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Abstract. In a previous work, a new probabilistic context-free gram-
mar (PCFG) model for natural language parsing derived from a tree
bank corpus has been introduced. The model estimates the probabili-
ties according to a generalized k-grammar scheme for trees. It allows for
faster parsing, decreases considerably the perplexity of the test samples
and tends to give more structured and refined parses. However, it suffers
from the problem of incomplete coverage. In this paper, we compare sev-
eral smoothing techniques such as backing-off or interpolation that are
used to avoid assigning zero probability to any sentence.

1 Introduction

Some previous works ([1], [2], [3]) have explored the performance of parsers based
on a probabilistic context-free grammar (PCFG) extracted from a training cor-
pus. The results show that the type of tree representation used in the corpus can
have a substantial effect in the estimated likelihood of each sentence or parse
tree. According to the conclusions weaker independence assumptions —such as
decreasing the number of nodes or increasing the number of node labels— im-
prove the efficiency of the parser. The best results were obtained with offspring
annotated labels where each node stores contextual information in the form of
the category of the node’s parent or the node’s descendents. This is in agreement
with the observation put forward by Charniak [4] that simple PCFGs, directly
obtained from a corpus, largely overgeneralize. This property suggests that, in
these models, a large probability mass is assigned to incorrect parses and, there-
fore, any procedure that concentrates the probability on the correct parses will
increase the likelihood of the samples.

In this spirit, a generalization of the classic k-gram models, widely used for
string processing [5], was introduced to the case of trees [3]. The PCFG variables
are specialized by annotating them with the subtree they generate up to a certain
level. In particular, we have studied offspring-annotated models with k = 3, that
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is, child-annotated models, and we have compared their parsing performance to
that of unannotated PCFG –or k = 2, in our notation– and of parent-annotated
PCFG [2]. The experiments showed that:

– The parsing performance of unannotated model is worse than any annotated
model.

– The parsing performance of parent-annotated and child-annotated PCFG
are similar.

– Parsers using child-annotated grammars are much faster because the number
of possible parse trees considered is drastically reduced; this is, however, not
the case with parent-annotated models.

– Child-annotated grammars have a larger number of parameters than parent-
annotated PCFG which makes it difficult to estimate them accurately from
currently available treebanks.

– Child-annotated models tend to give very structured and refined parses in-
stead of flat parses, a tendency not so strong for parent-annotated grammars.

On the other hand, the smaller ambiguity of child-annotated model leads to
unparsable sentences and, then, smoothing is essential in the construction of an
efficient tree-k-grammar language model. A language model is a probability dis-
tribution over strings P (s) that describes the frequency with which each string s
occurs as a sentence in natural text [6].

In this work, we carry out a comparasion of three smoothing techniques.
Two of them are well known: linear interpolation and tree-level back-off. In ad-
dition, we introduce a new smoothing technique: rule-level back-off. While being
relatively simple to implement, we show that all these methods yield good perfor-
mances with tree-k-grammar language models applied to structural, syntactical
or lexical disambiguation.

The experiments were performed using the Wall Street Journal (WSJ) corpus
of the University of Pennsylvania [7] modified as described in [4] and [2].

2 The Tree-k-Grammar Model

Recall that k-gram models are stochastic models for the generation of sequences
s1, s2, ... based on conditional probabilities, that is:

1. the probability P (s1s2 . . . st|M) of a sequence in the model M is computed
as a product pM (s1)pM (s2|s1) · · · pM (st|s1s2 . . . st−1), and

2. the dependence of the probabilities pM on previous history is assumed to be
restricted to the immediate preceding context, in particular, the last k − 1
words: pM (st|s1 . . . st−1) = pM (st|st−k+1 . . . st−1).

Note that in this kind of models, the probability that the observation st is
generated at time t is computed as a function of the subsequence of length k− 1
that immediately precedes st (this is called a state). However, in the case of trees,
it is not obvious what context should be taken in to account. Indeed, there is
a natural preference when processing strings (the usual left-to-right order) but
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VP

V NP

Det N

PP

P NP

Det N
Fig. 1. A sample parse tree of depth 3

there are at least two standard ways of processing trees: ascending (or bottom-
up) analysis and descending (or top-down) analysis. Ascending tree automata
recognize a wider class of tree languages [8] and, therefore, they allow for richer
descriptions.

