
Extending a Conceptual Modelling Approach to
Web Application Design

Jaime Gómez1, Cristina Cachero1?, and Oscar Pastor2

1 Departamento de Lenguajes y Sistemas Informáticos
Universidad de Alicante. SPAIN
{jgomez,ccachero}@dlsi.ua.es

2 Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia. SPAIN

opastor@dsic.upv.es

Abstract This article presents OO-HMethod, an extension of the OO-
Method conceptual modelling approach to address the particulars asso-
ciated with the design of web interfaces. It is based on the OO-Method
class diagram, which captures the statics of the system. The design of
the interface appearance and the navigation paths are driven by the user
navigation requirements. To achieve its goal, OO-HMethod adds several
navigation and interface constructs to the OO-Method conceptual model,
which define the semantics suitable for capturing the specific functional-
ity of web application interfaces. A new kind of diagram, the ’Navigation
Access Diagram’ (NAD) is introduced. All the concepts represented in
the NAD are stored in a repository, and from there a functional interface
is generated in an automated way. One of the main contributions of this
paper is not the proposal of yet another method for web modelling but
the extension of an existing conceptual modelling approach.

1 Introduction

In the last few years the scientific community has conducted major research both
on the desirable characteristics of hypermedia applications and on the concepts
and processes that make up an effective environment for the structured develop-
ment of such applications. Many of these concepts have been proven useful and
therefore applied to a number of design methods, such as HDM [9], HDM-lite
[7], OOHDM [19], RMM [11], ADM [1, 12] or Strudel [6]. This article presents
OO-HMethod, an extension of a conceptual modelling approach known as OO-
Method that supports the conceptual design of web applications. This method
[14, 15] is a powerful proposal for software production from conceptual models.
OO-Method is based on a formal object-oriented model OASIS [13] and its main
feature is that developers’ efforts are focused on the conceptual modelling phase.
In this phase, system requirements are captured according to a predefined, fi-
nite set of conceptual modelling patterns (representation of relevant concepts at
? This article has been written with the sponsorship of the Conselleria de Cultura,

Educació i Ciència de la Comunitat Valenciana

the problem space level). The full OO-implementation is obtained in an auto-
mated way following an execution model (including structure and behaviour).
This execution model establishes the corresponding mappings between concep-
tual model constructs and their representation in a particular software develop-
ment environment. Due to the lack of space, a formal description of OO-Method
is not included. Interested readers are referred to [14]. OO-HMethod extends
OO-Method, which implies that it relies on the information and functionality
already provided by OO-Method, e.g. the control over pre and postconditions
or the mandatory/optional nature of the value of the attributes. OO-HMethod
allows the designer to center on the concepts needed to define a web user in-
terface compatible with previously generated OO-Method applications. A new
diagram is defined at the conceptual level. This diagram has specific semantics
and notational characteristics to cover the observation, navigation and presen-
tation aspects proven useful in the design of web applications. Following the
philosophy of OO-Method, OO-HMethod applies two concepts: that of filters,
based on the dynamic logic [10], and that of navigation patterns. Both the con-
version of those patterns to their corresponding default presentation structure
and the subsequent mapping of this structure into a set of default interface im-
plementation constructs make possible the generation of the web architecture
in an automated way. The code generated constitutes a true web interface to
execute existing OO-Method applications over internet/intranet environments.
The remainder of the article is structured as follows: section 2 provides a brief
description of OO-HMethod in the context of the OO-Method approach. Sec-
tion 3 presents the OO-HMethod conceptual model and describes in detail, by
means of an example, the navigation access diagram that is used to capture
user requirements semantics. Section 4 introduces the OO-HMethod execution
model and shows the web interface that is generated out of the information cap-
tured in the navigation access diagram. A comparison with other related work
is presented in section 5. Section 6 presents the conclusions and further work.

