
144 Gómez & Cachero

Chapter VIII

OO-H Method:
Extending UML to Model

Web Interfaces
Jaime Gómez

The Web Engineering Research Group, University of Alicante, Spain

Cristina Cachero
The Web Engineering Research Group, University of Alicante, Spain

Copyright © 2003, Idea Group, Inc.

ABSTRACT
The mostly “creative” authoring process used to develop many Web
applications during the last years has already proven unsuccessful to
tackle, with its increasing complexity, both in terms of user and technical
requirements. This fact has nurtured a mushrooming of proposals, most
based on conceptual models, that aim at facilitating the development,
maintenance and assessment of Web applications, thus improving the
reliability of the Web development process.
In this chapter, we will show how traditional software engineering
approaches can be extended to deal with the Web idiosyncrasy, taking
advantage of proven successful notation and techniques for common
tasks, while adding models and constructs needed to capture the nuances
of the Web environment. In this context, our proposal, the Object-
Oriented Hypermedia (OO-H) Method, developed at University of Alicante,
provides a set of new views that extend UML to provide a Web interface
model. A code generation process is able to, departing from such diagrams

OO-H Method: Extending UML to Model Web Interfaces 145

and their associated tagged values, generate a Web interface capable of
connecting to underlying business modules.

INTRODUCTION
In the last few years, we have witnessed how existing and to come Web

technologies have induced much more flexible distributed environments where
new business opportunities have appeared but also new risks related to
software development (Murugesan et al., 1999). Although the scientific
community agrees that in order to keep the possibility of failure to a minimum,
the development process for enterprise applications should evolve in a Web
engineering manner, there is no agreement at how the core activities behind a
sound Web application development process should be addressed. Some
approaches, most coming from the hypermedia community, consider Web
applications as information delivery systems, where only trivial functionality is
offered (Mecca, Merialdo, & Atzeni, 1999; Schwabe & Almeida, 1999; Ceri
et al., 2000). Others, mainly coming from the traditional Software Engineering
field, regard Web applications as traditional distributed applications, and
propose modeling approaches that make exclusive use of standard models and
notation to capture the idiosyncrasy of this new platform (Conallen, 1999). Still
other approaches consider the Web as a dynamic business Web (Gartner
Group, Inc., 2001), where the application development consists of a process
of communication and integration of Web services disseminated over the net
and offered via (often) collaborating technologies such as UDDI (Universal
Description, Discovery and Integration, 2001), DSML (Directory Services
Markup Language, 2001), SOAP (Simple Object Access Protocol, 2001) or
WSDL (Web Services Description Language, 2001).

We agree with Manola (1999), in that each of these trends partially
addresses the nuances Web applications involve, and so a fusion of their
respective points of view is needed in order to provide a cohesive solution to
the Web application modeling process. On one hand, hypermedia modeling
methods contribute a deep reflection on Web navigation and interaction issues,
which are basic for a Web application to succeed. However, these sound
navigation features are not enough, as Web applications must also provide the
user with the (often complex) functionality they need, far beyond navigation.
The modeling of functional requirements has already been partially addressed
in a number of Advanced Software Production Environments, many based on
the UML (UML Specification. V1.3., 1999) notation, that use Model Based
Code Generation techniques (Bell, 1998) and have the support of “traditional”
software engineering methods. The problem is that those traditional models,

146 Gómez & Cachero

methods and notations do not provide the mechanisms, models and constructs
needed to capture the specific hypermedia semantics, and so are too cumber-
some when used in isolation. Furthermore, functionality may be centered on a
single server or be distributed over the Web, and it is here where the concept
of dynamic business Web plays an important role: proposed models should be
capable of abstracting the implementation issues far beyond the concept of
client–server applications: the integration of services is a must in the to-come
Semantic Web (Semantic Web, 2001), but existing proposals (User Interface
Modeling Language, 2001; Gellersen & Gaedke, 1999) are still, from our point
of view, too close to the solution space.

Our approach, known as the OO-H (Object-Oriented Hypermedia)
method (Gómez, Cachero, & Pastor, 2001), centers on the authoring process
(product development phase). It follows this “integrating” philosophy and
extends traditional software engineering approaches (based on UML) with two
new models, namely, (1) a navigation model and (2) a presentation model
(further divided into an abstract presentation layer and a layout composition
layer). The navigation model is built up departing from a UML-compliant use-
case and a business class diagram. Use cases provide OO-H with the user-
centered perspective which we think is necessary in Web environments, while
the class diagram is a suitable mechanism not only to show the domain
conceptual model but also to expose the interfaces that permit the connection
with preexistent business logic modules, no matter where they are located or
its internal nature (Web services, dll’s, javaBeans, etc.). In the implementation
phase, tagged values associated with these interfaces determine their nature
and the most suitable access protocol to actually invoke the services and
recover the return values. The process is iterative and incremental (as suggests
the idiosyncrasy of Web applications1), and in each iteration, a refined version
of the application is generated.

Special features, particular to any kind of Web application (including e-
commerce applications), are addressed by means of frameworks and patterns
that are gathered in an OO-H pattern catalog. Patterns capture practices
proven successful to solve a given problem under different circumstances. The
pattern mechanism allows the encapsulation of Web design knowledge and
facilitates reuse. The OO-H case tool allows the addition of such patterns and
frameworks in a dynamic way. Its use speeds up the development process
while isolating the designer from implementation issues, likely to change in such
a dynamic environment as the Web. Therefore, the designer is allowed to focus
on more abstract features such as service chains, user profiles, usability
features, and so on. The use of patterns is further discussed in section “View
Refinement: Presentation Modeling”.

