
An implementation of deterministic tree
automata minimization

Rafael C. Carrasco1, Jan Daciuk2, and Mikel L. Forcada3

1 Dep. de Lenguajes y Sistemas Informáticos, Universidad de Alicante, E-03071
Alicante, Spain (carrasco@dlsi.ua.es)

2 Knowledge Engineering Department, Gdańsk University of Technology, Ul. G.
Narutowicza 11/12, 80-952 Gdańsk, Poland (jandac@eti.pg.gda.pl)

3 Dep. de Llenguatges i Sistemes informàtics, Universitat d’Alacant, E-03071
Alacant, Spain (mlf@dlsi.ua.es).

Abstract. A frontier-to-root deterministic finite-state tree automaton
(DTA) can be used as a compact data structure to store collections of
unranked ordered trees. DTAs are usually sparser than string automata,
as most transitions are undefined and therefore, special care must be
taken in order to minimize them efficiently. However, it is difficult to
find simple and detailed descriptions of the minimization procedure in
the published literature. Here, we fully describe a simple implementation
of the standard minimization algorithm that needs a time in O(|A|2),
with |A| being the size of the DTA.

1 Introduction

A data structure that stores unranked ordered tree data efficiently is a minimal
frontier-to-root deterministic tree automaton (DTA) where each subtree which is
common to several trees in the collection is assigned a single state. Furthermore,
the number of such states is minimized by assigning a single state to groups of
subtrees that may appear interchangeably in the collection. The general proce-
dure to obtain a minimal DTA is well known [1–3]. However, it is difficult to find
detailed descriptions of the minimization algorithm. Here, we describe a simple
and efficient implementation of the algorithm to minimize DTAs.

Given an alphabet, that is, a finite set of symbols Σ = {σ1, . . . , σ|Σ|}, we de-
fine TΣ as the set of unranked ordered trees with labels in Σ: every symbol σ ∈ Σ
belongs to TΣ and every σ(t1 · · · tm) with σ ∈ Σ, m > 0 and t1, . . . , tm ∈ TΣ is
also a tree in TΣ . The trees so defined are ordered and unranked, that is, the
order of descendents t1, ..., tm is relevant but symbols in Σ are not assigned a
fixed valence m. Any subset of TΣ will be called a tree language. In particu-
lar, the language of subtrees sub(t) of t = σ(t1, ..., tm) is the union of {t} and⋃m

k=1 sub(tk).
A finite-state frontier-to-root tree automaton is defined as A = (Q,Σ,∆, F),

where Q = {q1, . . . , q|Q|} is a finite set of states, Σ = {σ1, . . . , σ|Σ|} is the
alphabet, F ⊆ Q is the subset of accepting states, and ∆ = {τ1, . . . , τ|∆|} ⊂
∪∞m=0Σ ×Qm+1 is a finite set of transitions.

2

A tree automaton A is a deterministic finite-state frontier-to-root tree au-
tomaton, or deterministic tree automaton (DTA) for short, if for every argu-
ment (σ, i1, ..., im) there is at most one possible output, that is, for all σ ∈ Σ,
for all m ≥ 0 and for all (i1, ..., im) ∈ Qm, there is at most one j ∈ Q such that
(σ, i1, ..., im, j) ∈ ∆. In a DTA, the transition output for argument (σ, i1, ..., im)
is

δm(σ, i1, ..., im) =

{
j if (σ, i1, ..., im, j) ∈ ∆

⊥ if no such j exists
(1)

where the symbol ⊥ will be interpreted as a special absorption state such that
⊥∈ Q− F but cannot appear in ∆. With this convention, ∆ remains finite but
the output for all possible transition arguments is a state in Q. The size of the
DTA is defined as the size of its transition function (which, in contrast with
string automata, cannot be directly obtained from its number of transitions,
that is,

|A| =
|∆|∑
n=1

|τn|, (2)

with |(σ, i1, ..., im, j)| = m + 1.
The output A(t) when DTA A operates on t ∈ TΣ is the state in Q recursively

computed as

A(t) =

{
δ0(σ) if t = σ ∈ Σ

δm(σ,A(t1), . . . , A(tm)) if t = σ(t1 · · · tm) ∈ TΣ −Σ
(3)

The tree language LA(q) accepted at state q ∈ Q is the subset of TΣ with
output q

LA(q) = {t ∈ TΣ : A(t) = q} (4)

and the tree language L(A) accepted by A is the subset of trees in TΣ accepted
at the states in F

