
A note on the Nagendraprasad-Wang-Gupta

thinning algorithm

Rafael C. Carrasco and Mikel L. Forcada
Departamento de Tecnoloǵıa Informática y Computación

Universidad de Alicante, E-03071 Alicante, Spain

Abstract

A symmetrized version of the Nagendraprasad-Wang-Gupta thinning
algorithm (Digital Signal Processing 3(1993)97) is presented, which pro-
duces simpler and more elegant skeletons of handwritten characters at
zero extra computational cost.

Keywords: Pattern recognition, skeleton, parallel thinning, image processing.

1

Pattern recognition often involves data where a great amount of redundant
information hides the relevant details. For instance, handwritten characters
show usually strong variations in thickness while only direction, curvature and
length of the curves are significant. This superfluous information makes the
recognition task much more difficult. Indeed, due to the enormous variability
of handwritten symbols, time is a basic constraint when developing algorithms
for its recognition. That is why a preprocess eliminating —even if partially—
redundant variability could allow for the identification of characters at a rea-
sonable velocity. To this respect, thinning algorithms may play an important
role and many attempts to find suitable procedures have been made.

Recently, a very fast thinning algorithm (NWG) has been proposed by Na-
gendraprasad, Wang and Gupta (1993), based on a previous one by Wang and
Zhang (1989). Both algorithms are equivalent, in the sense that they pro-
duce the same skeletons as output. They also preserve connectivity, a desirable
property when dealing with handwritten characters. However, the last one is
significantly faster and easier to program. It also allows for a simple parallel
implementation, because at every iteration the value of a pixel depends only
on the value of the pixel and its neighbours at the previous iteration. The al-
gorithm uses masks in order to select pixels to be turned off. The 8 closest
neighbours are numbered following a clockwise walk around the pixel p, which
starts at the upper edge as shown in fig. 1.

p(7) p(0) p(1)
p(6) p p(2)
p(5) p(4) p(3)

Figure 1: Numbering of neighbouring pixels.

The NWG algorithm is shown in fig. 2, where b(p) is the number of neigh-
bours of p which are on (pixels with value 1), a(p) is the number of off-to-on
transitions when the neighbours are visited following a walk around p and the
functions c(p), e(p) and f(p) are given by:

c(p) =

 1 if p(0) = p(1) = p(2) = p(5) = 0 and p(4) = p(6) = 1
1 if p(2) = p(3) = p(4) = p(7) = 0 and p(6) = p(0) = 1
0 otherwise

e(p) = (p(2) + p(4)) ∗ p(0) ∗ p(6)

f(p) = (p(6) + p(0)) ∗ p(4) ∗ p(2)

The performance of the NWG algorithm is shown in fig. 3. As plotted there,
the skeleton obtained is connected and eliminates almost any redundant pixels
which are not relevant in order to recognize the handwritten symbol. However,
due to an asymmetry in the algorithm, some superfluous pixels are not removed,
as seen in fig. 4. This may be corrected by simply changing the function c(p) in
those iterations where g = 1 (this means odd iterations). This means that the
condition

a(p) = 1 or c(p) = 1

2

algorithm NWG
input : Q (pixelmap)
output : Q
g = 1;h = 1; Q′ = Q; (initial settings)
do (while h = 1)

h = 0;
Q = Q′;
g = 1− g;
for (every pixel p ∈ Q)

if (1 < b(p) < 7 and (a(p) = 1 or c(p) = 1)) then
if(g=0 and e(p)=0)then

erase p in Q′

endif
if (g=1 and f(p)=0)then

erase p in Q′

endif
endif

endfor
enddo
end NWG

Figure 2: Algorithm NWG for thinning

is replaced by
a(p) = 1 or (1− g) ∗ c(p) + g ∗ d(p) = 1

with

d(p) =

 1 if p(1) = p(4) = p(5) = p(6) = 0 and p(0) = p(2) = 1
1 if p(0) = p(3) = p(6) = p(7) = 0 and p(2) = p(4) = 1
0 otherwise

which is just the mirror image — across the NE–SW diagonal — of c(p) (as e(p)
is from f(p)).

The result is a more symmetric algorithm which usually produces more el-
egant skeletons, in the sense that some redundant or confusing pixels are re-
moved. Figure 4 shows how our modification improves the recognition of a ‘0’,
the original algorithm produces what looks like the skeleton of an upper-case
‘D’.

On the other hand, its cost is not increased, as the only difference comes
from the replacement of one occurrence of the function c(p) by its same-cost
counterpart d(p).

Summarizing, by introducing a small change in the code, which does not
change the average time that the algorithm needs in order to output the result,
the NWG algorithm becomes more symmetric, resulting in slightly simpler and
more elegant skeletons.

3

..................

.1111111111...111.

.1111111111111111.111111........

.111111..11111111. ...1......1.......

.1111....11111111. ...1.......1111...

.111111..11111111. ...1.......1......

..111111111111111.1......1......

....1111111111....1.....1......

.....11111111.....111111......

...11111111111....1.....1......

..11111..111111...1......1.....

..11111....1111...1........1....

.111111.....1111..1........1....

.11111......1111..1........1....

.11111.....11111.. ...1.........1....

.11111111111111...1.......1.....

.1111111111111....1111111......

..................

Figure 3: Example of a bitmap and its skeleton produced by the NWG thinning
algorithm

.............

....111......

...11111.....111......11......

..111..11....1..1.....1..1.....

..111..11....1..1.....1..1.....

....1111.....111......11......

.....11......

.............

Figure 4: Handwritten symbol and its skeleton as given by the NWG algorithm
and the modified version respectively

4

References

1. M.V. Nagendraprasad, P.S.P. Wang, and A. Gupta (1993). Algorithms
for thinning and rethickening binary digital patterns. Digital Signal Pro-
cessing 3, 97–102

2. P.S.P. Wang and Y.Y. Zhang (1989). A fast and flexible thinning algo-
rithm. IEEE Transactions on Computation C-38, 741–745

5