2 OO-HMethod

OO-HMethod is a generic model for the semantic structure of web interfaces,
and so it is centered in global activities (authoring in the large) [9], that is, in
classes and structures, and not in the content of the information nodes (author-
ing in the small). It is integrated in OO-Method, and extends the set of graphical
elements necessary to get the abstract interaction model of the user interface. It
also captures the information which each type of user (agent) can access and the
navigation paths from one information view to another. An interface execution
model is also provided in order to determine the way the conceptual model is
implemented in a given developmental environment. It also defines how interface
and application modules are to communicate with each other. The navigation
model is captured by means of the Navigation Access Diagram (NAD). Each
piece of information introduced in the NAD has a corresponding formal coun-
terpart, and is stored in a system repository. From there a functional interface

can be generated in an automated way. The interface is coded according to the
software environment chosen by the designer both on the client and on the server
side.

The rest of the paper discusses both the conceptual and execution models.

3 Conceptual Model: the Navigation Access Diagram

As stated above, the navigation model is captured by means of one or more
NAD’s. It is necessary to have at least one NAD for each user-type (agent-type)
who is allowed to navigate through the system. The first step in the construc-
tion of a NAD is the filtering and enriching of the information (classes, services
and attributes) provided by the class diagram that was previously captured in
OO-Method during the conceptual modelling phase. Conceptual modelling in
OO-Method collects the system properties using three complementary models:
the object model, the dynamic model and the functional model. For the purpose
of this paper we are interested in the object model. The object model is a graph-
ical model where system classes, including attributes, services and relationships
(aggregation and inheritance), are defined. Additionally, agent relationships are
introduced to specify who can activate each class service (client/server relation-
ship). As each type of agent has a different view of the system and can activate
different services, each one needs their own NAD. The filtering of the information
is based both on the agent relationships from the object model and on a previous
analysis of the navigation requirements, which sets boundaries to the information
views required for each agent. This filtering process additionally allows the de-
signer to create simplified prototypes and versions of the system. Furthermore,
NAD’s belonging to different OO-Method models could be combined under a
common interface, which gives the method the capability to construct the sys-
tem as a collection of collaborating web sites. For a complete perspective of the
approach presented here, a small example is going to be employed: the library
system. As a basic explanation (for reasons of brevity), it is assumed that, as
is usual in such a system, there are readers, books and loans relating a book
to the reader who orders it. There is a restriction that forbids a reader to have
at any time more than three books on loan. If a book is not available, or the
reader has already reached his three book limit, the book can be reserved. The
librarian can search for books both by title and by author. Readers might play
the role of unreliable readers in the system if one or more of their return dates
had expired. If a reader is considered unreliable s/he cannot borrow any book.
The class diagram of this example is shown in Fig. 1.

Classes are represented as rectangles with three areas: the class name, the
attributes and the services. Inheritance relationships are represented by using
arrows to link classes. For instance, the arrow between ’reader’ and ’unreliable
reader’ denotes that ’unreliable reader’ is a specialization of ’reader’. Aggrega-
tion relationships are represented by using a diamond from a given component

LOAN

loan_code
loan_date
return_date
returned

loan
return
renew_loan

BOOK

book code
title
author
summary
status

New_book
destroy_book
loan
return
reserve
cancel

READER

Reader code
reader name
book number

new reader
destroy reader
loan
return
punish

LIBRARIAN

login
password
librarian name

new librarian
destroy librarian

UNRELIABLE READER

forgive

RESERVATION

reserv_date

reserve
cancel

Punish/forgive

O:M

O:M

1:1
1:1

1:1
1:1

Figure1. Class diagram of a library system

class to its composite class. The aggregation determines how many components
can be attached to a given container and how many containers a component
class can be associated with. For instance, the ’loan’ composite class represents
an aggregation between the component classes ’book’ and ’reader’. Agent rela-
tionships are represented by using dotted lines that connect the associated client
and server classes. In the example, the objects of the ’librarian’ class can activate
the services ’loan’, ’return’, ’reserve’ and ’cancel’ of the ’book’ class. In order to
design the NAD, the designer should know the navigation requirements of each
type of user of the system. In the example it is assumed that the navigation
requirements for the librarian user are as follows:

1. Lend a book. The librarian, acting on behalf of a reader, can search for a
certain book either by author or by title. If the book is not available, or the
reader already has three books on loan, a reservation on this book can be
made for a future loan.