L(A) =
⋃
q∈F

LA(q) = {t ∈ TΣ : A(t) ∈ F}. (5)

In a DTA A, a state q is inaccessible if LA(q) = ∅, that is, if there is no tree
t in TΣ such that A(t) = q. Therefore, inaccessible states and the transitions
using them are useless and can be safely removed from Q and ∆ respectively
without affecting L(A). It is worth to note that in DTAs the absorption state ⊥
is always accessible because ∆ is a finite subset of

⋃∞
m=0 Σ ×Qm+1 and there is

an infinite number of arguments leading to ⊥. A DTA with no inaccessible state
is said to be reduced.

An accessible state q ∈ Q is said to be coaccessible in A if there is at least
one tree t ∈ L(A) containing a subtree s such that q = A(s). States which
are not coaccessible (and accessible) are useless. In particular, as no transition
in ∆ contains ⊥, the absorption state is useless. As will be shown later, the
identification of inaccessible and useless states can be done in time O(|A|).

3

2 Minimal deterministic tree automata

The standard procedure to minimize [1–3] a deterministic tree automaton A
removes its inaccessible states and then merges all its equivalent states.

On the one hand, the subset I ⊆ Q of inaccessible states can be easily
identified by means of an iterative procedure: start with n← 0 and I0 ← Q and
while there is a transition (σ, i1, ..., im, j) ∈ ∆ such that j ∈ In and (i1, ..., im) ∈
(Q− In)m, make In+1 ← In−{j} and n← n + 1. A detailed implementation of
this procedure, which runs in time O(|A|), is shown in Figure 1.

Algorithm findInaccessible

Input : A DTA A = (Q, Σ, ∆, F)
Output : The subset of inaccessible states in A.
Method :

1. For all q in Q create an empty list Rq.
2. For all τn = (σ, i1, ..., im, j) in ∆ do

– Bn ← m (* Store num. of inaccessible positions in argument of τn *).
– For k = 1, ..., m append n to Rik (* Store all occurrences in i1, ...im *).

3. K ← {δ0(σ) : σ ∈ Σ}; I ← Q−K
4. While K 6= ∅ and I 6= ∅ remove a state q from K and for all n in Rq do

– Bn ← Bn − 1
– If Bn = 0 and output(τn) ∈ I then move output(τn) from I to K.

5. Return I − {⊥}.

Fig. 1: Algorithm for the identification of inaccessible states in a DTA.

On the other hand, equivalent states can be found, as shown in figure 2,
by creating a partition P0 = (Q) and iteratively refining this partition until it
becomes a congruence. A congruence ' on A is an equivalence relation such that
p ' q implies:

1. p ∈ F if and only if q ∈ F .
2. If m > 0, k ≤ m and (σ, r1, ..., rm) ∈ Σ ×Qm then

δm(σ, r1, . . . , rk−1, p, rk+1 . . . , rm) ' δm(σ, r1, . . . , rk−1, q, rk+1 . . . , rm) (6)

In other words, the equivalence relation is closed under context and, thus, equiv-
alent states are interchangeable as the output of automaton A on any tree or
subtree without any effect on L(A).

As the standard algorithms [4–6] for the minimization of deterministic finite-
state automata do, the minimization of DTAs partitions the set of states Q into
equivalence classes by iterative refinement. In the following, Pn will denote the
partition at iteration n, Φn[p] will denote the class in Pn that contains p and we

4

will write p ∼n q if and only if Φn[p] = Φn[q]. We will say that Pn is inconsistent
if there exist m > 0, k ≤ m and (σ, r1, ..., rm) ∈ Σ ×Qm such that

δm(σ, r1, . . . , rk−1, p, rk+1 . . . , rm) 6∼n δm(σ, r1, . . . , rk−1, q, rk+1 . . . , rm) (7)

Then, the standard algorithm refines the partition until it becomes consistent,
as shown in Figure 2.

