
Object-Oriented Conceptual Modeling of Web
Application Interfaces: the OO-HMethod

Abstract Presentation Model

Cristina Cachero1?, Jaime Gómez1, and Oscar Pastor2

1 Departamento de Lenguajes y Sistemas Informáticos
Universidad de Alicante. SPAIN
{ccachero,jgomez}@dlsi.ua.es

2 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia. SPAIN

opastor@dsic.upv.es

Abstract Object-oriented conceptual modeling approaches must be re-
considered in order to address the particulars associated with the de-
sign of web application interfaces. In this context, the paper introduces
the presentation layer of OO-HMethod, an extension of the OO-Method
conceptual modeling approach that is devoted to the specification of this
kind of interfaces. The OO-HMethod presentation approach is based on
the concept of templates. Each page template may fall into one among a
set of categories, which together cover the different presentation perspec-
tives captured in the model. In order to better define the page template
structure, a new diagram is introduced: the Abstract Presentation Di-
agram (APD). The APD does not need to be drawn from scratch: the
navigation structure previously defined in the OO-HMethod Navigation
Access Diagram (NAD) provides the information needed to automati-
cally generate a default APD. This skeleton template structure may be
further refined and enriched with the aid of the OO-HMethod Interface
Pattern Catalog. As a result, a web application interface is generated in
an automated way.

1 Introduction

The research effort inverted by the scientific community in hypermedia model-
ing approaches specifically devoted to the development of web sites has led to
different projects and products. Some of the most relevant examples studied so
far are HDM [7], HDM-lite [6], OOHDM [17], RMM [9], ADM [1, 11] or Strudel
[5]. However there is still, as far as we know, a gap to be filled: that of web
applications’ interaction issues. In this context our research efforts have been
focused on the proposal of ’Not Yet Another Method’ for web modeling, but on
a set of semantics and notation that allows the development of web-based in-
terfaces for existing OO-Method [14, 15] applications. This proposal, known as
? This article has been written with the sponsorship of the Conselleria de Cultura,

Educació i Ciència de la Comunitat Valenciana



OO-HMethod [8], extends OO-Method with two new diagrams: (1) the Naviga-
tion Access Diagram (NAD) and (2) the Abstract Presentation Diagram (APD).

Both the NAD and the APD can be further enriched and refined by means
of a set of interface patterns, which are defined in the OO-HMethod Pattern
Catalog[2]. The OO-HMethod Pattern Catalog provides a user-centered Hy-
permedia Interface Pattern Language [16] that offers alternative solutions to
well-known hypermedia problems, considered from the user point of view. Fur-
thermore, its use allows the designer to choose the most suitable among a set
of possible implementations. The patters can fall into one of the following three
categories: (1) Information patterns, that provide the user with useful context
information, (2) Interaction Patterns, which cover user-interface communication
issues such as protocol-related features for invoking services and (3) Navigation
Patterns, that determine the way the user is going to move through the system.
The information and patterns captured at the NAD level suffice to automat-
ically generate a default APD, which provides the designer with the skeleton
page template structure on which to perform further refinements. This article
introduces the APD main semantic and structural features.

The remainder of the article is structured as follows: section 2 gives an
overview of the NAD and the concepts captured there, which are the basis for
the generation of the default APD. Section 3 introduces the APD and describes
in detail, by means of an example, both the concepts and the template constructs
associated with this diagram. It also defines its construction process (automatic
default generation and refinement). The web interface that is generated from
the information captured both in the NAD and in the APD is shown in section
4. Section 5 makes a comparison with related work, and section 6 presents the
conclusions and further work.

2 OO-HMethod Navigation Access Diagram

For a more general perspective of the approach, a small example is going to be
employed all along the paper: a Chat Management System. As a basic explana-
tion (for reasons of brevity) it is assumed that there are several possible chat
topics. Each message corresponds to a single topic. Besides, messages are hierar-
chically structured so that a message can be the start point of a new discussion
line inside its topic or, otherwise, be a response to another previous message.
The chat user, whose behaviour we will model, is able to read messages and
reply to an existing message. OO-HMethod associates a different NAD diagram
with each agent (user-type). This diagram is based on the following constructs:

1. Navigation Classes (NC): they are domain classes whose attributes and
methods have been filtered and enriched in order to better accommodate
the specific features of hypertext. This enrichment causes different types
of attributes to appear: V-Attributes (attributes that are always visible),
R-Attributes (available to the user on demand, by means of any kind of



reference) and H-Attributes (attributes hidden to the user except on very
specific occasions, such as when displaying detailed views of the system).