Therefore, our model will compute the expansion probability for a given node
as a function of the subtree of depth k−2 that the node generates i.e., every state
stores a subtree of depth k−2 ([3]). In the particular case k = 2, only the label of
the node is taken into account (this is analogous to the standard bigram model
for strings) and the model coincides with the simple rule-counting approach used
in treebank grammars. For instance, for the tree depicted in Fig. 1, the following
rules are obtained:

VP → V NP PP
NP → Det N
PP → P NP

However, in the case k = 3, child-annotated model, the expansion prob-
abilities depend on states that are defined by the node label, the number of
descendents the node and the sequence of labels in the descendents (if any).
Therefore, for the same tree the following rules are obtained in this case:

VPV,NP,PP → V NPDet,N PPP,NP

NPDet,N → Det N
PPP,NP → P NPDet,N

where each state has the form XZ1,...,Zm . This is equivalent to performing a re-
labelling of the parse tree before extracting the rules.
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It is obvious that the k = 3 model incorporate contextual information that
is not present in the case k = 2 and, then, a higher number of rules for a fixed
number of categories is possible. In practice, due to the finite size of the training
corpus, the number of rules is always moderate. However, as higher values of k
lead to a huge number of possible rules, huge data sets would be necessary in
order to have a reliable estimate of the probabilities for values above k = 3.

3 Smoothing

Statistical approaches to efficient parsing offer the advantage of making the most
likely decision on the basis of available parsed text corpora.

Although the k = 3 model yields a good performance (in terms of both
parsing and speed), their rules are very specific and, then, some events (subtrees,
in our case) in the test set are not present in the training data, yielding zero
probabilities. Due to data sparseness, this happens often in reality. However,
this is not the case of the k = 2 model, with total coverage but with worse
performance. This justifies the need for smoothing methods.

In the following, three smoothing techniques are described. Two of them are
well known: linear interpolation and tree-level back-off. In addition, we introduce
a new smoothing technique: rule-level back-off.

3.1 Linear Interpolation

Smoothing through linear interpolation [9] is performed by computing the prob-
ability of events as a weighted average of the probabilities given by different
models. For instance, the smoothed probability of a k = 3 model could be com-
puted as a weighted average of the probability given by the model itself, and
that given by the k = 2 model, that is,

p(t) = λp3(t) + (1 − λ)p2(t) (1)

The mixing parameter λ ∈ [0, 1] was chosen to minimize the perplexity of
a sample.

3.2 Tree-Level Back-Off

Back-off allows one to combine information from different models. In our case,
the highest order model such that the probability of the event is greater than
zero is selected. Some care has to be taken in order to preserve normalization.

p(t) =
{

(1 − λ)p3(t)ifp3(t) > 0
Λp2(t)ifp3(t) = 0 (2)

where
Λ =

λ∑
t:p3(t)=0 p2(t)

. (3)
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In our experiments, we will assume that a λ may be found such that no sentence s
in the test set having a tree with p3(t) > 0 has another tree t′ with p(t′) > p(t).
Therefore, p2’s will only be compared for trees with p3(t) = 0. This leads to
the following efficient parsing strategy: k = 2 (unannotated, slow) parsing is not
launched if the k = 3 (annotated, fast) parser returns a tree, because the k = 3
tree will win out all k = 2 trees; therefore, for parsing purposes, the actual value
of λ is irrelevant.

3.3 Rule-Level Back-Off

Our back-off model builds a new PCFG from the rules of the tree-k-grammar
models and adding new rules which allow to switch beetween those models. In
particular, the new PCFG consists of three different kinds of rules:

1. k = 3 rules with modified probability,
2. back-off rules that allow to switch to the lower model, and,
3. modified k = 2 rules to switch-back to the higher model.

This is done as follows (for the sake of simplicity, only a kind of binary rules
are shown):

1. Add the rules of the k = 3 model with probability:

p(XY,Z → α) = p3(XY,Z → α)(1 − λ(XY,Z)) (4)

2. For each non-terminal symbol, XY,Z , of the k = 3 model, add a back-off
rule XY,Z → Y Z with probability:

p(XY,Z → Y Z) =
λ(XY,Z)
Λ(XY,Z)

(5)

where

Λ(XY,Z) = 1 −
∑

XY,Z→αY αZ∈{k=3}
p2(Y → αY )p2(Z → αZ) (6)

3. Add the k = 2 rules as unary rules, that is, if the rule is X → Y Z, then,
add X → XY,Z with probability:

p(X → XY,Z) = p2(X → Y Z) (7)

The grammar is normalized provided that parses of the form XY,Z → Y Z →
αY αZ are assigned a zero probability if XY,Z → αY αZ exists in the grammar.
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4 Experimental Results