Algorithm minimizeDTA

Input : a reduced DTA A = (Q, Σ, ∆, F) with F 6= ∅.
Output : a minimal DTA Amin = (Qmin, Σ, ∆min, Fmin) equivalent to A.
Method :

1. Create the initial partition P0 ← (Q), P1 ← (F, Q− F) and set n← 1.
2. While Pn 6= Pn−1 create Pn+1 by refining Pn so that p ∼n+1 q if and only if

for all m > 0, for all k ≤ m and for all (σ, r1, ..., rm) ∈ Σ ×Qm

δm(σ, r1, . . . , rk−1, p, rk+1 . . . , rm) ∼n δm(σ, r1, . . . , rk−1, q, rk+1 . . . , rm)

3. Output (Qmin, Σ, ∆min, Fmin) with
– Qmin = {Φn[q] : q ∈ Q};
– Fmin = {Φn[q] : q ∈ F};
– ∆min = {(σ, Φn[i1], ..., Φn[im], Φn[j]) : (σ, i1, ..., im, j) ∈ ∆ ∧ j 6∼n⊥}.

Fig. 2: Standard algorithm for DTA minimization. Function Φn(q) returns the identi-
fier of the class in Pn that contains q.

However, the efficient implementation of this procedure requires a fast method
to search for arguments (σ, r1, ..., rm) ∈ Σ ×Qm where replacing rk with p and
q leads to non-equivalent outputs and a correct treatment of undefined tran-
sitions. The implementation of the algorithm shown in Figure 4 meets these
requirements and realizes it as follows.

– Initialization: All useless states in the automaton are replaced by a single one
(the absorption state ⊥) and then, the partition P is initialized with classes
where all states have identical signature, the signature of a state being a set
defined as

sig(q) =
{
{(σ, m, k) : ∃(σ, i1, ..., im, j) ∈ ∆ : ik = q} ∪ {(#, 1, 1)} if q ∈ F

{(σ, m, k) : ∃(σ, i1, ..., im, j) ∈ ∆ : ik = q} otherwise

where # is a symbol not in Σ used to distinguish accepting and non-accepting
states. Useless states can be identified in time O(|A|) by means of the pro-
cedure shown in Figure 3.

5

– The main loop refines the partition Pn at every iteration and keeps a queue
K containing representatives of the new classes in the partition. It makes
use of a function nextn(i) that returns the state following i in class Φn[i] or
the first state in Φn[i] if i is the last state in that class (a fixed, arbitrary
order of states is assumed).

Merging all useless states with ⊥ is supported by the fact that, once inac-
cessible states are removed, q is coaccessible if and only if q 6'⊥. On the other
hand, it is clear that after removing useless states, sig(p) 6= sig(q) ⇒ p 6' q and
π can be safely initialized with the classes of states with identical signature.

Algorithm findUseless

Input : A reduced DTA A = (Q, Σ, ∆, F) with F 6= ∅.
Output : The subset of useless states in A.
Method :

1. For all q in Q create an empty list Lq.
2. For all τn = (σ, i1, ..., im, j) in ∆ add n to Lj (* Store n such that j is the

output of τn *).
3. K ← F ; U ← Q− F
4. While K 6= ∅ and U 6= ∅ remove a state q from K and for all n in Lq and for

all ik in {i1, ..., im} do
– If ik ∈ U then then move ik from U to K.

5. Return U .

Fig. 3: Algorithm for the identification of useless states in a DTA.

The correctness of the main loop requires that all inequivalent pairs are
eventually found through the search at step 2. Indeed, according to eq. (6), if
p 6∼n+1 q there exist m > 0, k ≤ m and (σ, r1, ..., rm, j) ∈ Σ×Qm+1 with rk = p
such that

δm(σ, r1, . . . , rk−1, q, rk+1 . . . , rm) 6∼n j.

Let us assume that j 6=⊥ (otherwise, one can exchange p and q) and write
p[1] = p and, for s > 0, p[s+1] = next(p[s]). Then, there is a value of s > 0 such
that

δm(σ, r1, . . . , rk−1, p
[s], rk+1 . . . , rm) ∼n j

and
δm(σ, r1, . . . , rk−1, p

[s+1], rk+1 . . . , rm) 6∼n j.

Therefore, the check performed at step 2 of the minimization algorithm over
all m > 0, all k ≤ m and all transitions in Σ × Qm can be limited to those
transitions in ∆ and every (σ, i1, ..., im, j) ∈ ∆ needs only to be compared with
m transitions of the type (σ, i1, ...,next(ik), ...im, j′)

6

Algorithm minimizeDTA

Input : a DTA A = (Q, Σ, ∆, F) without inaccessible states.
Output : a minimal DTA Amin = (Qmin, Σ, ∆min, Fmin).
Method :

1. (* Initialize π and K *)
– Remove useless states from Q and transitions using them from ∆ and set

Q← Q ∪ {⊥} and n← 1.
– For all (σ, i1, ..., im) ∈ ∆ add (σ, m, k) to sig(ik) for k = 1, ..., m.
– For all q ∈ F add (#, 1, 1) to sig(q).
– Create an empty set Bsig for every different signature sig and for all q ∈ Q

add q to set Bsig(q).
– Set P0 ← (Q) and P1 ← {Bs : Bs 6= ∅}.
– Enqueue in K the first element from every class in P1.

