concepts related to abstract presentation. The NAD
diagram enriches the domain view provided in the UML [5] wuse-cases and class
diagrams with navigation and interaction features. Also, to define navigation and
visualization constraints, OO-H uses the Object Constraint Language (OCL [6]), a
subset of the standard UML that allows software developers to write constraints over
object models. OO-H associates such constraints to the NAD models by means of
filters, that will be explained below. On the other hand, the definition of abstract pages
in the APD is based on a set of XML DTD’s [1]. Both the NAD and the APD capture

the interface-related design information with the aid of a set of patterns, defined in an
Interface Pattern Catalog that is integrated in the OO-H proposal.

The navigation model is captured by means of one or more NAD's. The designer
should construct as many NAD's as different views of the system are required, and she
should provide at least a different NAD for each user-type (agent-type) who is allowed
to navigate through the system. This diagram is based on four types of constructs: (1)
Navigation Classes, (2) Navigation Targets, (3) Navigation Links and (4) Collections.
Also, when defining the navigation structure, the designer must take into account some
orthogonal aspects such as the desired navigation behaviour, the object population
selection, the order in which objects should be navigated or the cardinality of the access.
These features are captured by means of different kinds of navigation patterns and
filters associated with links and collections. In Table 1 we present an overview of the
main NAD constructs.

- Navigation Classes (NC): they are enriched domain classes whose attribute and
method visibility has been restricted according to the user access permissions
and navigation requirements. A sample enrichment is the differentiation among
three types of attribute: V-Attributes (Visible Attributes), R-Attributes
(Referenced Attributes, which are displayed after a user demand) and H-
Attributes (Hidden Attributes, only displayed when an exhaustive system
population view is required, e.g. for code refinement reasons).

Navigation Targets
Grouping mechanism to provide cohesive views of elements collaborating in the coverage of related user requirements.
Collections
(Possibly) hierarchical structures defined on navigation classes or navigation targets that provide extra paths to information.
Classes
Enriched domain classes whose attributes and method visibility are restricted according to the user access permissions and navigation requirements.
Links
Navigation construct that provides a controlled access to the target information/navigation structures (classes, collections, methods and so on). Links define both
the paths the user may follow through the system and the way they are going to traverse suc

TYPE
VISUALIZATION

Requirement || Internal || Traversal || Senice || Response || Exit
Origin || Destination

USER INTERACTION
APPLICATION SCOPE
ACTIVATION LINKS

Manual || Automatic
Simple || Multiple || Universal

Links at level n-1 in the navigation path that activate the actual link (level n), that is, make it available to the user.

Filters

Patterns

Origin

Destination

User-defined

Domain-dependent

Index (yes/no)
ltems per page

Navigation (yes/no)
Items per page

To userType.navigationTarget.construct

NT
Lt:"Traversal Link" ExP:"EXit Link"
Navigation

Target aClass: Class anotherClass: Class
anAttribute(V) anAttribute(V)
(V) (V)

Li:"Internal Link"

aMethod aMethod

Collection A

Lres:"Response Link"

Table 1: OO-H Constructs, icons and navigation-related metamodel attributes

- Navigation Targets (NT): they group the elements of the model that collaborate
in the coverage of each user navigation requirement.

- Navigation Links (NL): they define the navigation paths the user is able to
follow through the system. They may have both a Navigation Pattern and/or a
set of Navigation Filters associated, which together provide the required
additional information to construct the user navigation model. OO-H defines six
link types:

o I-Links (Internal Links) define the navigation path inside the boundaries
of a given NT.

o T-Links (Traversal Links) are defined between navigation classes
belonging to different NT.

o R-Links (Requirement Links) point at the starting navigation point
inside each NT.

o X-Links (Exit Links) point at places outside the boundaries of the
application. They are also used as an auxiliary mechanism to represent
the feeding of parameters to methods.

o S-Links (Service Links) and their corresponding R-Links (Response
Links) show the services available to the user type associated to that
NAD and the view the user accesses when the interface recovers the
control of the application. Service links also gather the way the user is
required to introduce the parameters needed for the invocation of any
method. Regarding such parameter introduction, OO-H defines five
possibilities: (1)‘hidden’ and (2)‘constant’ parameters imply no user
introduction of values. By default the introduction mode is set to
(3)‘immediate’, which means that the interface shows a text field where
the user must type the required value. When the user is allowed to
choose among a predefined set of possibilities the introduction mode is
set to (4) ‘selection’. Last, when the parameter selection requires
navigation, the (5)‘navigation’ mode (with a start navigation link and an
end navigation link, chosen among those defined in any NAD) is
established for that parameter.

- Collections: they are (possibly) hierarchical structures defined on Navigation
Classes or Navigation Targets. They provide the user with new ways of
accessing the information. The most common type of collection, and the one we
will use along this paper, is the C-Collection (Classifier Collection), that acts as
an abstraction mechanism for the ‘menu’ concept.

Regarding Navigation Filters, we have already mentioned that they are captured in
OO-H by means of OCL expressions. We can distinguish between filters applied to
objects in origin (Fo) and filters applied to target population (Fd). Fo’s are useful to
capture navigation constraints that imply the user is only allowed to continue navigating
if the origin population fulfils certain conditions. In our example (see Fig. 8) going to
the ‘New Conference’ view is only permitted if there is no conference defined (Fo:
Conference.population==0). On the other hand, Fd’s are useful to restrict the views the
user has on the target object population. As an example, the navigation requirement
‘consult the data about the papers that a given author has introduced’ requires the
definition of a Fd based on the structural relationship between author and paper. Note

however that Fd’s do not necessary have to be defined after structural relationships. For
example, ‘view all authors affiliated to the Univesity of Alicante’, supposes the
definition of an Fd based on the Author.affiliation attribute. As the reader can infer, the
main difference between Fo’s and Fd’s is that, while Fo’s inhibit navigation (the
appearance of links in the interface), Fd’s restrict the target population being visualized,
but don’t refrain the link itself from being shown in the interface.

On the other hand, Navigation Patterns are characterized by two properties: indexing
(yes/no and, if yes, number of items per page, in order to allow index pagination) and
navigation (yes/no and, if yes, number of items per page, in order to diminish guided
tours size).

OO-H defines other navigation-related metamodel attributes associated to links,
namely:

- Visualization (show in origin | show in destination): any link implicitly connects
an origin (either implicit or explicit) and a target information set. When the
visualization attribute is set to origin, the target information set is visualized
together with the origin, that is, in the same abstract page. However, when it is
set to destination, a new abstract page is generated and a navigation action (such
as clicking on an anchor) is required to follow the navigation path.

- User Interaction (manual | automatic): Sometimes it is useful for the user not to
be obliged to click on a link in order to get the target information set. This
characteristic is captured in the ‘User Interaction” metamodel attribute, which in
this case will be set to ‘automatic’.

- Application Scope (simple | multiple | universal): This concept stands for the
number of objects a given links involves in origin when it is traversed. The
origin of a given link can be defined to be single object (simple), a set of objects
chosen by the user (multiple) or the set of objects present in the actual view
(universal).