2. List active loans. For a given reader, the librarian can see at any moment
the list of books s/he has borrowed from the library, and register the return
of any of those books. Also, the librarian might want to look for extended
information about each book (title, author, summary).

3. List out-of-date loans. The librarian can see the readers that have books
with expired return dates, together with the date and the title of the books

that should have already been returned. ¿From this listing the librarian can
decide whether to penalize them or not.

The main components of the NAD are navigation classes, navigation targets,
navigation links and collections. Each of these constructs addresses the naviga-
tion model from a different dimension. We are going to further develop these
concepts following the example presented above.

3.1 Navigation Classes

Navigation Classes (NC) have their grounding in the classes identified during
the conceptual modelling phase, and are represented by means of a rectangle
with three areas:

1. Head: it contains the name of the class
2. Attribute area: it contains the names and the scope of the attributes relevant

to the considered agent and view.
3. Service area: It gathers the services capable of being invoked by the actual

agent of the NAD.

All the attributes shown as part of a NC are accessible by the related agent,
but the importance of each of these attributes may vary. OO-HMethod intro-
duces the concept of attribute visibility in order to group the attributes de-
pending on their relevance for the agent. This grouping will determine the way
in which the user is able to access a given attribute. There are three types of
attribute visibility:

1. Always Visible (V): their value is shown in every view of the object.
2. Referenced (R): their value is only referenced and so their consulting requires

another step in the navigation path. The way of accessing this kind of at-
tribute may vary depending on the implementation environment. In the case
of working with HTML, for example, one possible way would be to show an
anchor labelled as ’More Information’.

3. Hidden (H): Their value is neither referenced nor shown. The only way of
accessing them is thus by means of a detailed view of the system.

This further differentiation of attributes reduces the possibility of the user
feeling overwhelmed by the information shown on the views s/he has of the
system.

Another relevant concept is that of Perspectives (P) [9, 19]. The perspectives
are defined on a set of edges, each one representing a relevant way of presenting
the information. The perspectives types defined so far in OO-HMethod are:

1. Language: English, Spanish, German, French, Italian.
2. Rhetorical Styles: abbreviated, simplified, expert.
3. Medium: animation, image, text.

The best way of capturing perspectives in the NC is to define multivalued
attributes, which are specified by means of a name and a set of values in brack-
ets. Among the different perspectives, one of them must be declared as ’default’,
by means of a + sign. The perspectives have two possible scopes: global to the
attribute type or local to each attribute. A global perspective is inherited by
all the attributes of the type specified in the perspective. Global perspectives
can be seen as ’visualization modes’ [8], because they provide the application
with different views of the same type of information to the same type of user.
On the other hand, a local perspective adds possible visualization ways to local
attributes. After deciding which information to show (navigation classes), the
following phase is to define how to navigate through this information. When
defining the navigation the designer must take into account many different as-
pects such as the order of objects, the filtering process or the cardinality of the
access. These features are captured by means of different constructs associated
with links, navigation targets and collections, which will be presented in the
following sections.

3.2 Navigation Targets

The NC are grouped into Navigation Targets (NT). A NT is a set of NC which
together provide the agent with a coherent view of the system. The general rule
is to associate a NT to each user’s navigation requirement. The NT has an as-
sociated scope: local to the actual type of agent (and so to the actual NAD) or
global to the system. The graphical representation of an NT (see Fig. 2) is a
rectangle that gathers all the classes involved in that view. An NT is defined by
its name, which is located at a lapel in the upper-left corner of the rectangle. The
concept underlying the NT is not new. Many authors have identified variants of
such a concept: nodes [19], derived entities [9], hyperviews [7], macroentities [1]
or targets[4]. Nevertheless, OO-HMethod uses a different approach, and bases
its NT on user requirements, instead of on the physical presentation of the in-
formation (pages) as others do. For OO-HMethod, whether that information is
presented in a single web page or divided among several pages is not important
at this level of abstraction. In fact, the same NT could have several different
materializations (pages), in a way similar to the ’targets’ defined in [4].