OO-H Method: Extending UML to Model Web Interfaces 147

Departing from the navigation model, a default abstract presentation
model can be obtained in an automatic way. This abstract presentation model
is composed of a set of XML templates that gathers the orthogonal views OO-
H takes into account when dealing with Web interfaces, and which are, namely,
structure, user interaction, navigation, client logic, page composition, layout,
external references and connection details with underlying business modules.
The designer can perform further refinements (editing the XML files or applying
patterns from the pattern catalogue) on this default specification to get the
desired final interface appearance and behavior.

 The remaining of the chapter is structured as follows: Section 2 gives a
brief overview of the OO-H models and constructs that provide the needed
hypermedia semantics and describes in detail, by means of a comprehensive
example, the modeling process. Section 3 presents a discussion about related
work in the field. Last, conclusions and further work are sketched in Section
4.

THE OBJECT-ORIENTED HYPERMEDIA
METHOD

A Brief Introduction

The OO-H (Object-Oriented Hypermedia) method is a generic model,
based on the object-oriented paradigm, that provides the designer with the
semantics and notation necessary for the development of Web-based inter-
faces and its connection with previously existing application logic modules.

OO-H defines a set of diagrams, techniques and tools that shape a sound
approach to the modeling of Web interfaces. The OO-H proposal includes:
• Design process
• Pattern catalog
• Navigation access diagram (NAD)
• Two-fold presentation layer (abstract presentation diagram and compos-

ite layout diagram)
• CASE tool that supports and automates to a certain extent the develop-

ment process

The extension to “traditional software” production environments is achieved
by means of two complementary views: (1) the navigational access diagram
(NAD) that defines a navigation view, and (2) the abstract presentation
diagram (APD) and composite layout diagram (CLD) that gather the concepts

148 Gómez & Cachero

related to abstract structure of the site and specific presentation details,
respectively. The NAD diagram enriches the domain view provided by the
UML use case and class diagrams (UML Specification. V1.3., 1999) with
navigation and interaction features. Also, to define navigation and visualization
constraints, OO-H uses the object constraint language (Warmer & Kleppe,
1998), a subset of the standard UML that allows software developers to write
constraints over object models augmenting the model precision. OO-H asso-
ciates such constraints to the navigation model by means of filters defined upon
links. On the other hand, the definition of abstract pages in the APD is based
on a set of XML DTDs. Both the NAD and the APD capture the interface-
related design information with the aid of a set of patterns, defined in an
interface pattern catalog that is integrated in the OO-H proposal.

The Navigation Access Diagram
The navigation model is captured by means of one or more NADs. The

designer should construct as many NADs as different views of the system are
required and should provide at least a different NAD for each identified user
profile. This diagram is based on four types of constructs: (1) navigation
classes, (2) navigation targets, (3) navigation links and (4) collections. Also,
when defining the navigation structure, the designer must take into account

Table 1

OO-H Method: Extending UML to Model Web Interfaces 149

some orthogonal aspects such as the desired navigation behavior, the object
population selection, the order in which objects should be navigated or the
cardinality of the access. These features are captured by means of different
kinds of navigation patterns and filters associated with links and collections.
Table 1 shows an overview of the main NAD constructs.
• Navigation classes (NC): These are enriched domain classes with

attribute and method visibility that has been restricted according to the
user access permissions and navigation requirements. A sample enrich-
ment is the differentiation among three types of attributes: V-attributes
(visible attributes), R-attributes (referenced attributes, which are dis-
played after a user demand) and H-attributes (hidden attributes, only
displayed when an exhaustive system population view is required, e.g., for
code refinement reasons).

• Navigation targets (NT): They group the elements of the model that
collaborate in the coverage of each user navigation requirement.

• Navigation links (NL): They define the navigation paths the user is able
to follow through the system. They may have a navigation pattern and a set
of navigation filters associated, which together provide the required
additional information to construct the user navigation model. OO-H
defines six link types:
o I-links (internal links) define the navigation path inside the bound-

aries of a given NT.
o T-links (traversal links) are defined between navigation classes

belonging to different NT.
o R-links (requirement links) point at the starting navigation point

inside each NT.
o X-links (exit links) point at places outside the boundaries of the

application. They are also used as an auxiliary mechanism to repre-
sent the feeding of parameters to methods.

o S-links (service links) and their corresponding R-links (response
links) show the services available to the user type associated with
that NAD and the view the user accesses when the interface recovers
the control of the application. Service links also gather the way the
user is required to introduce the parameters needed for the invoca-
tion of any method. Regarding such parameter introduction, OO-H
defines five possibilities: (1) hidden and (2) constant parameters
imply no user introduction of values. By default, the introduction
mode is set to (3) immediate, which means that the interface shows
a text field where the user must type the required value. When the
user is allowed to choose among a predefined set of possibilities, the

150 Gómez & Cachero

introduction mode is set to (4) selection. Last, when the parameter
selection requires navigation, the (5) navigation mode (with a start
navigation link and an end navigation link, chosen among those
defined in any NAD) is established for that parameter.

• Collections: They are (possibly) hierarchical structures defined on
navigation classes or navigation targets. They provide the user with new
ways of accessing the information. The most common type of collection,
and the one we will use along this paper, is the C-collection (classifier
collection) that acts as an abstraction mechanism for the menu concept.

Regarding navigation filters, we have already mentioned that they are
captured in OO-H by means of OCL expressions. We can distinguish between
filters applied to objects in origin (Fo) and filters applied to target population
(Fd). Fo’s capture origin navigation constraints, that is, conditions applied to
the origin object (or set of objects) that prevent the user from following the
navigation if not fulfilled. The main difference between Fo’s and Fd’s is that,
while Fo’s inhibit navigation (the appearance of links in the interface), Fd’s
restrict the target population being visualized, but do not refrain the link from
being shown in the interface.

On the other hand, navigation patterns are characterized by two
properties: indexing (yes/no and, if yes, number of items per page, in order to
allow index pagination) and navigation (yes/no and, if yes, number of items per
page, in order to diminish guided tours size).