2. Navigation Targets (NT): they group the elements of the model that col-
laborate in the coverage of a certain user navigation requirement. In our
example (see Fig. 1) there is one NT, corresponding to the user require-
ment ’Participate in Chat’. Inside it, we can observe two navigation domain
classes: the ’Chat’ class, which determines the available discussion topics,
and the ’Messages’ class, which contains the messages stored in the system.
We can observe that the ’Chat’ class has a single attribute (’nameChat’),
which is labelled as ’Visible’ (V) and specifies the identifying name for each
discussion topic.

Li (showall org)

child

Lr (showall)
“Enter”

Li (showall dest)

Ls
“Reply”father

ParticipateInChat

EP
[Index]

CHAT

nameChat(V)

BOOK

MESSAGES

titleMsg (V)
textMsg (V)

replyMessage

Figure1. NAD Diagram of a Chat Manager System

3. Navigation Links (NL): they define the navigation paths through the infor-
mation. They have a set of associated Dynamic Flow Navigation Patterns,
which are defined in the Pattern Catalog and qualify the user navigation
behaviour. Also, they are accompanied by a set of Navigation Filters, which
restrict and qualify the target information. We can distinguish among four
different link types: I-Links (Internal Links), which provide navigation paths
among objects inside a given NT, T-Links (Traversal Links), which are de-
fined between navigation classes belonging to different NT, R-Links (Re-
quirement Links), which define the entry point to each NT and S-Links
(Service Links), which determine the available services for the user-type as-



sociated to that NAD. In Fig. 1 we can observe three out of the four possible
link types. The structural relationship (composition) that exists between
’Chat’ and ’Messages’ allows the designer to define a Li that makes possible
the access to all the messages corresponding to a given chat topic. The Lr
’Enter’ shows the navigation entry point to the NT. Also, an example of the
Ls link type is provided, associated with the ’Reply’ service.

4. Collections: they group objects following certain criteria under hierarchical,
either static or dynamic, structures. They have a set of Dynamic Flow Nav-
igation Patterns and Navigation Filters associated, which define both the
traversal behaviour of the link structure and the set of objects on which this
collection will apply. In OO-HMethod there are three main collection types:
C-Collections (Classifying Collections), which provide an access structure,
hierarchical or not, to groups of related objects, T-Collections (Transaction
Collections), which group navigation services that are offered to the user as
a whole and S-Collections (Selector Collections), which group objects that
conform to a set of values gathered from the user. In our example we can
observe a special kind of C-Collection, the EP (Entry Point), which, as ev-
ery collection, is drawn as an inverted triangle. An EP determines the entry
point to the application.

The NAD captures the navigation paths and the services the user can acti-
vate when working with the interface, and so a different NAD should be defined
for each user type. From there a web interface might be generated without fur-
ther work, because OO-HMethod provides a set of default values for the main
presentation features. That allows the designer to shorten the time needed to
develop application prototypes. However, once an agreement between designer
and client has been reached, the designer will most probably need to modify this
default structure in order to improve both its appearance and usability features.
In order to do so, OO-HMethod defines another diagram: the APD, which will
be detailed in next section. In order to get more information about the NAD
diagram, interested readers are referred to [8].

3 The Abstract Presentation Diagram

We agree with [1, 5, 6, 11] in the adoption of a template approach for the spec-
ification of not only the visual appearance but also the page structure of the
web. OO-HMethod defines five template types, expressed as XML (eXtensible
Markup Language) documents[4, 10]. In order to define the tags and the struc-
ture of the documents we have associated a Document Type Definition (DTD)1

with each type of template. For reasons of space, the five DTD specifications are
left out of the article. Interested readers are referred to [3].