4.1 General Conditions

We have performed experiments to assess the structural disambiguation per-
formance of tree-k-grammar smoothed models as compared to the ones un-
smoothed, that is, to compare their relative ability for selecting the best parse
tree. To build training corpora and test sets of parse trees, we have used English
parse trees from the Penn Treebank, release 3, with small, basically structure-
preserving modifications:

– insertion of a root node (ROOT) in all sentences, (as in Charniak [4]) to
encompass the sentence and final periods, etc.;

– removal of nonsyntactic annotations (prefixes and suffixes) from constituent
labels (for instance, NP-SBJ is reduced to NP);

– removal of empty constituents; and
– collapse of single-child nodes with the parent node when they have the same

label (to avoid rules of the form A → A which would generate an infinite
number of parse trees for some sentences).

In all experiments, the training corpus consisted of all of the trees (41,532) in
sections 02 to 22 of the Wall Street Journal portion of Penn Treebank, modified
as above. This gives a total number of more than 600,000 subtrees. The test set
contained all sentences in section 23 having no more than 40 words.

4.2 Structural Disambiguation Results

All grammar models were written as standard context-free grammars, and Ear-
ley’s probabilistic extended parsing algorithm [10] was used to obtain, for each
sentence, the most likely parse that was compared to the corresponding tree in
the test set using the customary PARSEVAL evaluation metric [11, 12, p. 432]
after eliminating any parent and child annotation of nodes in the most likely
tree delivered by the parser. PARSEVAL gives partial credit to incorrect parses
by establishing these two measures:

– labeled precision (P ) is the fraction of correctly-labeled nonterminal brack-
etings (constituents) in the most likely parse which match the parse in the
treebank,

– labeled recall (R) is the fraction of brackets in the treebank parse which are
found in the most likely parse with the same label, and

As baseline, three non smoothed models were evaluated:

– A standard treebank grammar, with no annotation of node labels (k=2),
with probabilities for 15,140 rules.

– A child-annotated grammar (k=3), with probabilities for 92,830 rules.
– A parent-annotated grammar (Parent), with probabilities for 23,020 rules.
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Table 1. Parsing results with different annotation models: labelled recall R,
labelled precision P , fraction of exact matches, fraction of sentences parsed, and
average time per sentence in seconds

Model R P exact parsed t

k=2 70.7% 76.1% 10.0% 100% 57
k=3 79.6% 74.3% 13.4% 94.6% 7

Parent 80.0% 81.9% 16.3% 100% 340

Table 2. Parsing results with different smoothed models

Model R P exact parsed t

M1 80.2% 78.6% 17.4% 100% 57
M2 78.9% 74.2% 17.1% 100% 9.3
M3 82.4% 81.3% 17.5% 100% 68

As expected, the number of rules obtained increases as more information
is conveyed by the node label, although this increase is not extreme. On the
other hand, as the generalization power decreases, some sentences in the test
set become unparsable, that is, they cannot be generated by the grammar. The
results in table 1, that were analyzed in detail in [3], show that the parsing per-
formance of parent-annotated and child-annotated PCFG is similar but parsers
using child-annotated grammars are much faster because the number of possible
parse trees considered is drastically reduced.

Those smoothed models were evaluated:

– A linear interpolated model, M1, as described in section 3.1 with λ = 0.7
(the value of λ selected to minimize the perplexity).

– A tree-level back-off, M2, as described in section 3.2.
– A rule-level back-off, M3, as described in section 3.3. This model has 92,830

k = 3 rules, 15,140 k = 2 rules and 10,250 back-off rules. A fixed parameter
λ (0.005) was selected to maximize labelled recall and precision).

The results in table 2 show that:

– M2 is the fastest but its performance is worse than that of M1 and M3.
– M1 and M3 parse sentences at a comparable speed but recall and precision

are better using M3.

Compared to un-smoothed models, smoothed ones:

– Cover the whole test set (k = 3 did not).
– Parsed at reasonable speed (compared to Parent).
– Achieved acceptable performance (k = 2 did not).
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5 Conclusions

We have compared several smoothing techniques for tree-k-grammar-based nat-
ural language modeling and parsing that are used to avoid assigning zero proba-
bility to any sentence. In particular, we have introduced a new smoothing tech-
nique: a rule-level back-off that builds a new PCFG from the rules of the tree-
k-grammar models and adding new rules which allow to switch beetween those
models. The new grammar cover the whole test set and improve the performance
in terms of parsing.
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