2. While K is not empty
(a) Remove the first state q in K.
(b) For all (σ, i1, ..., im, j) ∈ ∆ such that j ∼n q and for all k ≤ m

i. If δm(σ, i1, ..., nextn(ik), ..., im) 6∼n j then
A. Create Pn+1 from Pn by splitting Φn[ik] into so many subsets

as different classes Φn[δm(σ, i1, ., i
′
k, .., im)] are found for all i′k ∈

Φn[ik].
B. Add to K the first element from every subset created at the pre-

vious step.
C. Set n← n + 1.

3. Output (Qmin, Σ, ∆min, Fmin) with
– Qmin = {Φn[q] : q ∈ Q};
– Fmin = {Φn[q] : q ∈ F};
– ∆min = {(σ, Φn[i1], ..., Φn[im], Φn[j]) : (σ, i1, ..., im, j) ∈ ∆ ∧ Φn[j] 6= Φn[⊥

]}.

Fig. 4: Modified algorithm minimizeDTA.

7

Finally, this minimization algorithm runs in time O(|A|2), as can be easily
checked if we take into account that, in a DTA without inaccessible states,
|Q| ≤ |A| and:

– A state may enter K every time a finer class is created in the partition. As
the refinement process cannot create more than 2|Q| − 1 different classes
(the number of nodes in a binary tree with |Q| leaves), the main loop, which
always removes a state from K, performs at most 2|Q| − 1 iterations.

– At every iteration, a loop over some transitions in ∆ and their arguments is
performed: obviously, this internal loop involves at most |A| iterations.

– If δm(σ, i1, ...,nextn(ik), ..., im) 6∼n j then class Φn[ik] becomes split and its
states are classified according to the transition output using less than |Q|
steps; also updating K adds at most |Q| states. As the maximum number of
splits is |Q| − 1, the conditional block involves at most |Q|2 steps.

This theoretical bound has been tested by appliyng the algorithm to com-
press an acyclic DTA accepting parse trees (upto 20000 trees and 60 labels)
obtained from a tree bank [7]. The results, depicted in figure 5, show that the
time needed to minimize the DTA grows less than quadratically with the size of
the automaton (the best fit for this example is |A|1.47).

Fig. 5: Time needed to minimize a DTA as a function of the size of the DTA.

8

3 Conclusion

We presented a simple implementation of the standard algorithm for the min-
imization of deterministic frontier-to-root tree automata which runs in time
O(|A|2) by showing that the search for inconsistent classes can be efficiently
performed and that undefined transitions and the absorption state can be prop-
erly handled. As the partition may be initialized with more than two classes
and also subsequent refinements beyond binary splitting are possible the con-
vergence is usually reached with fewer iterations. The question if a modification
exists with better asymptotic behavior, such as those applicable for sparse string
automata [8], remains open. Incremental minimization of DTAs, that is, the con-
struction of a minimal DTA by adding new trees to the language accepted by
an existing one, will be addressed elsewhere [9].

Acknowledgments. Work supported by the Spanish CICyT through grant TIN2006-
15071-C03-01.

References

1. Brainerd, W.S.: The minimalization of tree automata. Information and Control
13(5) (1968) 484–491

2. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
3. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,

Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (1997) release October, 1rst 2002.

4. Hopcroft, J., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison–Wesley, Reading, MA (1979)

5. Blum, N.: An O(n log n) implementation of the standard method for minimizing
n-state finite automata. Information Processing Letters 57(2) (1996) 65–69

6. Watson, B.W.: A taxonomy of finite automata minimization algorithmes. Com-
puting Science Note 93/44, Eindhoven University of Technology, The Netherlands
(1993)

7. Marcus, M.P., Santorini, B., Marcinkiewicz, M.: Building a large annotated corpus
of english: the penn treebank. Computational Linguistics 19 (1993) 313–330

8. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Computing
16(6) (1987) 973–989

9. Carrasco, R.C., Daciuk, J., Forcada, M.L.: Incremental construction of minimal tree
automata. Submitted (2007)