Last but not least, OO-H introduces the concept of activation link. Several times
the information the user needs to access slightly varies depending on the contextual
navigation (where s/he comes from). OO-H abstracts such situation by means of an
activation-link mechanism. Each link defines its set of activation links, that is, links
that, when coming through them, make the actual link available to further
navigation. All this concepts will be used in section 4, when we present the
Navigation Access Diagrams (NAD from now on) corresponding to the Conference
Review System example. Commercial interfaces tend to require a greater level of
sophistication than that provided by the NAD diagram, regarding both appearance
and usability features. In order to refine the interface, OO-H defines another
diagram: the Abstract Presentation Diagram (APD), that will be briefly introduced
in section 5, once the navigation diagrams for the case study have been presented.
Furthermore, and although it is not defined inside the OO-H method, the OO-H
CASE tool includes a third view, the CLD (Composite Layout Diagram) that allows
the visual manipulation of the final XML interface specification (new frames, styles,
and so on) that feeds the model compiler in order for it to generate an operative
interface.

More detailed information both on the semantics of the different constructs and
on the OO-H process can be found in [3,4].

2.- Use Case Diagrams

The Use Case Diagram is one of the key mechanisms of UML. It captures the
system functional requirements for each user type (actor), and drives the remaining
phases of the software construction process. OO-H uses it as a basis on which the
navigation requirements are structured.

Departing from the paper review system description, we have defined four use
case diagrams, one for each actor identified in the system, namely PCChair,
PCMember, Reviewer and Author.

2.1. PCChair

@@

/

Q ChangeP perTrack DetegtinterestConflicts O

ChangePaperSubjects

. — 77\
// —
~ManageTracks/Subjects) . .
%&@%Iuaho n

ChangeConferenoeStatusQ

< >\/ iewReviews

(> ViewStatistics
Login\

Fig 1: PCChair’s Use Case Diagram

Accept/RejectPapers
ManageConferencelnfo

2.2. PCMember

-yl C O . >

AssignPapersfPCReviewer

ManagePreferredTop|cs/Su j gisterPCReviewe

S,

Visualize Accepted/Rejected
Paper

f

lizeProcessStatus/Statistic

IntroConflicts

O/ | A
(> ReadArticl / <,>ViewMyReview
o teFlnaIRewewerEvaluatlo —
Introlnterest4Articles < > (>

ReviewArticl

VisualizeOtherReview
ModifyRevie

Fig 2: PCMember’s Use Case Diagram

2.3. Reviewer

c

Login
S /) .
D D
N N
Confim Regisfration Reviewer ReviewPaper

Fig. 3: Reviewer’s Use Case Diagram
2.4. Author

Subn[utPaper
UpdatePap Data |

C O /"/

ConfirmRegistration \\

o
— == o

Author

aperinfo

T

- ViewFinal ReviewStatus
ViewListAcceptedRejectedPapers

Fig. 4: Author’s Use Case Diagram

Note that we have splitted the Use Case Diagram according to the different user
types (Fig. 1 to 4) to more clearly separate the responsibilities (functional requirements)
each actor has inside the boundaries of the system. In these diagrams (Fig. 1 to 4) use
cases with the same name imply a functionality reuse. OO-H achieves that reuse degree
by means of the use of Lt (Traversal Links, see section 1). It is also important to note
that the use cases represented in OO-H are ‘business use cases’ and so their final
implementation might vary depending on the target technology, architecture and/or
target platform.

3.- Problem Domain
3.1. Analysis Class Diagram

OO-H departs from a UML standard class diagram. Just to clarify the Class
Diagram presented in Fig. 5, note that a slash (/) next to an attribute/method stands for
‘derived’. A dollar symbol ($) next to an attribute/method name stands for ‘class-
scope’’. Also, the <<enumeration>> stereotype defined on classes implies an
enumerated type, with their attributes being the possible values of such type’.

Our class diagram (see Fig. 5) depicts the following domain concepts (analysis
classes): users (categorized into Authors, Reviewers, PCMembers and PCChairs),
articles, revisions, tracks, and subjects. Moreover, we have detected two association
classes: reviews (evaluation and comments a PCMember introduces in the system
regarding a given paper) and revision preferences (interest degree and interest conflicts
a PCMember has with reference to a given paper). Some attributes and methods have
been directly derived from the description of the system. Others have been inferred from
the application domain. The responsibility assignment has been realized taking into
account which class was responsible for the most of the data involved in each one of the
methods. Although we have tried to avoid method duplication in order to simplify the
diagram, sometimes (mainly when we are dealing with methods that involve
creation/deletion of relationships between objects) it might be convenient to provide the
user with access modes from each one of the objects involved.

Based on the system description, we have identified six ‘phases’ for the paper
revision process, all of them controlled by the PCChair. Each phase determines the
functionality accessed by the different profiles.

- AuthorSendingPapers: In order to begin the revision process, the PCChair must
introduce the conference parameters (PCChair data, conference dates, URL’s,
tracks, subjects, PCMembers involved in the revision process and so on) and, as
the last step, open the period for the authors to submit papers. The system
transition to this status might imply the sending of a ‘Call for Papers’ to a set of
selected distribution lists (DBWORLD, ISWORLD, etc).

- PCChairIntroducingConflicts: Once the paper submission period has expired
(conference.paperSubmissionDL), the PCChair must change the status of the
system in order to open the access to a new set of tasks. For example, in this new
state the PCChair might revise the submitted papers, change their track and/or
subjects if necessary, or look for revision conflicts (e.g. PCMember that are
authors of a submitted paper).

" The class-scope $ notation has been deprecated and substituted by an underlined attribute/method name
in the last versions of UML. OO-H will change the notation support accordingly in future versions of the
tool.

2 This way of defining enumerated types has been included in UML 1.4

- PCMemberlntroducingPreferences: The following step is to open the system
for the PCMembers to introduce their preferences regarding the submitted
papers, as well as revision conflicts not detected by the PCChair (if any).

- PCChairAssigningReviews: Once the PCChair closes the period to register paper
preferences, and taking into account the preferences and conflicts registered in
the system, it is time for the PCChair to assign papers to the different
PCMembers for revision.

- PCMemberReviewingPapers: Then, the period for each PCMember to introduce
its revisions is opened. Again, the system transition to this state implies the
sending of an e-mail to each PCMember with information regarding the papers
s/he has been assigned and the period of time s/he has to perform the revision.
This phase ends when the review deadline (conference.reviewDL) is reached.

- PCChairEvaluatingPapers: Once the PCChair sets the state of the system to this
value, and taking into account the reviews introduced by the PCMembers (or the
corresponding external reviewers), he must decide which papers are accepted
and which ones rejected.

- ProcessFinished: This last step implies the sending of an e-mail to all the paper
authors, informing them of the revision process result regarding their papers.

OO-H considers the e-mails the system must send on some conference state
transitions are isolated inside the body of the conference.changeProcessStatus()
method, and so out of the scope of our models.

3.2. Modelling Assumptions

In order to simplify the diagrams, we have applied the <<singleton>> pattern
[2] to the ‘Conference’ class. This pattern implies that the generated system deals with a
single conference (i.e. there may exist just one object of type ‘conference’). All tracks,
subjects and people in the database are implicitly related to that conference. Extending
such system to deal with several conferences at a time is trivial.

Furthermore, we consider the PCChair cannot revise articles nor delegate the
paper revisions to external reviewers. He cannot submit any paper (as author) either.
Also, a PCChair cannot assign a paper to a PCMember that is not interested (interest
degree==0) or that has a conflict with such paper. Furthermore, in our system a
PCMember can express the same interest degree for several articles (i.e. the interest
degree doesn’t imply a ‘strict preference order’). Also, an external reviewer cannot be
assigned more than once to the same paper. Each paper can be updated by any of its
authors as long as the submitting period has not expired. A given paper is associated to
a single track, but it can be associated to any number of subjects.