The definition of the NT implicitly captures the ’navigation context pattern’
[17]: the same nodes might appear in several NT as long as they do not represent
the same information requirement, and in each NT its layout and navigation
mode might be different. In Fig. 2, a simplified view of the NT ’Loan Book’,
which corresponds to the first requirement of the system, is presented. In the
definition of ’book’ provided in the example, the principal attributes have been
marked as ’always visible (V)’, and two local perspectives have been added to
the title of the book: text (default) and image (corresponding to a photo of the
book cover).

3.3 Navigation Links

A Navigation Link (NL) is defined by:

1. Name.
2. Source navigation class.
3. Target navigation class.
4. Associated navigation patterns.
5. Associated navigation filters.

In OO-HMethod there are four types of NL:

1. Lr (requirement link): it shows the entry point to the NT. Every NT has a
requirement link, which is drawn as a black circle with an arrow pointing at
either the root navigation class or a collection inside that NT.

2. Ls (service link): it points at a service of a navigation class, and is drawn as
a ray-arrow. It might have values of parameters associated.

3. Li (internal link): both its source and target NC remain inside a given NT.
Its main characteristic is that its activation does not change the user context
and, usually, it does not produce user disorientation.

4. Lt (traversal link): it is defined between navigation classes belonging to dif-
ferent navigation targets, and thus defines alternative visualization paths to
the objects of the target classes.

The navigation links are always directed. This means that, if there is a need
to navigate in both senses, two links must be explicitly or implicitly specified.
The link label will be used as its identifier (for example, as the anchor text of
the generated web page) so it should have a semantic meaning.

Furthermore, as shown in Fig. 2, all link types have both ’navigation patterns’
and ’navigation filters’ associated. Next both concepts will be developed.

Navigation patterns A navigation pattern is defined as a mechanism that al-
lows a web user interface to share its knowledge about the way of showing the
information objects to the user. Some authors [2] call them ’linking patterns’.
OO-HMethod defines four navigation patterns, which can be associated both
with navigation links and collections (see below). These are:

1. Index: access to a list of links to the different objects that form the population
of the visualized class. In the view of each object there is always, added to
the links derived from the semantic relationships among the classes being
visualized (and captured in a navigation pattern), a link to the index page.

2. Guided Tour: it provides access to an object of the target population (de-
pending on the associated filters) and a set of four operations: next, previous,
first and last, in order to navigate through this target population.

3. Indexed Guided Tour: it combines the index with the guided tour mode.

4. Showall: It shows all the target objects together. It has an added attribute
called ’cardinality’ which allows the pagination of the answer and thus the
limitation of the size of the pages and the load time for the user.

These patterns have been inherited from other well-known models such as
HDM-lite [7], and enriched by adding a set of attributes that complete the nav-
igation mode they represent. An example of this enrichment is the pattern at-
tribute ’show in origin/show in destination’. The ’show in destination’ attribute
means that the information in the target objects will be shown in a different
page, while ’show in origin’ will present all the information about the target ob-
jects together with that of the source object. The selection of the most suitable
navigation pattern depends on two variables:

1. Semantic relationships remaining under the link.
2. Granularity of the link: how many target objects are likely to be related to

each object of the origin class.

Navigation Filters Associated to links and collections, a set of Navigation Fil-
ters (NF) can also be defined. A navigation filter restricts the order, the quantity
(number) or the quality (characteristics) of the target objects. Formally, a navi-
gation filter is a well formed formula (expressed in a subset of the dynamic logic
[10]) that establishes a restriction on the attributes of the target class.