OO-H defines other navigation-related metamodel attributes associated
to links as follows:
• Visualization (show in origin/show in destination): any link implicitly

connects an origin (implicit or explicit) and a target information set. When
the visualization attribute is set to origin, the target information set is
visualized together with the origin, that is, in the same abstract page.
However, when it is set to destination, a new abstract page is generated,
and a navigation action (such as clicking on an anchor) is required to follow
the navigation path.

• User interaction (manual/automatic): Sometimes it is useful for the user
not to be obliged to click on a link in order to get the target information
set. This characteristic is captured in the user interaction metamodel
attribute, which in this case, will be set to automatic as opposed to the
traditional (default) manual mode.2

• Application scope (simple/multiple/universal): This concept stands for
the number of objects a given link involves in origin when it is traversed.
The origin of a given link can be defined to be a single object (simple), a

OO-H Method: Extending UML to Model Web Interfaces 151

set of objects chosen by the user (multiple) or the set of objects present
in the actual view (universal).

Last but not least, OO-H introduces the concept of activation link.
Several times the information the user needs to access slightly varies depending
on the contextual navigation (where the user comes from). OO-H abstracts
such a situation by means of an activation-link mechanism. Each link defines its
set of activation links, that is, links that, when coming through them, make the
actual link available for further navigation.

All of these concepts3 will be used later in this chapter, when we present
the navigation access diagrams corresponding to the case of study.

In the rest of this chapter, we illustrate OO-H by means of an example: a
conference paper review system, that is, a Web-based application that helps
conference program committees manage the process of receiving and evaluat-
ing conference papers.4

The Case of Study: A Conference Review System
The purpose of the system is to support the submission, evaluation and

selection process for papers sent to a given conference. We can identify the
following actors interacting with the application:
• PC Chair — Responsible for creating and managing the conference
• PC Member — Responsible for evaluating a set of papers assigned
• Reviewer — Responsible for reviewing a paper
• Author — Responsible for submitting a paper for acceptance at the

conference

The following functions (processes) must be supported by the system:
• Paper submission (any registered author may submit a paper)
• Assignment of papers to PC Members
• Assignment of papers to Reviewers (a PC Member may re-assign a paper

to a Reviewer)
• Input of reviews
• Acceptance or rejection of papers

The OO-H method tackles the development of Web applications follow-
ing a user-oriented approach. The process starts by defining a use case diagram
and a business class diagram (both are part of UML). These two models
provide the necessary input to accurately model the navigation layer of the
application. The construction process also includes a first level of personaliza-
tion: different user profiles may have associated different navigation diagrams.

152 Gómez & Cachero

Use Case Diagrams
The use case diagram is one of the key mechanisms of UML. It captures

the system functional requirements for each user type (actor) and drives the
remaining phases of the software construction process. OO-H uses it as a basis
on which the navigation requirements are structured.

To illustrate this step, we will model the use case diagram corresponding
to the PC Chair (see Figure 1). As stated in the description of the system, “a
PC Chair is responsible for creating the conference, determining the
conference tracks and subjects, establishing the Program Committee
and, advised by the PC Members, defining the final list of accepted and
rejected papers. The conference is supposed to have a set of tracks and,
optionally, a set of subjects. The PC Chair also defines the conference
deadlines: submission, review and notification.” At this stage, the associa-
tion of a storyboard (mockup of the interface) to the different use cases is
advisable to better illustrate user–system interaction. It is also important to note
that the use cases represented in OO-H are business use cases, and so they may
(and usually will) have different implementations depending on the target
technology, architecture and target platform.

Together with the use case diagram, OO-H needs a UML business class
diagram. Both diagrams provide the input to design the NAD diagrams that
reflect the navigation paths through the system.

Figure 1: UC PCChair

OO-H Method: Extending UML to Model Web Interfaces 153

Business Class Diagram
The class diagram modeled for the conference review system can be seen

in Figure 2. Just to clarify, note that a slash (/) next to an attribute/method stands
for derived. A dollar symbol ($) next to an attribute/method name stands for
class-scope5 attribute/method. Also, the <<enumeration>> stereotype de-
fined on classes is the mechanism UML uses to define enumerated types. The
attributes of those stereotyped classes represent the possible values of the
enumerated type.6

Our class diagram depicts the following domain concepts (business
classes): users (categorized into Authors, Reviewers, PC Members and PC
Chairs), articles, revisions, tracks and subjects. Moreover, we detected two
association classes: reviews (evaluation and comments a PC Member intro-
duces in the system regarding a given paper) and revision preferences (interest
degree and interest conflicts a PC Member has with reference to a given paper).
Some attributes and methods have been directly derived from the description
of the system. Others have been inferred from the application domain. The
responsibility assignment has been realized taking into account which class was
responsible for the most of the data involved in each one of the methods.

Figure 2: CRS class diagram

154 Gómez & Cachero

Although we tried to avoid method duplication in order to simplify the diagram,
sometimes (mainly when we are dealing with methods that involve creation or
deletion of relationships between objects) it might be convenient to provide the
user with access modes from each of the classes involved.

Based on the system description, we identified six stages for the confer-
ence revision process, all controlled by the PC Chair. Each stage implicitly
determines different function sets available to each profile.
• AuthorSendingPapers: In order to begin the revision process, the PC

Chair must introduce the conference parameters (PC Chair data, confer-
ence dates, URLs, tracks, subjects, PC Members involved in the revision
process, and so on) and, as the last step, open the period for the authors
to submit papers. The system transition to this status might imply the
sending of a Call for Papers to a set of selected distribution lists
(DBWORLD, ISWORLD, etc).