1 A new proposal, called XML-SCHEMA, is being discussed at [4] as an alternative
to the DTD definition language



3.1 Template Types

The five template types defined in our approach are, namely: (1) tStruct, which
defines the information that will appear in the materialized page, (2) tStyle,
which reflects the visual features of the page, (3) tForm, which defines the data
required from the user in order to interact with the system, (4) tFunction, which
captures language-independent client functionality and is based on the DOM
(Document Object Model) specification[4] and (5) tWindow, which reflects two
or more simultaneous views of the information. With this approach, the addition
of new document types to our model simply consists on the addition of (1) a new
DTD defining the structure of such document, and (2) a set of mapping rules to
each one of the different target environments. Furthermore, defining a common
set of XML templates could serve as a framework for comparison among different
proposals.

The default template structure can be derived from the information captured
in the NAD by using a set of default APD generation rules. Following these
rules, V-Attributes, I-Links, T-Links and R-Links are automatically transformed
into link-elements inside the tStruct page. Also C-Collections and S-Collections
generate a new tStruct abstract page that contains a tree-like structure made up
of link elements pointing to other tStruct elements, and so on. In our example, the
abstract template pages Home Page, Chat List, Message View and Reply Message
(which can be seen in Fig. 2) have been automatically derived from the NAD
diagram, together with its corresponding links. Also a general Style page has
been automatically added to the template structure. In the following section we
will present the possible ways of refinement that cause the template structure
to evolve towards its final appearance.

3.2 APD Refinement

The default APD provides the user with a functional interface, that can serve as a
prototype on which to validate the user-requirements. But, in order to get a more
sophisticated appearance, the designer will probably need to perform further
refinements. OO-HMethod provides the user with two refinement mechanisms,
the simpler one consisting on manually adding structures and/or individual pages
to the default APD diagram. As an example, in Fig. 2 we have added a TWindow
structure that adds a multi view capability to the default one-view-at-a-time
interface. The other mechanism consists on the application of a series of APD-
related patterns captured in the Pattern Catalog. These patterns provide the
designer with additional hypermedia features and techniques, which are known
to be useful to improve the interface quality. Also, the use of patterns makes
possible the automation of the refinement process. APD-related patterns have a
set of application rules that drive the APD evolution when they are applied. As
an example of this second approach, in Fig. 2 the application of the ’head and
food’ implementation corresponding to the ’Location Pattern’ has caused two
new abstract pages (head and foot) of type tStruct, to appear on the diagram.



These two pages are connected to every page where the designer wants them to
be included. In fact patterns might cause the appearance and/or modification of
any kind of abstract page. For instance, the generated ’ChatList’ tStruct abstract
page, after applying the refinements, is as follows:

<?XML version="1.0"?>

<!DOCTYPE tStruct SYSTEM "tStruct.dtd" encoding="UTF-8">

<tStruct>

<label style="" text="List of available chats" />

<link name="error" type="automatic" show="new"

pointsTo="tStruct" dest="errorPage"/>

<link name="head" type="automatic" show="here"

pointsTo="tStruct" dest="head"/>

<collection format="ulist" style="schatlist">

<object type="chat">

<attrib name="nameChat" type="STRING">

</attrib>

<call event="onClick" function="validate">

</object>

</collection>

<link name="foot" type="automatic" show="here"

pointsTo="tStruct" dest="foot"/>

</tStruct>

<<tStruct>>

Home Page

<<tStruct>>

ChatList

<<tWindow>

ChatView

<<tForm>>

ReplyMessage

<<tStruct>>

MessageView

<<tStruct>>

head

<<tStruct>>

foot

<<tFunctionlib>>

mail()

back()

<<tStruct>>

errorPage

home index

View CL ViewMsg

<<automatic>>

<<automatic>>

Reply

Submit

<<tStyle>>

style

Figure2. Simplified APD of the Chat User Agent

Once the selected patterns have been applied to the diagram, a set of interac-
tion tasks and techniques2 will define the implementation constructs for a given
environment. Last, but not least, we can enrich the model with redundant im-
plementations for the same pattern: e.g. the Navigation Observer Pattern, which
2 both concepts will be introduced in the following section



allows the interface to keep track of the navigation path followed by a given user,
might be present in the interface by both a ’back’ and a ’reload’ mechanism.