There are three types of filters:

1. Attribute filters: they specify values that must be conformed by the corre-
sponding attribute values of the target population.

2. Condition filters: they can represent either method parameters (if associated
to a service link) or additional rules and restrictions on the target population.
A $ sign as the value of the filter means that such value has to be given by
the user before traversing the corresponding link. This mechanism provides
a means to define user-dependent target populations.

3. Order filters: they specify the order in which the target population will be
accessed.

Figure 2 shows a partial view of the Librarian NAD which includes the rele-
vant requirement, navigation and service links.

3.4 Collections

Another important decision about the user interface is how the information
should be grouped in order to make it more accessible to the final user. In this
context, another concept is introduced: the collection (see Fig. 2). A collection,
represented by means of an inverted triangle, is a structure, hierarchical or not,
which abstracts some concepts regarding both external and internal navigation.
Collections have an associated scope (global, local to a NT or local to a NC), a

set of filters and a set of navigation patterns associated and are a useful mech-
anism for limiting the interaction options between user and application, thus
improving the usability of the system. A similar concept appears in different
articles [6, 4]. The collections can be nested but, as a rule of thumb, more than
two nesting levels should be avoided, as they might disorient the user.

OO-HMethod defines four basic types of collections:

1. Classifiers: they define structures, hierarchical or not, for grouping informa-
tion or service links which are to appear together.

2. Transactions: they group navigation services that are to work together. They
should correspond with a transaction as defined in OO-Method.

3. Selectors: they group the objects that conform to the values gathered from
the user. They usually have a condition filter associated.

4. History collections: OO-HMethod defines a history list [20] as a set of the
last x links the user has traversed, where x is a parameter of this kind of
collection and where the activation of one of these links will drive the user to
the actual state of the required information, and not to the previous state,
that is, the state it was in when it was visited for the first time.

Figure 2 shows a sample NAD of the librarian agent for the user navigation
requirements specified above. Note that the access to the punish function is per-
mitted inside the navigation target ’view out of date loans’ which means that
the librarian must check in this context the state of the reader’s loans before
punishing a reader.

4 Execution Model

The execution model provides the method with the representation details of
the interface conceptual model for a target development environment. As the
execution strategy is already defined in OO-Method, OO-HMethod is centered
on defining how to implement the interface level information associated to web
environments. All the concepts represented in the NAD are stored in an object
repository and from there a default presentation diagram can be generated. Any-
way, had the interface designer the need to refine such presentation and add some
advanced features (e.g. multiple active views of the system), s/he could still edit
this diagram (which will not be discussed here) and change it as needed. The
subsequent mapping of this structure into a set of default interface implemen-
tation constructs provides the means to automatically generate the functional
interface. The definition of the default navigation semantics (dependent on the
semantic relationships existing in the conceptual schema) and that of a default
interface layout (application of interface patterns to the elements of the concep-
tual schema) allow a CASE tool to suggest and/or derive certain application
links and generate functional prototypes in an automated way. In Fig. 3 to 6

View out of date loans

Return Book

READER

reader code (H)
reader name(V)
book number(H)

New reader
destroy reader
loan
return
punish

Loan Book

BOOK

book code (H)...
title (V){text+,image}
author (V)
summary (V){abbreviate+,expert}
status(H)

New_book
destroy_book
loan
return
reserve
cancel

S

[title=$ || autor=$]

[reader.book_number<3 && state=onshelf

&& reader.punished=‘false’]

[reader.book_number>=3 || state!=onshelf]
BOOK

book code (H)...
title (V){text+,image}
author (V)
summary (V){abbreviate+,expert}
status(H)

New_book
destroy_book
loan
return
reserve
cancel

S

[reader_code=$]

Li: “View Lent books”
 (index)

[loan.reader_code=reader_code &&

loan.bookcode=bookcode]

READER

reader code (H)
reader name(V)
book number(H)