• PCChairIntroducingConflicts: Once the paper submission period has
expired (conference.paperSubmissionDL), the PC Chair changes the
status of the system. This status change grants the access of the different
profiles to a new set of tasks. For example, in this new state, the PC Chair
will be able to revise the submitted papers, change their track and
subjects, if necessary, or look for revision conflicts (e.g., PC Members
that are authors of a submitted paper).

• PCMemberIntroducingPreferences: The following step is to open the
system for the PC Members to introduce their preferences regarding the
submitted papers, as well as revision conflicts not detected by the PC
Chair (if any).

• PCChairAssigningReviews: Once the PC Chair closes the period to
register paper preferences, and taking into account the preferences and
conflicts registered in the system, it is time for the PC Chair to assign
papers to the different PC Members for revision.

• PCMemberReviewingPapers: Then, the period for each PC Member to
introduce its revisions is opened. Again, the system transition to this state
implies the sending of an e-mail to each PC Member with information
regarding the papers the member has been assigned and the period of time
available to perform the revision. This phase ends when the review
deadline (conference.reviewDL) is reached.

• PCChairEvaluatingPapers: Once the PC Chair sets the state of the
system to this value, and taking into account the reviews introduced by the
PC Members (or the corresponding external reviewers), the PC Chair
must decide which papers are accepted and which ones are rejected.

OO-H Method: Extending UML to Model Web Interfaces 155

• ProcessFinished: This last step implies the sending of an e-mail to all
paper authors, informing them of the revision process result regarding their
papers.

OO-H considers that the e-mails the system must send on some confer-
ence state transitions are isolated inside the body of the
conference.changeProcessStatus method and, therefore, out of the scope of
our models.

Modeling Assumptions
In order to simplify the diagrams, we applied the <<singleton>> pattern

(Cachero et al., 2001) to the Conference class. This pattern implies that the
generated system deals with a single conference (i.e., there may exist just one
object of type conference). All papers, tracks, subjects and people in the
database are implicitly related to that conference. Extending such a system to
deal with several conferences at a time is trivial.

Once the user requirements have been clearly identified and the business
domain modeled, we can go one step further and focus on navigation paths
through the information space. The class diagram helps decide which paths are
semantically relevant, while the user-case diagram structures such paths
according to the user expectations of the system.

Navigation Modeling
In OO-H, the use-case diagram and the storyboard help the designer to

decompose the system interface into subsystems and pages through which the
user can navigate in a meaningful way, taking into account the user need for
fulfillment of a set of functional and navigation requirements.

The construction process of the navigation access diagrams (NAD) is
divided into the following steps:
(1) Grouping process on the use-case diagram: OO-H packages the use

cases attending to a set of criteria.7 For the sake of simplicity, we depicted
these grouping decisions by means of transparent package symbols
around the use cases involved, although the actual notation (used in the
OO-H case) is UML-compliant. Each package links the underlying use
cases to a single navigation target, where their inner navigation paths are
modeled.

(2) Automatic derivation of the top level of the NAD diagram
(3) Construction of the different NAD diagrams, driving the navigation

decisions by the corresponding storyboard

156 Gómez & Cachero

Next, we illustrate these steps by means of an example: the NAD diagram
construct process for the PC Chair profile.

PC Chair Navigation Profile
In this section, we will present, step by step, the construction process of

the NAD diagram corresponding to the PC Chair. The process followed to
construct the diagrams corresponding to the other actors (PC Members,
Reviewers and Authors) is analogous.

If we look again at the PC Chair use case diagram (see Figure 1), we will
observe the set of functional requirements the interface must fulfill.

In Section 2.4, we commented how this diagram was the base on which
to show decisions regarding how to group those requirements into navigation
targets (NT), attending at semantic, functional dependency and data criteria.
We say we are using semantic criteria when we group use cases that have a
similar aim. As an example, in Figure 3, we can observe how the use-cases
view Reviews and view Statistics have been grouped under the NT View
Process Data, due to the fact that both provide reports on the review
information (one aggregated, the other one detailed) contained in the system.

Figure 3: UC grouping process

OO-H Method: Extending UML to Model Web Interfaces 157

On the other hand, in order to gather view Reviewers Evaluation and Accept/
Reject Papers, we applied what we call a functional dependency criterion, that
is, we departed from the premise that in order to be able to accept and reject
papers, we must have a synthesized view of every reviewer evaluation in order
to help the PC Chair to make a sound decision. Last, the use cases
ChangeConferenceStatus and ManageConferenceInfo have been grouped
under the NT Manage Conference, following a data criterion, that is, due to
the fact that both access and manipulate data of the Conference class.

The grouping process entails an interface structure. Consequently, the
more careful this process is performed, the higher the quality of the final
interface structure will be.

Once this process is finished, the next step is to dive into each grouping and
define the inner navigation paths. In order to illustrate the navigation design
decisions, we are showing the storyboard corresponding to the first NT,
Manage Conference.

PC Chair Profile Entry Point
In Figure 4, we observe the modeling of the entry point to the application

(represented by the requirement link Entry Point). One possible set of

Figure 4: PCChair NAD Level 0

158 Gómez & Cachero

storyboard pages corresponding to this diagram is showed in Figures 5 and 6.
The first abstract page corresponds to a form for the user to log in to the system.
This process involves a user login, password and profile, which correspond to

Figure 5: Login

Figure 6: Menu PCChair

OO-H Method: Extending UML to Model Web Interfaces 159

the parameters (all mandatory) of the method PCChair.login. If the user exists
(condition that is reflected in the Fo Valid User), the user will be shown a menu,
where a link to each of the five NT identified (see Figure 7) is presented. Such
a menu is represented by the collection construct Menu PCChair.

Each NT can be further “exploded” to show detailed internal navigation.
To illustrate this, next we will show the internal structure of the NT Manage
Conference.