4 Implementation of the APD

We might define an Interaction Task as a mechanism that groups, according to
the action to be performed, the set of Abstract Interaction Objects (AIO’s) that
collaborate in the coverage of such action. These elements might have been ex-
plicitly chosen by the designer or might be part of any pattern applied to these
models. On the other hand, we define an ’Interaction Technique’ as each one of
the materialization possibilities an Interaction Task has. Interaction Techniques
are always associated with a concrete strategy and/or programming environ-
ment, and are made up of Concrete Interaction Objects (CIO’s). The complexity
of the mapping among the abstract pages in the APD and the final constructs
(first to AIO’s and then to CIO’s [12]) goes beyond the purpose of this article.
In Fig. 3 to 5 the interface generated from the APD of Fig. 2, which corresponds
to the Chat Manager example, is shown.

Figure3. Chat Manager entry point Figure4. List of available Chat Lists

Figure5. Adding an opinion to the chat



The process is as follows: first, the generator tool looks for the page template
derived from the Application Entry Point (see Fig. 3). Note that every page
of the diagram has the same head/foot associated, which provides the interface
with a common visual context (Location Pattern). When the user clicks on the
’Enter’ link, the ChatList tStruct page is populated with the active application
objects and the materialized HTML page is shown (see Fig. 4). Again, when
the user clicks on the name of one of the Chat topics, the materialization of
the tWindow abstract page is performed. This template defines the generation
of the, from now on, two different and simultaneously available views of the
system by means of two ’automatic’ links, that is, links that don’t require the
user interaction in order to be activated. Those views are (1) the messages kept
on the system (again a tStruct abstract page) and (2) a tForm abstract page
that encapsulates the fields required to add a new message to the application.
The replyMessage function returns a Boolean value, which provokes the final Ok
message to appear once the operation has been successfully fulfilled (see Fig. 5).

The sample application has been developed using JavaServer Pages and Bean
components [18] as the chosen server technology, and HTML as the chosen client
technology.

5 Comparison with Related Work

Many commercial applications make use of some kind of templates in their hy-
permedia development approach. IDC’s or ASP’s from Microsoft, or Cold Fusion
from Allaire are some examples. The main drawback of these approaches is that
they remain too close to the implementation space, and thus the designer has
to deal with error-prone activities such as specifying exact names of database
fields, or explicitly managing the linkage of pages. Our template structure on
the contrary follows, like others [6, 13, 17] a declarative approach that covers
every aspect of the interface, from content to style. As an example, the tStyle
template type adds a further level of abstraction to the CSS approach, followed
in many traditional applications: while CSS pages work on documents with a
definite hypermedia structure, tStyle templates act on abstract pages on which
the hypermedia structure is not still defined. CSS are, again, just a possible final
materialization (among many others) of tStyle templates.

Although the template approach is not the only possible approach (see for
example [17]), it however provides us with the required flexibility and extensibil-
ity we consider vital for our method in such a changing environment as the web.
Our template concept shares with other models studied so far [1, 5, 6, 11, 17]
many similarities: it implicitly assumes a page visualization schema and some-
how specifies the data it is going to show. But there are just as many features
in which our work is different: generally speaking, we consider mixing in a sin-
gle template features regarding structure, content, presentation and behaviour,
overdimensions such templates, and difficults the designer task. On the contrary,



the OO-HMethod taxonomy of templates facilitates to focus on complementary
aspects of the final implementation. We also claim that the separation of content
and layout [6] doesn’t suffice to deal with the different aspects involved in presen-
tation, such as client functionality, interaction with logic or several simultaneous
views of the system. We haven’t found, up to now, any other abstraction pro-
posal for such characteristics apart from that included in OO-HMethod. Also,
the definition of the different aspects of the interface by means of a set of pat-
terns greatly simplifies both the construction and modification of the APD, and
also improves its usability.

6 Conclusions and further work

OO-HMethod is an extension of the OO-Method conceptual modeling approach
to address the particulars associated with the design of web interfaces. In this
article we have presented a new diagram, the APD, based on the concept of con-
structive templates, which provides the designer with an intuitive way of refining
the default interface structure, previously captured in the NAD diagram. We
have also proposed an interface enrichment process driven by patterns. Further-
more, the article illustrates how OO-HMethod captures application interaction
issues that, in spite of its relevance in web application interfaces, we have found
missing in other proposals.