New reader
destroy reader
loan
return
punish

LOAN

loan_code (H)
loan_date (H)
return_date (V)
returned (H)

loan
return
renew_loan

Li: “Loans out-of-date”
(showall-org)

[return_date<getdate()&&returned=false]

C

Li: “Readers with loans
out of date”
(showall-org)

[return_date<getdate()&

& returned=false]

BOOK

book code (H)...
title (V){text+,image}
author (H)
summary (H){abbreviate+,expert}
status(H)

Ep
(Index)

Lt: “Return book”
 (index)

Lr: “View out of date loans”
(index)

Lr: “Loan/Reservation Book”

(Guided Tour)
Lr: “Return Book”
(index)

Figure2. Simplified NAD of the Librarian Agent

the prototype generated for the ’loan book’ user navigation requirement is il-
lustrated. The process is as follows: first, the generator tool looks for the entry
point of the application. As nothing is stated in the diagram, it is assumed the
entries to the different NT have an ’index’ navigation pattern (see Fig. 3). Next,
it generates a guided tour for the selected books. As the access to this class is
made through a selector, the generator tool inserts a previous form where it asks
for any of the fields (author or title) by which the search can be performed (see
Fig. 4). The different screens of the guided tour (see Fig. 5) show all the informa-
tion labelled as ’visible’. For each attribute perspective (expert summary, book
cover image) a link is added to the form. In addition, the operations that can
be performed on each object are also shown next to the book defining attribute
(title). For each book there are two possibilities, depending on the state of the
book and the number of books the reader has on loan. When the reader already
has three books on loan or the book has been previously lent to another reader,
then the service ’Make Reservation’ is made available. On the contrary, when
none of these conditions occur, then the available service is ’Lend Book’. As
the value of the only parameter of the method ’Lend Book’ (id-reader) must be
introduced by the librarian, a form appears asking for its value. In Fig. 6 both
this form and the system response is shown.

5 Comparison with Related Work

All the methods studied so far share many of the concepts proven useful in the
design of hypermedia applications. As an example, it could be cited the concept
of ’collection’, whose basic meaning is captured in HDM by means of the out-
lines, in RMM by means of the grouping mechanism, in NCM by union nodes
and aggregations, in OOHDM by context classes and in HDM-lite by collections.
Another example is that of perspectives, which appear with the same name and
meaning in models such as HDM, HDM-lite and OOHDM. OO-HMethod cap-
tures these and other concepts gathered in the classical hypertext theory, but
has a number of features that makes it overall different from other models. From
the OO-HMethod point of view, one of the main drawbacks of some of these
models is that they are focused on the modelling of hypermedia systems, ori-
ented to the information navigation and visualization [3]. In such systems there
is no interaction with the user apart from their navigation decisions (or at least
it is not taken into account when modelling the system). On the contrary, OO-
HMethod extends the applications modelled with OO-Method, and so provides
specific mechanisms for the user to interact with the system. The resulting hy-
permedia applications cover both the static structure and dynamic behaviour.
Another important difference is that these models from the very beginning focus
on the structural aspects in the solution space (the data and how it is going
to be presented to the user), instead of centering on the structural aspects in
the problem space. These solution-driven approaches lead to longer development
periods and sometimes more complex design processes. Furthermore, the declar-
ative query languages defined in some of such methods in order to construct

Figure3. Library entry point Figure4. Book search

Figure5. Guided tour applied to the search result

Figure6. Loan service parameters request and result page

the navigational paths are far too complicated for designers with no computer-
science background.