It is also convenient to note that some attributes and methods, as well as the
mandatory/non mandatory character and default value of attributes and method
parameters, have been specified following a personal criterion, as nothing is stated in
the description regarding such aspects.

Person Note: oaded
ov_: overloade :
g name ihn_: inherited REChal;
Faffiliation Paiogin
P contactInfo -nmmmsa
el cmail
EJihn_login()
L 3login()
_30220
paN
]
Reviewer
rdlogin
Flpasswd
Flregistered
e ihn_name
Fihn_affiliation
<<total>> Fihn_contactInfo 0
<<overlapping>> rdihn_email

$register()
ConfirmRegistration()
ihn_login()
ihn_modify()

e E R

AssignmentPreferences

B interestDegree

¢ma&:nm_‘mmn0mmﬂmmc
L ¥addPaperConflict()

hasInterest

Subject
sMname
t=Mdescription

EJsnewsubject()

<<enumeration>>InterestDegree-

g conflict
Ednolnterest
edmoderatelnterest
l=Mstronglnterest

Author

A T T

Mo
passwd
registered

i :Hno:nng:ﬁo

L E

$register()
$registerCoAuthor()
ihn_login()
confirmRegistration()
assignAuthor2Paper()

<<enumeration>> PaperType

rgfull
e short
rdposter

PCMember

Aloin

passwd
registered
inh_name
inh_affiliation
inh_contactInfo
inh_email

1 reviewReassigned2Reviewer

Review) <<enumeration>> Level
FgcommentsPC e iow
rdoriginality * :m dium
Edlsionificance ’ :_m_._ u
P technicalQuality 9
e clevance
rdpresentation
P finalRecommendation
Pl cxpertiseLevel <<enumeration>> EvaluationRange
rdamountRewriting . q
r@mainContribution ¢ H” Sl (et

L P2 : reject

EdpositiveAspects X

. P 3: neutral
LdnegativeAspects o
P urtherComments My accept
’ PS5 : strong accept

reviewStatus

L $introReview()
L3 changeReview()
fdchangeReviewStatus() | | <<enumeration>>ReviewStatus
g reassign2Reviewer() X
rdundefined
P draft
e final
P Validated

$register()
confirmRegistration()
modifyPreferredSubjects()
modifyPreferredTracks()
assignPCMember2Papers()
inh_login()

ov_modify()

R EEEEA B

Track

Edname

Eddescription
Fl/totalPapersTrack
Fl/totalPapersAccepted
P/ totalPapersRejected

'%:ms\._.ﬂmnxc

Paper

ﬂumlo
e

abstract

type

status

url
urlCameraReady
/numberOfReviews
/minRating
/maxRating
/avgRating
/$acceptanceRate

$newPaper()
submitPaperFile()
assignPaperToPCMembers()
changePaperStatus()
EgassignPaper2Track()
EgassignPaper2Subjects()
EgassignPaper2Authors()
EigcalculatePaperID()

' 224 B R R EEEE R TR

isAssignedPaper

<singleton>> Conference

name
abstractSubmissionDL
paperSubmissionDL

notificationDL <<enumeration>> ProcessStatus

cameraReadyDL

processStatus PCChairIntroducingConflicts

PCMemberlIntroducingPreferences

<<enumeration>>PaperStatus

conferenceDate

<
+
+
+
rdreviewDL
+
+
+
+
g conferenceURL

PCChairAssigningReviews

Faccepted
Flrejected
LdtoBeDiscussed

PCMemberReviewingArticles
PCChairEvaluatingArticles
ProcessFinished

newConference()

A R R

-
L3 changeConferenceStatus()
L 3changeConferenceData()

Fig. 5: The Conference Review System Class Diagram

4.- Navigation modelling

4.1. Introduction

The construction process of the navigation access diagrams (NAD) is divided
into three steps, namely:
- Construction of the Use Case diagram
- Association of a storyboard (mockup of the interface) to the different Use Cases
to better illustrate user-system interaction.
- Construction of the NAD diagrams that model such storyboard and provide
access to the methods needed to fulfill the Use Case functional requirements.

These steps are not necessarily sequential. Furthermore the different views (use
cases, storyboard, NAD’s) can be further refined in new iterations.

Designers usually depart from a storyboard that complements a use-case diagram
and gathers the idea he has about what the application should be about and so makes for
a ‘contract’ with the end user. It is this idea what drives the rest of the process. In OO-H
both artifacts help the designer to decompose the system interface into subsystems and
pages that clearly fulfill a set of functionality and navigation requirements.

However, in order to better illustrate how the NAD’s are constructed, in this article
we have followed a different approach: (1) first, we present the Use Case diagrams
showed in section 2. We have grouped the use cases attending different criteria®, and we
have depicted these grouping decision by means of package symbols around the use
cases involved. Note that these ‘packaged use-cases’ are not part of the model, and are
depicted just to show the Navigation Target in which each Use Case interface is
modelled. In this way we make sure the whole interface is captured at NAD level. (2)
Then we show how this grouping process acts as a starting point from where the level 0
NAD diagram may be derived. (3) Last, we illustrate, by means of the storyboard
corresponding to the ‘Manage Conference’ Navigation Target, the mapping of the
different NAD abstractions into abstract pages and constructs.

Next, we are presenting the NAD’s construction process.

4.2. Navigation Access Diagrams

In this section we will present, step by step, the construction process of the NAD
diagram corresponding to the PCChair. The process followed to construct the diagrams
corresponding to the other actors (PCMembers, Reviewers and Authors) is analogous.

? These grouping criteria will be further explained in section 4.2.1

10

4.2.1. PCChair Navigation Profile

If we look again at the PCChair use-case diagram (see Fig. 1) we will observe
the set of functional requirements her interface must fulfill.

Assign Papers
] g P
Pre-register Program <’

Committee

Pre-registerPC\ ChangePaperSubjects \

Detecfinteres tConflicts

S|gnPaper52PCMembers
entStatus
Manage Conference
9 b Evaluate Papers
()% — ***cfcfcf/s()

ChangePaperTrack

- ‘ManageTracks/Subjects N
Q >< ag) PC Chalr ViewReviewers Evaluation
i\ er

\

ChangeConferenceStatus (D \ <7>
- Accept/RejectPapers

View Proc s Data

\/
<\>\fewReV|ews
(\) ViewStatistics

Login

ManageConferencelnfo

Fig. 6: PCChair’s Use Cases grouping process

In section 2 we also commented how this diagram was useful to decide how to
group those requirements into ‘Navigation Targets’, attending at either semantic,
functional dependency, data considerations or a mixture of them. We say we are using
‘semantic criteria’ when we group use cases that have a similar aim. As an example, in
Fig. 6 we can observe how the use-cases ‘view Reviews’ and ‘view Statistics’ have been
grouped under the NT ‘View Process Data’, due to the fact that both provide reports on
the review information (one aggregated, the other detailed) contained in the system. On
the other hand, in order to gather ‘view Reviewers Evaluation’ and ‘Accept/Reject
Papers’ we have applied what we call a ‘functional dependency’ criterion, that is, we
have departed from the premise that, in order to be able to accept/reject papers, we must
have a synthesized view of every reviewer evaluation that helped the PCChair to take a
decision. Last, the use-cases ‘ChangeConferenceStatus’ and ‘ManageConferencelnfo’
have been grouped under the NT ‘Manage Conference’ following a data criterion, that
is, due to the fact that both access and manipulate data of the ‘Conference’ class.

