
Encoding Nondeterministic Finite-State Tree
Automata in Sigmoid Recursive Neural

Networks?

Mikel L. Forcada and Rafael C. Carrasco

Departament de Llenguatges i Sistemes Informàtics
Universitat d’Alacant, E-03071 Alacant (Spain)

{mlf,carrasco}@dlsi.ua.es

Abstract. Recently, a number of authors have explored the use of re-
cursive recursive neural nets (RNN) for the adaptive processing of trees
or tree-like structures. One of the most important language-theoretical
formalizations of the processing of tree-structured data is that of finite-
state tree automata (FSTA). In many cases, the number of states of
a nondeterministic FSTA (NFSTA) recognizing a tree language may be
smaller than that of the corresponding deterministic FSTA (DFSTA) (for
example, the language of binary trees in which the label of the leftmost
k-th order grandchild of the root node is the same as that on the left-
most leaf). This paper describes a scheme that directly encodes NFSTA
in sigmoid RNN.

1 Introduction

During the last decade, a number of authors have explored the use of analog
recursive neural nets (RNN) for the adaptive processing of data laid out as trees
or tree-like structures such as directed acyclic graphs. In this arena, Frasconi,
Gori and Sperduti [5] have recently established a rather general formulation of
the adaptive processing of structured data, which focuses on directed ordered
acyclic graphs (which includes trees); Sperduti and Starita [10] have studied the
classification of structures (directed ordered graphs, including cyclic graphs) and
Sperduti [10] has studied the computational power of recursive neural nets as
structure processors.

One of the most important language-theoretical formalizations of the pro-
cessing of tree-structured data is that of finite-state tree automata (FSTA), also
called frontier-to-root or ascending tree automata[6, 11]. Deterministic FSTA
(DFSTA) may easily be realized as RNN using discrete-state units such as the
threshold linear unit (TLU). Sperduti, in fact, [9] has recently shown that Elman-
style [3] RNN using TLU may simulate DFSTA, and provides an intuitive ex-
planation (similar to that expressed by Kremer [7] for the special case of de-
terministic finite automata) why this should also work for sigmoid networks:
? Work supported by the Spanish Comisión Interministerial de Ciencia y Tecnoloǵıa

through grant TIC97-0941.

incrementing the gain of the sigmoid function should lead to an arbitrarily pre-
cise simulation of a step function. More recently, we [1] have shown that a finite
value of this gain is possible such that exact simulation of a DFSTA may in-
deed be performed by various analog RNN architectures. This paper adds a new
encoding to those described in [1], which can be used to directly encode non-
deterministic FSTA (NFSTA); it is the case that in many cases, the number of
states of a nondeterministic FSTA (NFSTA) recognizing a tree language may
be much smaller than that of the corresponding DFSTA (for example, the lan-
guage of binary trees in which the label of the leftmost k-th order grandchild
of the root node is the same as that on the leftmost leaf); therefore, there may
exist very compact recursive neural network encodings of a family of tree lan-
guage recognizers. Tree automata include string automata such as Mealy and
Moore machines as a special case. For a detailed study of the encoding of string
automata in recurrent neural networks, see [2].

In the following section, tree languages and tree automata are introduced.
Section 3 describes a particular recursive neural network architecture, a high-
order Elman-like sigmoid recursive neural network. Section 4 describes the encod-
ing of a nondeterministic FSTA into that RNN architecture. Finally, we present
our conclusions in the last section.

2 Tree Languages and Tree Automata

We will denote with Σ a ranked alphabet, that is, a finite set of symbols Σ =
{σ1, ..., σ|Σ|} with an associated function r : Σ → N giving the rank of the
symbol.1 The subset of symbols in Σ having rank m is denoted with Σm. The
set of Σ-trees, ΣT , is defined as the set of strings (made of symbols in Σ aug-
mented with the parenthesis and the comma) representing ordered labeled trees
or, recursively,

1. Σ0 ⊂ ΣT (any symbol of rank 0 is a single-node tree in ΣT).
2. f(t1, ..., tm) ∈ ΣT whenever m > 0, f ∈ Σm and t1, ..., tm ∈ ΣT (a tree

having a root node with a label of f rank m and m children t1 . . . tm which
are valid trees of ΣT belongs to ΣT).

A nondeterministic finite-state tree automaton (NFSTA) consits of a five-
tuple A = (Q, Σ, r,∆, F), where Q = {q1, . . . , q|Q|} is the finite set of states,
Σ = {σ1, . . . , σ|Σ|} is the alphabet of labels, ranked by function r, F ⊆ Q is
the subset of accepting states and ∆ = {δ0, δ1, . . . , δM} is a finite collection of
transition functions of the form δm : Σm × Qm → 2Q, for m ∈ [0,M] with M
the maximum rank or valence of the NFSTA. For all trees t ∈ ΣT , the result

1 The rank may be defined more generally as a relation r ⊆ Σ×N; both formulations
are equivalent if symbols having more than one possible rank are split.