OO-HMethod aims at being simple: it tries to define intuitive diagrams in-
stead of declarative or query languages, which are more likely to overwhelm
designers without a strong computer science background. We also try to avoid
restructuring information already captured in other models specially suitable
for this purpose. That is the case of derived entities in HDM, nodes in OOHDM
or macroentities in ADM. Furthermore, this information rearrangement mixes
together, from our point of view, the information and the navigation perspec-
tives, which we try to keep as independent as possible from each other. In our
approach, navigation is captured by means of links and structures associated to
them (patterns, filters and collections), while the relevant information is captured
in the classes inherited from the conceptual level. OO-HMethod is explicitly a
user-driven approach. By introducing the concept of ’navigation target’ we are
grouping the functionality of the interface in separate modules, possibly designed
by different people, that aim at meeting a user requirement, in the sense of a spe-
cific functionality asked for by the client. OO-HMethod shares some apparent
similarities with the OOHDM model [18]. This fact is partly due to the OO-
approach both methods take. The advantages of the OO-approach are discussed
in [19]. Both of them derive from a similar class-schema that models the problem
domain. Also, both methods clearly separate conceptual design, navigation de-
sign, presentation design and implementation. However, OO-HMethod simplifies
the process of defining each phase by a mapping mechanism that can be directly
applied to the class diagram. In OOHDM attributes with multiple perspectives
become different attributes of the ’node class’. In our OO-Model, we exploit
the existence of multi-valued attributes, and so maintain the concept of ’one at-
tribute for each concept’ independently of how they are stored in the database.
Also, determining that the links (that is, the way a user is going to navigate
through the classes) are attributes of the nodes again is closer, from our point of
view, to the database storage structure than to a navigation requirement. In the
last months the use of UML for the modelling of web applications [5] has also
been proposed. From our point of view, this extension is particularly useful once
you already have both a conceptual design and a specific implementation plat-
form. The reason is that, rather than abstract implementation constructs, the
UML web extension introduces concepts such as ActiveX controls, components
or forms as classes of the model.

6 Conclusions

Conventional object-oriented methods have to provide a well-defined software de-
velopment process by which the community of software engineers can properly
design web-based applications from requirements in a systematic way. Our pur-
pose has been to address these problems in the context of a conceptual modelling
approach that has been proven successful for software production from concep-

tual models. The OO-HMethod can be seen as an extension of OO-Method to
face the whole software production process. We focus on how to properly cap-
ture the particulars associated to the design of web interfaces. In order to achieve
this goal, OO-HMethod adds several navigation and interface constructs to the
OO-Method conceptual model, which define the semantics suitable for capturing
the specific functionality of web application interfaces. A new kind of diagram,
the navigation access diagram, has been introduced. Each piece of information
introduced in the NAD is stored in a system repository. From there a functional
interface can be generated in an automated way. As oppose to other existing web
methods, the approach presented in this paper does not intend to be ’yet another
method’ for web modelling but to extend a consolidated conceptual modelling
approach.

Summarizing, the most relevant contributions of this paper are the following:

1. The detailed presentation of the OO-HMethod approach as a successful at-
tempt to cover the entire web-based software production process from an OO
point of view in order to get the best from conventional and formal methods.

2. The description of the NAD that has been added to the OO-Method con-
ceptual model to specify the navigation user requirements.

OO-HMethod is still defining and cataloguing a set of both navigation and
interface patterns general enough as to guarantee the code reusability. Naviga-
tion patterns also aim at providing the user with a higher level of usability, and
the designer with a repository of well known and useful navigation techniques.
The identification of interface patterns is a much more open process, as the new
technologies will certainly add more effective ways of displaying the information
in a given environment. The usability of the different patterns once implemented
will be tested and will become a critical factor for its final incorporation in OO-
HMethod. Once completely categorized, a formal specification of user interfaces
[16] will follow directly from these interface patterns.

Acknowledgments We would like to thank the anonymous referees for their valu-
able comments to this work

References

[1] P. Atzeni, G. Mecca, and P. Merialdo. Design and Maintenance of Data-Intensive
Web Sites. In Advances in Database Technology - EDTB‘98, pages 436–449, 03
1998.

[2] M. Bernstein. Patterns of Hypertext. In HYPERTEXT ‘98. Proceedings of the
ninth ACM conference on Hypertext and hypermedia: links, objects, time and
space. Structure in hypermedia systems, pages 21–29, 1998.