The grouping process induces an interface structure. Consequently, the more
careful this process is performed, the higher the quality of the final interface structure
will be.

Next we are going to show the NAD diagrams corresponding to the first actor of
the system, the PCChair. Together with them, we are showing the storyboard

11

corresponding to the first NT, ‘Manage Conference’ in order to illustrate the mapping
process.

PCCHAIR PROFILE ENTRY POINT

Lr: "Entry point”

[]

VIEW
PROCESS

i < @ DATA
login Ls: "Login" -

Lres:"Valid User [Fo.'_; login.result==tru€]"

| Pcchair: PCChair
I

[]

MANAGE
CONFERENCE

[]

EVALUATE
ARTICLES

PRE-REGISTER
PROGRAM
COMMITTEE
ASSIGN
ARTICLES

Fig. 7: PCChair NAD. Level 0

In Fig. 7 we observe the modelling of the entry point to the application
(represented by the requirement link ‘Entry Point’). One possible set of storyboard
pages corresponding to this diagram is showed in Fig. S1 and S2. The first abstract
page corresponds to a form for the user to log in the system. This process involves a
user login, passwd and profile, which correspond to the parameters (all of them
mandatory) of the method PCChair.login(). If the user exists (condition that is reflected
in the Fo ‘Valid User’), s/he will be showed a menu where a link to each of the five NT
identified (see Fig. 7) is presented. Such menu is represented by the collection construct
‘Menu PCChair’.

Next, we are showing the internal structure of each NT, and the first of them,
‘Manage Conference’, is described in detail.

12

H Gawis = - D 2] | Dupisqueds [alFavorkes @Hlstona’\ By & @ - é | || wamss - > - @ [0} | Qeisquecs [elFavartos (Bristoral | B+ S [0 - 5] |
|| iuios &1rotmal gratukn & Personlear vincios @ Windows Media & Widows H]vincu\os &]Hotmal aretuto & JPersonalzar vinculos @]windows Media 4] windows |
=l |
. Login He Back
Welcome to the OO-H Paper Review o SR S
System .
Y Menu PCChair
Togin: Manage Conference
Passwd:
User Type: ,m Pre-register Program Committee
Assign Papers
Lagin
Evaluate Papers
View Process Data
Jid| =l
Listo [[[Emirc | Listo [[Ewirc 7
Fig. S1: Login Fig. S2: Menu PCChair

NAVIGATION TARGET ‘MANAGE CONFERENCE™

When the PCChair selects the ‘Manage Conference’ option, it access the
interface subsystem modelled incide the corresponding NT. The entry point to this NT
(requirement link ‘Conference Maintenance’, see Fig. 8) points at a new collection,
called ‘Conference Menu’, that differs from the previous one in the type of links that
depart from it. While in the ‘PCChair Menu’ collection the links had the visualization
attribute set to ‘show in destination’, this time they are of type ‘show in origin’. That
means that, in this case, no link to a new page is generated, but that the information
corresponding to the destination classes is directly presented to the user, provided that
the corresponding Fo is evaluated to true. Furthermore, as both filters
(conference.population()==0 / conference.population()>0) are disjoint, only one view
will be available at a time: if the conference hasn’t been created yet (it is the first time
the PCChair enters the system) the screen corresponding to the ‘createConference()’
method will appear (see Fig. S3). This page gathers the set of parameters the method
‘New Conference’ requires. Once the method has been invoked and the control returned
to the interface, the response link ‘Conference Created’ drives the user again to the
‘Conference Menu’. This time, however, when the filters are checked again, it is the
‘View Conference’ link the one that is evaluated to true, and so the system will
automatically generate the page shown in Fig. S4. This page provides a view of the
conference data, together with access to different maintenance options for the
conference.

* In the OO-H diagrams, an asterisk next to the link name means that the set of activation links is not
complete (that is, is not made up by every link from which the user might have arrived to the actual
view). Also, an arrow with a filled head means that its visualization metamodel attribute is set to ‘show in
destination’, whilst, if it has a hollow head, the corresponding value is ‘show in origin’.

13

Conferencel: Conference

. newConference
Lr:"Conference Maintenance" B4

e Conference"

Li:"View Conference [Fo: Corference.population>0]"

Conference: Conference

name(V)

abstractSubmissionDL(V)

paperSubmissionDL(V) R

reviewDL(V) Track: Track

notificationDL(V) name(V)

cameraReadyDL(V) Li-"Tracks” description(V)
S processStatus(V) .

conferenceDate(V) @ s "Create Track” rﬁewTrack

,conferenceURL(V) :

Ls: "Change Confere

ch‘alﬁg eConferenceStatus
changeConferenceData
s

Subject: Subject
Ls: "Ch, onference Data" name(V)
description(V)

@ Ls: "Create Subject" fenewSubject
Fig. 8: Manage Conference

In Fig. S4 we can also observe how, due to the fact that the service link ‘Change
Conference Status’ has its visibility attribute set to ‘show in origin’, the form
corresponding to the method invocation (with a list of the possible conference status,
due to the ‘selection’ introduction mode associated to the parameter’) appears together
with the conference information view. The two Internal Links and the Service Link
defined with the attribute visualization="show in destination’ generate three links (in
this case represented by buttons) to the views “Change Conference Data” (see Fig. S5),
‘Tracks’ (see Fig. S6) and ‘Subjects’ (see Fig. S7). In Fig. S5 we can also observe how
the different method parameters may have a default value associated (in this case the
actual value of the corresponding class attributes). Also note that, when not otherwise
stated, the Response Link comes back to the view that contained the service.

As the reader will have already inferred, is the visualization attribute what
characterizes the final abstract page structure of the interface. We call this page
structure abstract because there is nothing that prevents those pages to be further
composed into a frame structure or any other mechanism that allows the coexistence of
different views of the system on the same physical screen. In Fig. 9 we can observe the
interconnection of the screenshots captured in Fig. S1 to S7. In this figure, the page
separation is determined by the position of the destination links. In section 5 we will
explain how this siteview interconnection perfectly matches with the APD diagram
generated by the OO-H CASE tool departing from the corresponding NAD diagram.
Also, note how the storyboard reflects the fact that OO-H automatically generates, if not
otherwise stated, a link from every abstract page to the NT origin, another one to the
application entry point and another one pointing at the previous abstract page in the
navigation path.