Navigation Target “Manage Conference”
When the PC Chair selects the Manage Conference option,8 the interface

subsystem modeled inside the corresponding NT is accessed. The entry point
to this NT (requirement link Conference Maintenance, see Figure 7) points
at a new collection, called Conference Menu, that differs from the previous one
in the type of links departing from it; while in the PCChair Menu collection, the
links had the visualization attribute set to show in destination, this time they are
of type show in origin (hollow arrowheads of Introduce Conference and
View Conference links). This represents the fact that, in this case, no link to
a new page must be generated, but that the information corresponding to the
destination classes must be directly presented to the user, provided that the
corresponding Fo is evaluated to be true.

Furthermore, as both filters (conference.population)==0 / conference.
population > 0) are disjoint, only one view will be available at a time: if the
conference has not yet been created (it is the first time the PC Chair enters the
system), the screen corresponding to the createConference method will
appear (see Figure 8). This page gathers the set of parameters the method New
Conference requires. Once the method has been invoked and the control
returned to the interface, the response link Conference Created drives the user
again to the Conference Menu. This time, however, when the filters are
checked again, it is the View Conference link that is evaluated to be true, and
so the system will automatically generate the page shown in Figure 9. This page
provides a view of the conference data, together with three buttons (Tracks,
Subjects and Change Conference Data), corresponding to the three links set
to show in destination that depart from the Conference navigation class.
Activating each one of these links, we will navigate to the views Change
Conference Data (see Figure 10), Tracks (see Figure 11) and Subjects (see
Figure 12), respectively. Also, there is another button (Change Conference
Status) that actually executes the homonym service, with the value of its input
parameter (newStatus) set to the string selected in the selection list shown in
Figure 9.

160 Gómez & Cachero

This selection list is the result of associating a selection introduction mode
to the change service status parameter.9 At this point, the reader may wonder
how OO-H generates the mediator for the interconnection with preexistent
logic modules. In fact, the answer is in the class diagram. We already noted how
the class diagram can show the interface to underlying business libraries. In
order to identify those libraries, OO-H defines the <<legacy>> stereotype that,
associated to domain classes, reflects the fact that those classes are part of a
preexistent library. Also, services in those <<legacy>> classes have their input/
output parameters defined at domain level. At navigation level (in the NAD
diagram), we thus just have to center on the way the user is going to introduce
those parameters, and whether introduction is mandatory or not: only manda-
tory attributes that have no default value in the class diagram or in the navigation
diagram appear as mandatory in the interface. Before the generation process
is executed, the CASE tool detects <<legacy>> classes and requires the
designer to enter the necessary solution-space data (physical location of the
library, desired protocol to actually connect to the library interface, etc.) to
generate the mediator. Note how this fact obliges the <<legacy>> classes to
capture the exact interface to the desired library. All this information is kept in
an XML template structure (Tlogic: see section “View Refinement”), which is
later used by the tool to perform the generation process.

Figure 7: Manage conference

OO-H Method: Extending UML to Model Web Interfaces 161

In Figure 10, we can also observe how the different method parameters
may have a default value associated (in this case, the actual value of the
corresponding class attributes). Also note that, when not otherwise stated, a
default response link is supposed to go back to the view from which the service
was invoked.

Figure 8: New conference

Figure 9: Conference view/change status

162 Gómez & Cachero

As the reader will have already inferred, it is the visualization attribute
(explained in Section 2.2) that characterizes the final abstract page structure of
the interface. We call this page structure abstract, because there is nothing that
prevents those pages from being further composed into a frame structure or any
other mechanism that allows the coexistence of different views of the system on
the same physical screen.

Figure 11: New track

Figure 10: Change conference data

OO-H Method: Extending UML to Model Web Interfaces 163

In Figure 13, we can observe the interconnection of the screenshots
captured in Figures 5 to 12. In the next section, we will explain how this site
view interconnection perfectly matches with the APD diagram, automatically

Figure 12: New subject

Figure 13: Site view

164 Gómez & Cachero

generated by the OO-H CASE tool departing from the corresponding NAD
diagram. Also, note how the storyboard presents a link from every abstract
page to the NT origin, another one to the application entry point and another
one pointing at the previous abstract page in the navigation path. OO-H
automatically generates those links (from each page to the home page, to the
NT root page and to the previous page in the navigation path) if not otherwise
stated.

Although at this stage of the process we already have all the information
needed to automatically generate a functional prototype, OO-H recognizes the
need for a greater level of interface sophistication than that provided by the
information gathered at NAD level, regarding appearance and usability fea-
tures. The abstract presentation diagram (APD) and the composite layout
diagram (CLD) provide a set of mechanisms to refine the interface at a lower
level of abstraction.

View Refinement: Presentation Modeling
A default APD, reflecting the abstract page structure of the interface, can

be automatically derived from the NAD diagram. This default APD gives a
functional but rather simple interface (with default location and styles for each
information or interaction item, and only simple patterns applied), which will
probably need further refinements in order to become useful for its inclusion in
the final application. It can, however, serve as a prototype on which to validate
that the user requirements have been correctly captured. Furthermore, it
separates the different features that contribute to the final interface appearance
and behavior by using a page taxonomy, based on the concept of templates and
expressed as XML documents, which are, namely:
(1) Tstruct — Used to capture the information that needs to be shown
(2) Tform — Used when the page, apart from information, includes calls to

underlying logic
(3) Tlink — Captures the interconnection and dependencies among pages
(4) Tfunction — Gathers client functionality used in the different pages
(5) Texternal — Used to gather type, location and behavior of external

elements (such as images, applets, etc.) that may refine the initial interface
(6) Tlayout — Where the location of elements and the definition of simulta-

neous views and synchronization is captured
(7) Tstyle — Where OO-H maintains features such as typography or colour

palette for each element of the interface
(8) Twidget — Where implementation constructs are related to the different

information and interaction items depending on the final implementation
platform and language

OO-H Method: Extending UML to Model Web Interfaces 165

(9) Tlogic — Where the system keeps implementation details regarding
interaction with underlying business logic (kind of service, parameters,
connection protocol, etc.)