[3] M. Bieber and C. Kacmar. Designing Hypertext Support for Computational
Applications. CACM: Communications of the ACM, 38(8):99 – 107, 1998.

[4] S. Ceri, P. Fraternali, and S. Paraboschi. Design Principles for Data-Intensive
Web Sites. SIGMOD Record, 28:84–89, 03 1999.

[5] J. Conallen. Modeling Web Application Architectures with UML. CACM: Com-
munications of the ACM., 42(10):63–70, 10 1999.

[6] F. M. Fernández, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the Boat
with Strudel: Experiences with a Web-Site Management System. In Proceedings of
ACM SIGMOD International conference on Management of data, pages 414–425,
10 1998.

[7] P. Fraternali and P. Paolini. A Conceptual Model and a Tool Environment for
Developing more Scalable, Dynamic, and Customizable Web Applications. In
Advances in Database Technology - EDBT‘98, pages 421–435, 1998.

[8] F. Garzotto, L. Mainetti, and P. Paolini. Designing Modal Hypermedia Applica-
tions. In Proceedings of the eight ACM conference on HYPERTEXT ‘97, 1997.

[9] F. Garzotto and P. Paolini. HDM A Model-Based Approach to Hypertext Appli-
cation Design. ACM Transactions on Information Systems (TOIS), 11(1):1–26,
01 1993.

[10] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, Volume II: Extensions of Classical Logic, volume 165 of Syn-
these Library, chapter II.10, pages 497–604. D. Reidel Publishing Co., Dordrecht,
1984.

[11] T. Isakowitz, E. A. Stohr, and V. Balasubramanian. RMM: A Methodology for
Structured Hypermedia Design. CACM: Communications of the ACM., pages
34–44, 08 1995.

[12] G. Mecca, P. Merialdo, P. Atzeni, and V. Crescenzi. The ARANEUS Guide to
Web-Site Development. Technical report, Universidad de Roma, 03 1999.

[13] O. Pastor, F. Hayes, and S. Bear. OASIS: An Object-Oriented Specification Lan-
guage. In P. Loucopoulos, editor, Proceedings of CAiSE’92 International Confer-
ence, volume 593 of LNCS, pages 348–363. Springer-Verlag, 1992.

[14] O. Pastor, E. Insfrán, V. Pelechano, J. Romero, and J. Merseguer. OO-METHOD:
An OO Software Production Environment Combining Conventional and Formal
Methods. In CAiSE ’97. International Conference on Advanced Information Sys-
tems, pages 145–158, 1997.

[15] O. Pastor, V. Pelechano, E. Insfrán, and J. Gómez. From Object Oriented Con-
ceptual Modeling to Automated Programming in Java. In ER ’98. International
Conference on the Entity Relationship Approach, pages 183–196, 1998.

[16] S. R. Robinson and S. A. Roberts. Formalizing the Informational Content of
Database User Interfaces. In ER ’98. International Conference on Conceptual
Modeling, volume 1507, pages 65–77. Springer, 11 1998.

[17] G. Rossi, D. Schwabe, and A. Garrido. Design Reuse in Hypermedia Applications
Development. In Proceedings of the eight ACM conference on HYPERTEXT ‘97,
pages 57–66, 1997.

[18] D. Schwabe and R. Almeida Pontes. A Method-based Web Application Devel-
opment Environment. In Position Paper, Web Engineering Workshop, WWW8,
1999.

[19] D. Schwabe, G. Rossi, and D. J. Barbosa. Systematic Hypermedia Application
Design with OOHDM. In Proceedings of the the seventh ACM conference on
HYPERTEXT ‘96, page 166, 1996.

[20] L. Tauscher and S. Greenberg. Revisitation patterns in World Wide Web nav-
igation. In CHI ‘97. Proceeding of the CHI 97 conference on Human factors in
computing systems, pages 399–406, 1997.