> See Section 1 for a description of the different introduction modes for method parameters

14

H Gapras - = - @ [2) A | Qeisqueda GiFavoritos (fristoral | By S5] - = ‘ H deais - = - (D @) A | Gposqueds GedFavortos Cfristorial | Bye S (0] - =] ‘
Hv(r\culns @]Hotmail gratuita & JPersonalizar vinculos & |indows Media @]iindows ‘ Hvincu\ns &7Hatmail gratuita @ JPersonaizar vinculos & Jwindows Media & windows ‘
= =
Login Home Back Login Home Baclk
. .
Conference Maintenance Conference Maintenance
Name: Name: Cenference Example
Abstract Submission DL Abstract Submission DL (mm-dd-yyyy): 03-02-2002
Paper Submission DL: [Paper Submission DL (mm-dd-yyyy): 03-15-2002
aper Submussion UL Review DL (mm-dd-yyyy): 05-15-2002
Review DL: Notification DL (mm-dd-yyyy): 06-15-2002
Notification DL: Camera Ready DL (mm-dd-yyyy): 06-30-2002
CameraReady DL: | Conference Date (mm-dd yyyy): 19-15-2002
Clonference Date: li Conference TRL: hitp #wwvwrw. myConference.ua.es
Conference : Process Status: Process Starting
Process Starting i’
Process Status: Process Starting New Process Status: Authors Sending Aricles
PCChait Introducing Conflicts =
Create Canference
Change Conference Status | Change Conference Data |
Tracks Subjects -
-]]
Listo [[Emirc 7 [[[Emirc A

Fig. S3: New Conference

Fig. S4: Conference View/Change Status

H Gawas + 2 - (@D [# 4| QBGaueda [ilFavorites (BHistorial | 5 S [- 5] ‘ H wotras + 2 - (@D (2] 43| Qipdsaueda GdFavortes (BHistorial | B S (5] - 5] ‘
H Vinculos @ JHotmail aratute @ Personalizar vinculos @ JWindows Media & |Windows ‘ Hvincu\us @ Hatmail gratuito @ JPersonalizar vinculos & JWindows Media & Windons ‘
| El
Login Heme Back Leogin Home Back
Tracks
Change Conference Data
Name Deseription
Pattern Eecognition in Information Systems
Name: Conference Example New Developments on Digital Libraries
Abstract Submission DL: 03-02-2002 Open Distributed Processing
Paper Submission DL: 03-16-2002
Review DL: 05-15-2002
Create Track
Notification DL: 06-15-2002 reate trac
Camera Ready DL: 0B-30-2002 Name: ,—
Conference Date: 03-15-2002 .
Description:
Conference TRL: it ffwrsew ryConferenc e T T
Process Starting ﬁl
Process Status: Authars Sending Adicles
PCChair Introducing Conflicts =l
Change Conference Data |

= =l
Listo [[Emirc | isto [[[=Zwirc P

Fig. S5: Change Conference Data

Fig. S6: New Track

|J Gamas - = - @ 3] A | Qeosqueda GFavoritos (PHstorial | By~ Sp

|JV\'n[u\Ds & JHotmail gratuto @ Personalizar winculos & indows Media & JWindows |

Name
Subject 1

Bubject 2
Subject 3

Name:

Subjects

Description

Create Subject

Description:
Create Subject

Listo

IR

[@ne

Fig. S7: New Subject

15

[Change Conference Data]

[Conference Data Changed]

[New Subje:

Track]

S6
[Conference Status Changed]

Fig. 9: Siteview corresponding to the storyboard shown in S1 .. S7

In the remaining of the section, we are showing the other NT related to the
PCChair, with a brief description of their main features.

NAVIGATION TARGET ‘PRE-REGISTER PROGRAM COMMITTEE’

In this NT the PCChair obtains a view of every PCMember that has been
registered in the system, together with the form that gathers the parameters and invokes
the PCMember.register() method, necessary to add new PCMembers to the system.

CN5: PCMember

login(V)

passwd(V)
inh_name(V)
inh_affiliation(V)
inh_contactInfo(V)
inh_email(V)

. 1
register() Ls<[?' "New PCMembe@

Fig. 10: Pre-register Program Committee

16

NAVIGATION TARGET ‘ASSIGN PAPERS’

In this NT (see Fig. 11) the PCChair accesses a menu with two options: ‘Assign by
Paper’ and ‘Assign by PCMember’. In case we chose the first one, we will access a
page where every submitted paper appears. For each paper the interface provides three
possibilities:

- Assign a new track to the selected paper

- Assign new Subjects to the selecte paper

- Assign the review of the paper to a PCMember

Although the way the PCChair changes the track and/or subjects associated to a
paper is immediate, the way it selects the PCMembers more suitable for the paper
revision is not that trivial. The associated ‘PCMemberList’ parameter corresponding to
the method ‘Paper.AssignPapers2PCMember()’ has a navigation introduction mode®.
The navigation diagram capturing the view required to choose the ‘PCMemberList’
population is shown in Fig. 12. This diagram corresponds to the explosion of the
‘SelectPCMembers’ NT represented in Fig. 11 and associated to the method that owns
the ‘PCMemberList’ parameter by a dependency arrow.

Paper: Paper
‘ title(V)
SELECT urlCameraReady(V)
PCMEMBERS S numberOfReviews(V)

J assignPaperToPCMe#]’bers
assignPaper2Track <
Lr:"Paper Assignment" assignPaperZSubje%E *Ls: "assignPaper2Trac

Li:"Assfgn By Paper"

*Ls: "assignPapé

Assign *Lj:"assignedPCMembers"

aper

X[jen : "
Li:"Assign by ember" Li:"assign dPapers

PCMember: PCMember
name(V)
affiliation(V)
SELECT numberOfReviews(V)
PAPERS L -
= e CH ”assignPCMemberZPapers"@

Fig 11: Assign Articles 2 PCMembers

Briefly, in order to select a set of PCMembers to review a given article we have
modelled a view in which the relevant paper data (track, subjects, title) is shown
together with the PCMembers that have no conflict with the actual paper and their
corresponding interest degree in the paper, the id of the papers that each PCMember has
already assigned for review, her preferred tracks and preferred subjects. With this
information the PCChair is able to decide who are the ideal candidates to revise the
paper. The fact that we can select a set of PCMembers at a time is modeled by the
metamodel attribute ‘application scope’ set to ‘Multiple’ in the ‘Reviewer Selected’ exit

% See section 1 for a further discussion of the different parameter introduction modes.

17

link. When we reach such exit point, the selected PCMembers are returned to the
method as the ‘PCMemberList’ parameter.

. AssignmentPreferences1: AssignmentPreferences

interestDegree(V)

Lr:"selectReviewers4Paper”

Paper1: Paper Li:"interestDegree 4SelactedPaper" [paper=this]

paperID(V)

- j Li:"previouslyAssign " PCMember1: PCMember

name(V)
Ts%ilafﬁliation(v)

i:"candidateReviewers" (ShowAll) [pcMember.hasConflict(this)==Fa

Li:"actualPapet" [paper=this] Li:"prefefredTracks"

ExP/"reviewersSelected (M)"

Paper2: Paper Track2: Track
title(V) > name(Vv) Li:"preferrédSubjects”

®

Li:"relatedTracks"

Subject3: Subject
name(V)

Fig. 12: ‘Select PCMembers’ NT

Also in Fig. 11 we can observe the effect of the ‘activation link’ concept,
explained in section 1. Supposing that the designer has decided that the paper-related
methods are only available when we have arrived to this class through the ‘Assign By
Paper’ link, we must eliminate the ‘assignedPapers’ from its set of activation links.

The second possibility in Fig. 11 (‘Assign by PCMember’), implies the
generation of a page that contains the list of PCMembers, together with the number of
revisions they have already assigned. This view also contains the possibility of
assigning new articles to a given PCMember. The model corresponding to the NT
‘Select Papers’, that gathers the way the ‘paperList’ parameter corresponding to the
PCMember.assignPCMember2Paper()’ is introduced can be seen in Fig. 13.