δ(t) ∈ 2Q of the operation of NFSTA A on a tree t ∈ ΣT is defined as

δ(t) =





δ0(a) if t = a ∈ Σ0⋃1<i≤m
qi∈δ(ti),

δm(f, q1, ..., qm) if t = f(t1, ..., tm) 0 < m ≤ M, f ∈ Σm

undefined otherwise
(1)

(M is the maximum number of children for any node of any tree in L(A)).
Deterministic FSTA are a special case of NFSTA, namely, when δm : Σm×Qm →
Q.

As usual, the language L(A) recognized by a NFSTA A is the subset of ΣT

defined as
L(A) = {t ∈ ΣT : δ(t) ∩ F 6= ∅}. (2)

3 A Recursive Neural Net to Encode Tree Automata

Here we define a recursive neural architecture that is similar to those used in
related work as that of Frasconi, Gori and Sperduti [5], Sperduti [9] and Sperduti
and Starita [10].

A high-order Elman-like recursive neural network consists of one set of single-
layer neural networks which computes the next state (playing the role of the
collection ∆ of transition functions in a finite-state tree transducer) and one
single-layer feedforward neural network with a single output node which detects
the existence of an accepting state in the set of states active after processing
a tree. The schematics of this recursive neural network architecture are shown
in Fig. 1 The next-state function is realized as a collection of M + 1 high-
order single-layer networks, one for each possible rank m = 0, . . . , M , having nX

neurons and m + 1 input ports: m for the input of subtree state vectors, each of
dimensionality nX , and one for the input of node labels, represented by a vector
of dimensionality nU .

The node label input port takes input vectors equal in dimensionality to the
number of input symbols, that is nU = |Σ|. In particular, if µ is a node in the
tree with label l(µ) and u[µ] is the input vector associated with this node, the
component uk[µ] is equal to 1 if the input symbol at node µ is σm

k ∈ Σm (the
k-th symbol of rank m) and 0 for all other input symbols (one-hot or exclusive
encoding).

For a node µ with label l(µ) ∈ Σm and children ν1, ..., νm the next state
x[µ] is computed by the corresponding m + 1-th order single-layer neural net as
follows:

xi[µ] = g


wm

i +
nU∑

k=1

nX∑

j1=1

· · ·
nX∑

jm=1

wm
ij1j2...jmk xj1 [ν1]xj2 [ν2] · · ·xjm [νm]uk[µ]




(3)
where wm

i represents the bias for the network of rank m and i = 1, . . . , nX and
the wm

ij1j2·jmk are the weights for that network. If µ is a leaf, i.e., l(µ) ∈ Σ0 the

...

...

... ...
11...1 21...1 22...1 nX nX ...nU

1 2 ... nX 1 2 ... nX 1 2 ... nX

child 1 child 2 child m

acceptance unit

father

products

...

label

1 2 ... nU

1 2 ... nX

Fig. 1. A high order Elman-like recursive neural network having m state ports with
nX units, one label port with nU units, and a single output unit (the acceptance unit).

expression above for the component xi[µ] reduces to

xi[µ] = g

(
w0

i +
nU∑

k=1

w0
ikuk[µ]

)
, (4)

that is, there is a set of |Σ| weights of type w0
k = (w0

1k, ..., w0
nxk) which play the

role of the initial state in recurrent networks [4].
Acceptance is expressed by a single unit connected to all of the state units:

y[µ] = g


v +

nX∑

j=1

vjxj[µ]


 . (5)

4 Encoding Tree Automata In Recursive Neural
Networks

4.1 Using Threshold Linear Units

Here, we present a way to encode a NFSTA in a RNN as the one defined above
using TLU as activation functions (g = θ, with (θ(x) = 1 if x ≥ 0 and 0
otherwise). The encoding is based on the following scheme for states. Each of
the M next-state networks in the RNN will have nX = |Q| state units and
nU = |Σm| and will be interpreted as being in state qi ∈ Q after reading tree µ

if xi[µ] is high, and as not being in state qj ∈ Q if xj [µ] is low. In this way, the
RNN, even if it is a deterministic device, may be interpreted as being in more
than one state of the NFSTA.

Next-state networks: Weights are chosen as follows: biases vm
i on all state units

of all of the next-state are equal to −1/2, to bring state units to zero if they do
not receive any sufficiently positive contribution. Weights wm

ij1j2...jmk are 1 if qi ∈
δm(σm

k , qj1 , qj2 , . . . , qjm) and σm
k is the k-th symbol of Σm, and 0 otherwise. In

this way, the unit i representing state qi will be high when (a) the k-th symbol of
Σm labels the node, (b) the sets of states at the m children nodes include each one
at least state qjm

(that is unit xjm
is high), and (c) qi ∈ δm(σm

k , qj1 , qj2 , . . . , qjm
).

In that case, unit i receives a positive contribution (perhaps not the only one)
and becomes high. If there is not any such contribution, it remains low. This
construction, therefore, emulates the next-state functions δm of the NFSTA.