The refinement process consists thus on the modification of the default
APD structure. This process is greatly simplified with the application of a series
of APD-related patterns captured in the OO-H catalog (Conallen, 1999).
Furthermore, the catalog provides an executable python routine (transforma-
tion rule in OO-H terminology) for each materialization of the patterns. This
routine, when loaded in the OO-H CASE tool and executed, changes the
contents of the required APD abstract pages. Also, these routines may cause
any new page, link or dependency to appear, disappear, or be modified on the
diagram. OO-H provides yet another way to manipulate some of the abstract
pages (namely, Texternal, Tlayout, Tstyle, Twidget), by means of the compos-
ite layout diagram (CLD). In this view, the location and visual style of elements
can be edited, widgets (implementation constructs) can be specified and new
elements can be added to improve the visual impact of the generated interface.

The last step of the process, once the abstract pages (XML documents)
have been refined, is to feed the system description (those XML documents)
to a model compiler (not discussed here) that has the target-environment
knowledge that permits the generation of an operational Web interface. It is
important to note that the code-generator receives as its only input that XML-
based system description, which therefore contains all the information kept in
the different diagrams. Changes in such diagrams cause the XML specification
to be regenerated, which assures that no inconsistencies arise between both
representations of the system.

In the next section, we will show part of the default APD generated from
the PC Chair NAD diagram.

PC Chair Default Interface Site View
The OO-H CASE tool includes an algorithm to generate, departing from

the NAD diagram, the set of pages that makes up the site view of the interface
(the detailed algorithm can be found in Gómez, Cachero, & Pastor, 2001) .
Note how only Tstruct, Tform and Tlink pages are relevant to the site view of
the system, and so how the APD diagram graphically shows them. OO-H
includes a default Tfunction (client-side logic to control user inputs for method
parameters), a default Tlocation and a default Tstyle. Furthermore, a default
Twidget is applied to the different interface elements depending on the target
implementation language.10. Also note how the contents of the Tlink global page
is shown by means of links connecting the Tstruct and Tform pages. The

166 Gómez & Cachero

construction of Tlogic, based on the definition of interfaces, is out of the scope
of this chapter.

If we look back to Figure 13 (storyboard snapshot interconnection
diagram) and compare it with Figure 14 (APD partial view), we can see how
they match: the only difference is that snapshots S2 and S3 (Figures 5 and 6)
are now gathered in a single APD page (Conference_Menu) due to the fact
that, in Figure 7 (NAD diagram), we defined that both views were shown in
origin, and so embedded in the same abstract page, represented by the
collection Conference Menu. The remaining snapshots can be directly asso-
ciated with exactly one abstract page at the APD level.

DISCUSSION11

The goal when developing OO-H has never been to provide “yet another
method” but to take advantage of proven successful ideas of existing method-
ologies and practices in related fields, from which we borrowed concepts such
as use cases, patterns, collections or links, just to name a few. The following
step has been to integrate them into a sound proposal, while contributing some

Figure 14: APD PCChair Profile

OO-H Method: Extending UML to Model Web Interfaces 167

new ideas to improve identified gaps. Therefore, OO-H shares many concepts
with other methods for hypermedia and Web design, many regarding the
navigation model. In fact, these similarities also exist among the most relevant
methods and methodologies being actually supported, among which we could
cite UWE, WSDM, ADM-2, WebML, OO-H, OOHDM or HDM2000.
Some of these similarities are as follows:
• All proposals identify the necessity of a brand new model: the navigation

model, to tackle the Web application development process. Inside this
diagram, all proposals distinguish between information and access struc-
tures.

• All proposals clearly separate content, navigation and presentation space
by means of different models.

• There is a general agreement in the necessity of any kind of navigation
diagram, for which standard methodologies do not provide the necessary
constructs. So, such standard methodologies have been extended or a
broad new notation and model have been proposed.

• All proposals aim at defining a precise and systematic, even in some steps
automated, process for the development of the Web application.

• All proposals present an exhaustive authoring process (a method and a
notation).

• All proposals avow the necessity of any kind of constraint language to
augment the precision of the Web application models.

• All proposals avow the necessity of a CASE tool that supports the whole
process.

Far from being a drawback, we think this sharing of concepts is one of the
reasons for the rapid development of Web engineering. The IIWOST’01
experience demonstrates, from our point of view, that hypermedia design
methods are reaching a state of maturity in which a set of premises is being
settled. This makes it relatively straightforward to understand the concepts
behind other proposals and to reflect together on missing semantics and
accurate definitions of concepts and constructs.

However, there are many differences among the different proposals. Some
approaches (e.g., UWE) aim at covering the whole life-cycle of the Web
application, while others (e.g., OO-H) center on the authoring process. Also,
the data-orientation of some approaches (e.g., ADM-2, WebML) contrasts
with the user-orientation of many others (e.g., OOHDM, OO-H). Only some
approaches formalise the sketching and storyboarding techniques (e.g.,
OOHDM) widely used by user interface designers.

168 Gómez & Cachero

The design activity also greatly differs in the level of detail. While some
approaches prefer to use external tools for refining interfaces, or even connect
them with their models (e.g., WebML), others prefer the integration of layout
on the same tool, thus providing an integrated development environment, even
at the cost of less elaborated visual interfaces (e.g., OO-H).