18

AssignmentPreferences2: AssignmentPreferences

interestDegree(V)

Lr:"selectPaper4Reviewer Li:"interestShowedByActualReviewer" [pcMember=this]

Paper3: Paper
P title(V)

Li:"candidatePapers" [paper.hasConflict(this)==False]

Li:"actualReviewer|' [pcMember=this]
EXP:"papersSelected"

oCMerD ZvPCM b Li:"relateflSubjects”
emberZ: ember Track3: Track
pamey) = name(V)
affiliation(V) Li:"preferredTracks é
Li:"preferre jects”

Subject4: Subject

name(V)

Fig. 13: ‘Select Papers’ NT

NAVIGATION TARGET ‘EVALUATE PAPERS’

This NT captures two different kinds of report: list of papers ordered by ID, and
list of papers ordered by average rating (paper.avgRating). Both reports show the same
information items: minimum score, maximum score and average score, login of each
PCMember that have reviewed the paper and final recommendation of each one of
them. Moreover, the PCChair can, in this view, decide whether s/he accepts/rejects each

paper.

LI Rewviews by Faperio”

Ewvaluate Papers

CN24: Paper

paperIDiy)

SminRating ()
SmaxRatingiV)
FavgRating(V)

["Reviews

changePaperStatus() <} st "Bocept Paper [OU) @

LLITT (AOS-Re)”

CN15: PCMember CN18: Review

login{y) L0 (ACERel finalRecommendation{y)
Li: View Bxtergded Frocess Daia " ¢ el

kJ
Ta peMemher. ViewReview FracessData. Conference Reporis

Fig. 14: Evaluate Papers

19

Note how this NT reuses, by means of a Traversal Link, the views modelled in
the NT ‘PCMember.View Review Process Data’, that will be introduced in the

following section.

NAVIGATION TARGET ‘VIEW PROCESS DATA’

In the views modelled by this NT the PCChair obtains all the data regarding
papers with its corresponding reviews and track statistics. Note also the use of a
Traversal Link to share the views defined in the ‘PCMember.ViewReviewProcessData’

NT.

Le: "Wiew Prooess Data”
TOCES

at

Li:"Wiaw Al Raviaws

Li:"Wiew Track-Gtatistics”

CN17: Track

namelv)
ftotalPapersTrack (V)

ftotalPapersAccepted (VW
ftotalPapersRejected(y

Lt: Other conference Reporis

v
To peMember, VieveReviewFProcessData, ConferanceReports

Fig. 15: View Process Data

CN20: Paper
paperlD(V)
title (V)
abstract(V)
tppa(y)
status(V)
utlCarneraReady(V]
inumberOfReviews(v
SrinRating ()
fmaxR ating(V)
FavgRating(W)
{$acceptanceRate(V)

Lis Viaw Revidws™ (Showd i)

CM14: Review

cornmentsPCR)
originality(\s)
significance(Y)
technical Guality (V)
relevance(y)
presentation(V)
finalRecommendation(y
expertiseLevel(R)
amountRewriting(R)
mainContribution{R)
positiveAspects(R]
negativefspects(R)
furtherCormmants(R]
reviewStatus (V]

20

4.2.2. PCMember Navigation Profile

Confirm Registration

ManagePreferredToplcs/Su

Reassign Paper Review

D

>

login

AssignPapers2PCReviewers gisterPCReviewers
/
|

’

Confirm Reglstratlon

Declare Interest
-
IntroConﬂlcts

()

Introinterest4 Articles

r

e
-

eviTw Ié
/ > ViewMyRevie ws

Valr\tli?ateF inalReviewerEvaluation

ModifyReview

.

ReviewArticle

%“““‘\“\‘

\

View Review Process Data

—~(O

Visualize Accepted/Rejected
Papers

lizeProcess Status/Statistics

VisualizeOtherReviews

Vis

Fig. 16: PCMember’s Use Cases grouping process

PCMEMBER PROFILE ENTRY POINT

The entry point to the PCMember profile is analogous
PCChair.

Lr: "Entfry point"

PCMember: PCMember

login

] Ls: "login" C

Lres:"Valid User [Fo login.result==true]"

[]

Confirm
Registration

to that presented for the

[]

View Process
Data

[]

[]

Declare

Reassign Paper
Review

Interest

[]

Review Papers

Fig. 17: PCMember NAD. Level

0

21

NAVIGATION TARGET ‘CONFIRM REGISTRATION’

Every PCMember must confirm the data introduced by the PCChair before
gaining access to the system. Also, s’he must select the tracks/subjects s/he masters.

Lr:"Confirm Registration"

PCMemberl: PCMember

confirmRegistration

modifyPreferredSubjects 9
modifyPreferredTracks ¢ Ls: "subjects” » (3)

Ls: "tracks"

7
. ExP: "profileUpdated” ALY

1

select tracks
select subjects

Lr+"selettTrack" Lr:"selectSubject”
Track: Track Subject: Subject
name(V) name(V)
ExP: "trackSelected" ExP:"subje¢tSelected”

Fig. 18: Confirm Registration

NAVIGATION TARGET ‘DECLARE INTEREST’

Once the PCMember has confirmed her registration, and during the period the
PCChair establishes for introducing preferences about papers to review, the PCMember
can access a page where, for each paper, and looking at its title, abstract, associated
track and subjects, s/he can introduce her interest degree. Note that, for every Internal
Link, we have activated the underlying structural relationship (Re) that acts as Fd for
that link’. Also, all of them are automatic, simple (that is, tracks, authors and subjects
are presented for each paper) and visualized in origin (together with the paper
information).

7 see section 1 for a broader explanation of filters

22

Lr:"Wiaw Al Papars (MOU)" [ncMamber registared==True 'snd confarence processStatus=="TntroducingFrefarences’]

CN22: Track

narnel\)

CN20: Paper iz ADE-Re)”
titla (V)

abstract(V) CN3: Author
LML (ADES -

inh_name()

LitEF2y -Ra)"

Li"Lr22 (ACS-Re)" [Faperzdssi esf CN23: Subject

name(v)

» CN24: AssignmentPreferences

interestDegrea(V)

addInterestDagraal) m@
Fig. 19: Declare Interest

NAVIGATION TARGET ‘REVIEW PAPERS’

This NT (see Fig. 20) models a page for the PCMember to view, introduce and
modify either her or any of her external reviewers paper revisions. In this Nad the
concept of activation link becomes crucial to capture the requirements concerning when
can a Pcmember introduce/modify a review. Only if we are coming through
‘ViewPapers2Review’, ‘View Uncompleted Reviews’ or ‘Validate Reviews’
(introduced by an external reviewer) are we allowed to change the data concerning the
paper review. Also, only if we are coming through the ‘ViewPapers2Review’ (which
generates a view of the papers we haven’t reviewed yet) are we allowed to introduce a
new review or reassign the review to an external reviewer (Lt “Reassign Paper Review”,
which connects to the NT presented in Fig. 21).