Summarizing, the most relevant contributions of this paper are the following:

1. A taxonomy of templates, defined in XML, that separates the different com-
plementary views involved in the complete definition of the interface.

2. A process for the APD refinement.
3. A set of ways in which the use of the OO-HMethod Interface Pattern Cat-

alog improves and facilitates the diagrams construction and refinement and
influences the user interface quality.

At the moment we are applying this method to an e-commerce application.
The experience gained in the development of this interface will surely enrich our
pattern catalog and refine our template structure. Also, a taxonomy of interac-
tion tasks and techniques (already in the solution space) is being defined.

Acknowledgments We would like to thank the anonymous referees for their valu-
able comments to this work

References

[1] P. Atzeni, G. Mecca, and P. Merialdo. Design and Maintenance of Data-Intensive
Web Sites. In Advances in Database Technology - EDTB‘98, pages 436–449, 03
1998.



[2] C. Cachero. The OO-HMethod Pattern Catalog. Technical report, Universidad
de Alicante, 12 1999.

[3] C. Cachero. The OO-HMethod Template Taxonomy. Technical report, Universi-
dad de Alicante, 02 2000.

[4] eXtensible Markup Language (XML). http://www.w3.org/XML/.
[5] F. M. Fernández, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the Boat

with Strudel: Experiences with a Web-Site Management System. In Proceedings of
ACM SIGMOD International conference on Management of data, pages 414–425,
10 1998.

[6] P. Fraternali and P. Paolini. A Conceptual Model and a Tool Environment for
Developing more Scalable, Dynamic, and Customizable Web Applications. In
Advances in Database Technology - EDBT‘98, pages 421–435, 1998.

[7] F. Garzotto and P. Paolini. HDM A Model-Based Approach to Hypertext Appli-
cation Design. ACM Transactions on Information Systems (TOIS), 11(1):1–26,
01 1993.

[8] J. Gómez, C. Cachero, and O. Pastor. Extending a Conceptual Modelling Ap-
proach to Web Application Design. In CAiSE ’00 (to appear). 12th International
Conference on Advanced Information Systems. Springer-Verlag. Lecture Notes in
Computer Science, 06 2000.

[9] T. Isakowitz, E. A. Stohr, and V. Balasubramanian. RMM: A Methodology for
Structured Hypermedia Design. CACM: Communications of the ACM., pages
34–44, 08 1995.

[10] S. McGrath. XML by Example. Building e-commerce Applications. Prentice Hall,
1998.

[11] G. Mecca, P. Merialdo, P. Atzeni, and V. Crescenzi. The ARANEUS Guide to
Web-Site Development. Technical report, Universidad de Roma, 03 1999.

[12] P. Molina. Especificación de la Interfaz de Usuario en OO-Method. Technical
report, Universidad Politécnica de Valencia, 1998.

[13] M. Nanard, J. Nanard, and P. Kahn. Pushing Reuse in Hypermedia Design:
Golden Rules, Design Patterns and Constructive Templates. In HYPERTEXT
‘98. Proceedings of the ninth ACM conference on Hypertext and hypermedia: links,
objects, time and space—structure in hypermedia systems, pages 11–20, 1998.

[14] O. Pastor, E. Insfrán, V. Pelechano, J. Romero, and J. Merseguer. OO-METHOD:
An OO Software Production Environment Combining Conventional and Formal
Methods. In CAiSE ’97. International Conference on Advanced Information Sys-
tems, pages 145–158, 1997.

[15] O. Pastor, V. Pelechano, E. Insfrán, and J. Gómez. From Object Oriented Con-
ceptual Modeling to Automated Programming in Java. In ER ’98. International
Conference on the Entity Relationship Approach, pages 183–196, 1998.

[16] G. Rossi, D. Schwabe, and A. Garrido. Design Reuse in Hypermedia Applications
Development. In Proceedings of the eight ACM conference on HYPERTEXT ‘97,
pages 57–66, 1997.

[17] D. Schwabe, G. Rossi, and D. J. Barbosa. Systematic Hypermedia Application
Design with OOHDM. In Proceedings of the the seventh ACM conference on
HYPERTEXT ‘96, page 166, 1996.

[18] The source for java technology. http://java.sun.com.