Another important aspect regards the extent to which different proposals
abstract Web application functionality. Most methods studied so far provide
traditional database functionality (insert, update, delete). However, the kind of
services required by actual Web applications is far more complex, and the
degree to which those services are integrated in the proposals greatly differs.
Although database models could be extended (and in fact are being extended,
see e.g., WebML) to deal with such services, we claim OO models, in which
services are first-class concepts, provide a more flexible platform with which
to model Web functionality. Specifically, the class diagram proposed in such
methods is prepared to include the interfaces needed to connect with underlying
business logic modules, thus facilitating the functionality integration process.
However, and although traditional software engineering methodologies pro-
vide the designer with the notation and models already proven successful for the
development of business services and transactions (which is the reason why
OO-H does not provide any new diagram or construct for this part of the Web
application), they were not designed to deal with concepts such as Internet
transactions (set of services that may be executed on different independent
databases, with no knowledge of each other), client functionality, Web
services, etc. OO-H is currently working on the abstraction of those concepts,
which are part of the research trends in the field.

Also, personalization features, which should be present at every stage of
development, are diversely covered in the different approaches. In this sense,
OO-H provides a basic level of personalization, based on departing from user
profiles and designing a different model for each user type. More evolved
proposals (e.g., WebML) provide frameworks for one-to-one personalization
and even support for interface proactive behavior. Although this topic would
need a whole chapter on its own, we would like to note that OO-H regards
personalization as a core activity for Web engineering. This task, together with
navigation design, makes, from our point of view, one of the greatest differ-
ences between traditional software development processes (including that of
distributed applications) and the Web development process.

Moreover, the degree to which those proposals are supported by a CASE
tool greatly differs: while some approaches have a fully operational CASE, with
generation code capabilities, others have support just for the notation and
evolution of the different models, while still others have their associated tool

OO-H Method: Extending UML to Model Web Interfaces 169

acting as a mere diagram editor. In this sense, OO-H already has a CASE
capable of generating fully operative interfaces, and we are currently working
on the generation of modules that implement the connection with business logic.
Furthermore, this tool has powerful extension capabilities due to the belief that
Web concepts are likely to greatly evolve in the next years. Recent studies show
the low impact of Web methodologies in current enterprise practices. We think
the existence of fully operative, easy-to-use CASE tools supporting such
methodologies is a must if the research community wants to change this trend.

Finally, and despite the great number of shared concepts, there are great
controversies regarding navigation, especially the level of abstraction at which
it should be defined. From OO-H, we claim that although a design navigation
model (gathering the abstract site view of the interface) is needed, and even
more if we aim at providing any kind of automatic code generation support,
there is, however, also a need for a device independent navigation model, which
is, as far as we know, not provided by any methodology. Until now, all models
(including ours) have had in mind the concept of abstract page when dealing
with navigation constructs, probably due to our background as Web develop-
ers. However, from OO-H, we think it would be advisable to preserve a certain
“flavor” among implementations of the same application for different devices.
That is the reason why we are currently working on a navigation view with which
the concept of node is based on the user requirements, rather than on the class
diagram representing the domain information structure, which is the basis
adopted so far in other proposals.

CONCLUSIONS AND OO-H RESEARCH
DIRECTIONS

It is commonly avowed that current interface-related languages are too
target-environment dependent and, therefore, lack the flexibility needed for the
development of complex Web applications. Well-defined software develop-
ment processes are necessary in order for the community of software engineers
to design Web-based applications in a systematic way and thus avoid the risks
of failure involved in ad hoc development processes. Our purpose has been to
address these problems in the Web engineering context by means of a
conceptual modeling approach that has been proven successful for software
production from conceptual models.

In order to properly capture the particulars associated with the design of
Web interfaces, OO-H method adds several navigation and interface con-
structs that define the semantics suitable for capturing the specific functionality

170 Gómez & Cachero

of Web application interfaces. Two new kinds of diagrams, the navigation
access diagram and the abstract presentation diagram, have been introduced.
Both the NAD and the APD capture relevant information for the interface
design by means of a set of patterns, which are defined in an interface pattern
catalog. The NAD, which is based on an OO class diagram, is centered on
information and navigation user requirements and provides each user-type with
a different view of the system. Each piece of information introduced in the NAD
is mapped into a different construct in a default APD. The APD is based on the
concept of templates, and its underlying structure is expressed in standard
notation. We can perform further refinements on the APD in order to improve
the interface visual quality and usability.

From there, a functional interface can be generated in an automated way.
In contrast to other existing Web methods, the approach presented in this paper
does not intend to be yet another method for Web modeling but rather an
extension of any consolidated OO conceptual modeling approach. Summariz-
ing, the most relevant contributions of this chapter are the following:
• The detailed presentation of OO-H method as an interface modeling

approach that extends conventional methods starting from navigation user
requirements.

• The idea of integration, departing from the conceptual description of the
problem, of complex application behavior by means of explicit service
interaction modeling. In this sense, OO-H provides the mechanisms to
define how each parameter is going to be fed to each service and how the
user is going to visualize the service results.

• The use of a pattern catalog to evolve the schemas in order to speed up
the development process, improve interface quality and guarantee design
experience reuse.

• The notion of transformation rule, associated with each of the possible
pattern implementations, as a way to simplify and systematize the modi-
fication process of the APD schema.

• The use of a taxonomy of construct templates, which is defined in a
standard notation, to build the different constituents (information, layout,
input data, client functionality) of the APD as necessary.

• The notion of default APD, which is built by applying a set of mapping rules
from the different elements of the NAD.