Paperl: Paper
title(V)
url(V) ExP:"readPaper” >@

Lr:"RevigwPapers" Review: Review

introReview

XHTLI4" i i
Ls: "introReview"
Paper2: Paper
o P paperID(V)
Li:"ValidateReviews title(V) Lres: "reviewIntroduced" S
A Li:"LIZ21%

Li:"ViewCompletedReviews" Author1: Author

name(V)

Lres:"reviewChanged” *Lt:"ReassignPaperReview"

Review1l: Review

changeRevie! To PaperReview.Reassign Paper Review.Pape
geReview TichangeReview’ S perReview. ig per Review.Paper

Fig. 20: Review Papers

23

NAVIGATION TARGET ‘REASSIGN PAPER REVIEW’

From Paperfeview. Review Papers.Paper

Lr *Reassigniaperfeview "

Lt "Reassighfaperfeview”
Paper3: Paper
paperID(V) Review2: Review
title(V)
Sholiaetiy) LS reassignZReviewsr 1—(:1
urly ana Ls] reassignaReviewe
1
:
:
:
Li 12" i
Author2: Author
Select
nameiy) Reviewer

Fig. 21: Reassign Paper Review

NAVIGATION TARGET ‘VIEW PROCESS DATA’

The PCMember can, at any time, view the final revision results (title of the
paper, authors and acceptance status. Also, s/he can view statistics concerning general
data per track and average acceptance percentage. While the PCChair is reviewing a
paper, s’he cannot look at the reviews introduced by other reviewers. This constraint is
captured in the Fd: reviewStatus=='validated’ associated to the
‘ViewMyPaperReviews’. However, once the s/he has introduced her reviews and/or
when the review deadline is reached, s/he can access the reviews any PCMember has
introduced for any paper (providing s/he has no conflict).

Lr:"ConferepceReports"

Paper4: Paper

Paper6: Paper

paperID(V)
title(V)

Review3: Review

title(V)

status(V) ani(v)

type(V) W reviewStatus(V)

numberOfReviews(V)

Li: ”J;IO"

Author3: Author

*Li: "ViewAllReviewsDetail"

name(V)

*Li:"ViewMyPaperReviews"|[reviewStatus="validated']

Track2: Track

Review4: Review

name(V)

totalPapersTrack(V)
totalPapersAccepted(V)
totalPapersRejected(V)

Paper5: Paper

acceptanceRate(V)

commentsPC(V)
originality(V)
significance(V)
technicalQuality(V)
relevance(V)
presentation(V)

finalRecommendation(V)

expertiseLevel(V)
amountRewriting(V)
mainContribution(V)
positiveAspects(V)
negativeAspects(V)
furtherComments(V)
reviewStatus(V)

Fig. 22: View Process Data

24

4.2.3. External Reviewer Navigation Profile

C o

Login

ConfirmRegistration ReviewPaper

O B

Confim Regis fration

. ReviewPaper
Reviewer

Fig. 23: Reviewer’s Use Cases grouping process

In Fig. 23 we can observe the main responsibilities of an external reviewer:

confirm her registration and review the papers assigned to him by a PCMember.

EXTERNAL REVIEWER PROFILE ENTRY POINT

CH19: Reviewer

login T Eogin® :)

Lres:"Walidlser Foegin) result=trua”

] 1

CONFIRM REWVIEW PAPER]
REGISTRATIO

Fig. 24: External Reviewer NAD. Level 0

The entry point to the profile is similar to that presented for the rest of the profiles.

25

NAVIGATION TARGET ‘CONFIRM REGISTRATION’

Lr:"Confirm istration"

CN11: Reviewer

ConfirmRegistration()
Av4

Ls: "Confirm Registration [Re: Reviewer.registered=false]"

Fig. 25: Confirm Registration

This NT is quite straightforward, and allows the reviewer to validate her data
(parameters of the method reviewer.confirmRegistration())

DESTINO NAVEGACIONAL ‘REVIEW PAPER’

Track: Track

name(V)
Paper: Paper
paperID(V) LI
title(V) Subject: Subject
abstract(V)
type(V) 2" > name(Vv)
status(V)
url(V)
Author: Author
on " — name(V)
Li:"Introdugce Review affiliation(V)

Review: Review

0: review.population==0]"

introReview
changeReview

tus=="draft']"

Ls: "Change Review Data [Fo: Tevr

Fig. 26: Review Paper

In this NT (see Fig. 26) the view modelled presents the set of papers assigned to
a given reviewer, together with their corresponding track, subjects and authors. The first
time the reviewer reviews the paper (that is, there is no review associated to that paper
with that reviewer) the review.introReview() method is activated. From then on, the
reviewer is allowed to work on the revision (review.Change Review Data()) as long as
this revision is not set to ‘final’.

26

4.2.4. Author Navigation Profile

1

Manage Papers

_ > -

- Subriitk
Register e

Update PaperData
:]
Condrm Registration \\
1
O&_—_—_——— — | View Submitted Paper Data
| A

Fegizter Co-Author _____———____%
- -
FPutthor
) aperinfa
Register

: ‘ewFira| Revew SEus

“Wew Li stéccepted Rejedted Papers

Fig. 27: Author’s Use Cases grouping process

We have grouped the author related use cases into three groups: ‘Register’, that
allows a given author to introduce the name of the people that have coauthored a paper,
‘Manage Papers’, that provides any of the authors of a paper with the necessary
functionality for them to update the data and/or the paper, and ‘View submitted papers
data’, that defines the reports the authors can visualize regarding the review process.

AUTHOR PROFILE ENTRY POINT

The NAD presented in Fig. 28 captures the functionality identified when the
Use-Case grouping process was performed.

Lr: "Entry~point"

VIEW
SUBMITTED
REGISTER PAPERS DATA

MANAGE
PAPERS

Fig. 28: Authors NAD. Level 0

27

NAVIGATION TARGET ‘REGISTER’

An author can register himself or be registered by a coauthor of a paper, in
which case s/he must confirm her registration. All three methods imply an identification
of the author, that provides him with access to her profile functionality.

Lr:"Login"

Author2: Author
5] "Ar a registered author?"

login O
register — S
confirmRegistratz)JLs' Are you new to the system?

Ls: "Are you coauthor aper?"

Fig. 29: Register

NAVIGATION TARGET ‘MANAGE PAPERS’

This NT gathers track, subject and author method parameters by selection on the
corresponding classes. An author can submit a new paper or modify any data about her
already submitted ones. The constraint that allows an author to work only with her
papers is implicitly preserved by the activation of the structural relationship from author
(actor binded to the actual NAD) to paper. This relationship acts as a destination filter
(Fd) for the links arriving at the paper class.

Lr:"Paper Ma ement"

Paper

lanagemén
e
Li:"Subpait New Paper” Li:"Modify Paper Data"
Paper2: Paper
Paper1l: Paper
O Ls: "Update File submitPaperFile
— - ~TrnewPaper S modifyPaperData
C Ls: "Submit Paper’ D [l e
P Ls: "Update Paper Data assignPaper2Track s: "Change Paper Track"
assignPaper2Subjects |

Ls: "Change Paper Subjt
Li/"LI7" Li:"[¥8"

Subjectl: Subject Trackl: Track

name(V) name(V)

Fig. 30: Manage Papers

28

NAVIGATION TARGET ‘VIEW SUBMITTED PAPERS DATA’

Once the revision process has finished, the author can see the final revision results (see

Fig. 31).

Lr:"Revisios Results"

Paper3: Paper

paperID(V)

Author3: Author

title(V)
status(V)

Li:"LI9"

name(V)
affiliation(V)

Fig. 31: View Submitted Papers Data

29

5.- View Refinement: the Abstract Presentation Diagram

5.1. Introduction

OO-H recognizes the need for a greater level of sophistication in interfaces than
that provided by the NAD diagram, regarding both appearance and usability features.
The Abstract Presentation Diagram (APD) provides a mechanism to refine the interface
at a lower, more design-oriented level of abstraction. A default APD can be
automatically derived from the NAD diagrams, and it reflects the abstract page structure
of the interface defined at NAD level. Furthermore, it separates the different features
that contribute to the final interface appearance and behaviour by using a page
taxonomy, based on the concept of templates and expressed as XML documents, which
are, namely: (1) Tstruct, used to capture the information that needs to be shown, (2)
Tform, used when the page, apart from information, includes calls to underlying logic,
(3)Tlink, that captures the interconnection and dependencies among pages,
(4)Tfunction, that gathers client functionality used in the different pages, (5)TExternal,
used to gather type, location and behaviour of external elements (such as images,
applets etc) that may refine the initial interface, (6)Tlayout, where the location of
elements and the definition of simultaneous views and its syncronization is captured and
(7)Tstyle, where OO-H maintains features such as typography or colour palette for each
element of the interface.

The default APD gives a functional but rather simple interface, which will
probably need further refinements in order to become useful for its inclusion in the final
application. It can however serve as a prototype on which to validate that the user
requirements have been correctly captured. The refinement process consists thus on the
modification of the default APD structure. This process is greatly simplified with the
application of a series of APD-related patterns captured in the OO-H Catalog [4].
Furthermore, the catalog provides an executable python routine for each materialization
of the patterns that OO-H calls ‘Transformation Rule’. This routine, when loaded in the
OO-H CASE tool and executed, changes the contents of the required APD abstract
pages. Also, these routines can cause any new page, link or dependency to appear on the
diagram. OO-H provides yet another way to manipulate some of the abstract pages
(namely Texternal, Tlayout, Tstyle), by means of the Composite Layout Diagram
(CLD). Despite its name, this view is not a diagram but a visualization of the interface
prototype where the location and visual style of elements can be edited, and new
elements can be added to improve the visual impact of the final generated interface.

The last step of the process, once the abstract pages (XML documents) have
been refined, is to feed that device-independent modeled interface to a model compiler
(not discussed here) that has the target-environment knowledge that allows it to generate
an operational web interface.

In the next section we are showing part of the default APD generated from the
PCChair NAD diagram.

30

5.2. APD Example: The PCChair Default Interface Siteview

The OO-H CASE tool includes an algorithm to generate, departing from the
NAD diagram, the set of pages that make up the siteview of the interface. Note how
only Tstruct,Tform and Tlink pages are relevant to the siteview of the system, and so
how the APD diagram graphically shows them. OO-H includes a default Tfunction
(client-side logic to control user inputs for method parameters), a default Tlocation and
a default Tstyle.® Also note how the contents of the Tlink global page is shown by
means of links connecting the Tstruct and Tform pages.

N

CChair::Manage Conference

Creste_Treck_resp

[T"ee, Changh_Conferadie Sratis sn v -
Cofiterence_Created, H) tForm=h

PCChair

Conference
i

Valid_Uiser_[Fo:_lbgin resuft==trus]

< ‘<@> f,,/mks//’:u—'

Te.. Subje
Chprge_Conférence_Data

Create_Sublject_resp

assigniaperziobiects_resp

Paper .
LA %ssigniaper2pCifembers_resp

¥ N . szggfaper e b g ot oomel
tFo v '
S B ; -
< b Change_Cdnferbnoe_Dats_resp R \@)
T Confarence Maintenance ! nber2fagers assianPaperZPChember
Menu_PCChai . B r—

sEsignfaperaTrack
: N B A

Farms
<@)
Change_Conferente_Data

= o

; Haw_PCMerb ’5@}
. o] ermsp |4
“’ Assign Paper:
o r

Assign_by| PCiember

- ass.lgnPapgré Frack_resp
EELY PCMe;aberzPapers_resp tFo =l

P <@

/@) assianPaperzTracl
assianPCMemberzPaper I
r

25FignECMarnbers Fapers_resp

Frithmbear_tist

55IQRPapRr FLMembers_resp

assigniCMeriher2Piper:

Fig. 32: Partial View of the APD corresponding to the PCChair Profile

If we look back to Fig. 9 (storyboard snapshot interconnection diagram) and
compare it with Fig 32 (APD partial view), we can see how they match: the only
difference is that snapshots S2 and S3 (Fig. 9) are now gathered in a single APD page
(‘Conference_Menu’) due to the fact that, in Fig. 8 (NAD diagram), we defined that
both views were shown in origin, and so embedded in the same abstract page,
represented by the collection ‘Conference Menu’. The remaining snapshots can be
directly associated to exactly one abstract page at the APD level.

¥ The XML specification of every page is available through the tool, either clicking on the corresponding
page or by means of a menu

31

6.- Further Work

OO-H is not a closed proposal: the modeling of existing and to-come
applications will cause its semantic constructs to evolve and/or be extended to capture
new interface requirements. As an example, we are already working on the interface-
related event modeling. OO-H distinguishes two types of event:

a. Logic events: events caused by the interaction of the interface with the
underlying logic modules. Right now OO-H is able to model just
synchronous services. However, we are interested in, if the underlying
technology allows it, send a service request and continue working without
waiting for the service to finish. This requirement implies the interface to
listen to ‘service-finished’ events in order to warn the user and get results
back. Also, we are interested in modeling events that are caused by facts
external to the user, either punctual or periodic: in the Paper Review System
one such example is that of deadlines that should cause the system to
automatically change the state of the conference. As an example, we are
interested in modeling the fact that each morning the system sends an email
to every PCMember to remind him about the reviews s/he still has left, and
how s/he is supposed to finish them. The system could also send a ‘Call For
Papers’ reminder 15 days before the deadline for paper submission is
reached.

b. Interface events: In the same way, we are interested in modelling which
views are available for each user at each moment. One possibility is the use
of high-level statecharts where each state represents a set of views available
for a given user at a given time. A met transition condition implies a change
in the set of views the user can access. Also, we are working on
synchronization of views.

However, our main concern right now is the generation of mediators for the
interconnection with pre-existent logic modules. In order to get this aim, OO-H defines
the <<legacy>> stereotype that, associated to domain classes, reflects the fact that tose
classes are part of a pre-existent library. When the generation process is executed, the
designer must enter data about the physical location of the library, the protocol to
connect to the library interface etc, that is, all the solution-space parameters that
facilitate the generation of the mediator. It is thus important to make sure that the
<<legacy>> classes capture the exact interface the library provides.

Other open ends in OO-H are (1) how to achieve a greater level of personalization

and (2) detection of a greater range of patterns and definition of their corresponding
OO-H Transformation Rules.

32

7.- References

1. eXtensible Markup Language (XML). http://www.w3.org/ XML

2. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995.

3. J. Gomez, C. Cachero and O. Pastor. Extending a Conceptual Modelling
Approach to Web Application Design. In CAiSE’00. 12" International Conference
on Advanced Information Systems, volume 1789, pages 79-93. Springer-Verlag.
Lecture Notes in Computer Science, 06 2000

4. J. Gomez, C. Cachero and O. Pastor. Conceptual Modelling of Device-
Independent Web Applications. 1EEEMultimedia. Special Issue on Web
Engineering, pages 26-39. IEEE 04 2001.

5. OMG Unified Modelling Language Specification. http://www.rational.org/uml
06 1999

6. J. Warmer and A. Kleppe. The Object Constraint Language. Precise Modelling
with UML. Addison-Wesley, 1998.

33