OO-H is not a closed proposal: the modeling of existing and to-come
applications will cause its semantic constructs to evolve and be extended to
capture new interface requirements. As an example, we are already working on

OO-H Method: Extending UML to Model Web Interfaces 171

the interface-related event modeling. Although Web applications require an
event mechanism similar to other traditional applications (e.g., to perform
punctual or periodic tasks without need for user interaction, to respond to the
finish event of asynchronous services, etc.), we think they also require an
interface-related event mechanism that manages which views are available for
each user at each moment. In this sense, one possibility is the use of high-level
state charts, where each state represents a set of views available for a given user
at a given time. A transition condition in this case would imply a change in the
set of views the user can access. This last point can be viewed as part of a
broader problem, which is that of the integration of workflow activities as part
of the authoring process. Also, we think a powerful but yet simple mechanism
to specify synchronization of views is necessary in this environment. In this
sense, OO-H could benefit from work developed in the multimedia community,
where synchronization is a first-order aspect.

Ongoing work in OO-H further includes (1) how to achieve a greater level
of personalization (including the definition of a personalization framework), (2)
how to detect a greater range of patterns and definition of their corresponding
OO-H transformation rules and (3) how to provide support for a broader range
of implementation architectures, platforms and languages.

REFERENCES
Bell, R. (1998). Code Generation from Object Models. Embedded Systems

Programming. 3, 1–9.
Cachero, C. Gómez, J., et al. (2001). Conference Review System: A Case of

Study. (2001). In D. Schwabe, (Ed.), Proceedings of the First Interna-
tional Workshop on Web-Oriented Software Technology (195–227).
Valencia University of Technology.

Ceri, S., Fraternali, P., et al. (2000). Web Modeling Language (WebML): A
Modeling Language for Designing Web Sites. In I. Herman, (Ed.),
Proceedings of 9th International WWW Conference. IEEE Press.

Conallen, J. (1999). Modeling Web Application Architectures with UML.
Communications of the ACM, 42(10), 63–70.

Directory Services Markup Language (DSML). (2001). http://www.dsml.org/
.

Gartner Group, Inc. (2001). The Future of Web Services: Dynamic Business
Webs. Market Analysis.

Gellersen, H.W. & Gaedke, M. (1999). Object-Oriented Web Application
Development. IEEE Internet Computing, 3(1), 60–68.

172 Gómez & Cachero

Gómez, J., Cachero, C., & Pastor, O. (2001). Conceptual Modeling of
Device-Independent Web Applications. IEEE Multimedia, 8(2), 26–
39.

Manola, F. (1999). Technologies for a Web Object Model. IEEE Internet
Computing, 3(1), 38–47.

Martin, D., Birbeck, M., et al. (2000). Professional XML. WROX.
Mecca, G., Merialdo, P., & Atzeni, P. (1999). Araneus in the Era of XML.

IEEE Data Engineering Bulletin, 42(10), 63–70.
Murugesan, S., Deshpande, Y., et al. (1999). Web Engineering: A New

Discipline for Development of Web-Based Systems. In S. Murugesan
(Ed.), Proceedings of First ICSE Workshop on Web Engineering.

Pressman, R.S. (2000). Software Engineering: A Practitioner’s Approach.
Fifth ed. New York: McGraw-Hill.

Schwabe, D. & Almeida, R. (1999). A Method-Based Web Application
Development Environment. In D. Schwabe, (Ed.) Proceedings of 8th
International WWW Conference. IEEE Press.

Simple Object Access Protocol (SOAP). (2001). http://www.develop.com/
soap/.

Semantic Web. (2001). http://www.w3.org/2001/sw.
Universal Description, Discovery and Integration (UDDI). (2001). http://

uddi.microsoft.com/.
User Interface Modeling Language (UIML). (2001). http://www.uiml.org.
UML Specification. V1.3. (1999). http://www.rational.com/uml/index.jsp.
Warmer, J. & Kleppe, A. (1998). The Object Constraint Language. Precise

Modeling with UML. Reading, MA: Addison-Wesley.
Web Services Description Language (WSDL). (2001).http: //msdn.microsoft.

com/xml/general/wsdl.asp.

ENDNOTES
1 The special characteristics and requirements of Web applications and the

Web development process are beyond the scope of this chapter. Inter-
ested readers are referred to Pressman (2000), where a good introduc-
tion is provided.

2 Automatic links tend to be visualized in origin, while manual links tend to
be visualized in destination. However, there are cases in which it can be
useful to combine both characteristics in a different way.

3 More detailed information on the semantics of the different constructs and
on the OO-H process to specify navigation features can be found in
(Gómez, Cachero, & Pastor, 2001).

OO-H Method: Extending UML to Model Web Interfaces 173

4 The selected case of study has been proposed by Daniel Schwabe in the
context of the first International Workshop on Web Oriented Software
Technology (IWOOST’2001).

5 In UML 1.3, the class-scope $ notation has been deprecated and
substituted by an underlined attribute/method name. OO-H will change
the notation support accordingly in future versions of the tool.

6 This way of defining enumerated types has been included in UML 1.4
7 These grouping criteria will be further explained in Section 2.8, when we

show the PC Chair navigation profile.
8 In the OO-H diagrams, an asterisk next to the link name means that the

set of activation links is not complete (that is, is not made up by every link
from which the user might have arrived to the actual view). Also, an arrow
with a filled head means that its visualization metamodel attribute is set to
show in destination, while, if it has a hollow head, the corresponding
value is show in origin.

9 See Section 1 for a description of the different introduction modes for
method parameters. More information on services and input parameters
can be found at http://www.dlsi.ua.es/~ccachero/reports/services.pdf.

10 The XML specification of every page is available through the tool by
clicking on the corresponding page or by means of a menu.

11 An interesting experience regarding modeling methods was held in Valencia
in June 2001 during the IIWOST’01. In this workshop, people from some
of the most relevant research groups proposed their solution to a common
problem (the Conference Review System presented in this chapter). This
experience provided a suitable forum, where it was possible to discuss the
different approaches from a practical point of view. The different solutions
to the case are in the roots of this brief comparison. Readers interested in
a deeper discussion or in a description of the different proposals are
referred to the congress proceedings.