Acceptance unit: This unit has a bias v = −1/2 to keep it low in the absence
of sufficiently positive inputs. Weights vj are 1 if qj ∈ F and zero otherwise. In
this way, if at least one of the states at the root node of a tree is an acceptance
state, the output will be high, but zero otherwise.

4.2 Using Sigmoid Units

Our main hypothesis is that substituting in the previous construction the step
function θ by a scaled version of the logistic sigmoid function

gL(Hx) =
1

1 + exp(−Hx)
(6)

where H is a positive gain, there is a finite value of H that ensures a correct
NFSTA behavior of the resulting RNN (obviously, in the limit H → ∞ the
behavior is correct because one recovers the step function θ). We will look for
the smallest value of H that guarantees correct behavior.

For a binary interpretation of the output of all sigmoid units, we will use the
following criterion. Two special values, ε0, ε1 ∈ [0, 1], ε0 < ε1 will be defined so
that the outputs of all units will be taken to be low if they are in [0, ε0], high if
they are in [ε1, 1] and forbidden otherwise.

To ensure correct behavior in all cases, we have to ensure correct behavior
in the worst cases, that is, when low and high values are the farthest possible
from the ideal values 0 and 1 respectively.

Conditions for the next-state network: For a next state function of rank m two
worst cases are possible. Let us study a typical transition δm(σm

k , qj1 , qj2 , ..., qjm)
leading at a node t. We want all xi[t] such that qi ∈ δm(σm

k , qj1 , qj2 , ..., qjm) to be
high whenever the corresponding xjk

[t− 1], 1 ≤ k ≤ m are high at the children
nodes and uk[t] = 1, and we want all other xi′ [t] to be low. To ensure xi[t] ≥ ε1

even in the worst case, when it only receives a single positive contribution from
units that have the weakest possible high value, ε1, one gets:

gL (H(ε1)m −H/2) > ε1 (7)

Ensuring xi[t] ≤ ε0 even in the worst case is more complex. One has to
first consider each possible configuration of the m state ports (each possible
configuration of low and high states), then consider which one would be the
worst case for that configuration, and finally look for the worst configuration.

Since we want xi[t] to be low, the worst case in each configuration k is the
one in which xi[t] receives the largest possible positive contribution from state
combinations (ql1 , ql2 , . . . qlm) not currently present in children but correspond-
ing to allowed transitions into state qi (qi ∈ δm(σm

k , ql1 , ql2 , . . . qlm)). The worst
possible contribution of each state combination that is not currently present (low
contribution in the following) is a product of ε0 for each state not present (at
least one) and 1 for each state present (that is, each of these contributions ranks
from ε0 to εk

0). For each possible combination (ql1 , ql2 , . . . qlm) of high and low
units in each port in a given port configuration k, the worst case is that all the
possible low contributions correspond to allowed transitions and thus contribute
noise to the desired low value of xi[t]. We will call the sum of all possible low
contributions of a configuration k the worst low contribution of that configura-
tion, C(k, nX ,m, ε0). The worst case for any RNN having m state ports with
nX units is the maximum worst low contribution for all possible combinations of
state, C∗(nX ,m, ε0) = maxk C(k, nX ,m, ε0). We have not been able to obtain
this value analytically but instead we have performed an exhaustive search for
this maximum over all 2nXm combinations2: each configuration k is defined by
a vector k = (k1, k2, . . . , km) specifying the number ki ∈ [1, nX] (i ∈ [1,m]) of
low units in each port and its worst contribution may easily be shown to be

C(k, nX ,m, ε0) =
m∏

i=1

(nX − ki + kiε0)−
m∏

i=1

(nX − ki) (8)

(of course many contributions are equal due to symmetries). The condition for
a low value of xi[t] is, then, in the worst case,

gL (H(C∗(nX , m, ε0)− 1/2)) < ε0. (9)

Conditions for the acceptance unit: If the output of the acceptance unit has to
be high, the worst case occurs when only one state unit is contributing and its
contribution is the weakest possible. The condition is therefore

gL (H(ε1 − 1/2)) > ε1. (10)

2 Analytical upper bounds to H are however easily obtained for the oversimplified
(impossible) worst case in which all contributions are equal to ε0, and there are
nm

X − 1 of them; these bounds are inordinately high and therefore of no interest.

The worst case for a low value of the output of the acceptance unit is that all
acceptance state units have the worst low value (ε0) and all states but one are
acceptance states. The condition is therefore

gL (H((nX − 1)ε0 − 1/2)) < ε0 (11)

Values of H: The values of H we are looking for are the smallest values of H
compatible with values of ε0 and such that ε1 such that 0 < ε0 < ε1 < 1 and all
conditions (7)–(11) are fulfilled. It happens to be the case that the most stringent
condition is (9); the minimum value of H determined on that one may then be
substituted in (7) to obtain the value of ε1, because this value will always ensure
that condition (10) is fulfilled.

Table 1 shows values of H for a set of representative values of M (maximum
m for a given NFSTA) and nX . The values are very high; the sigmoid RNN works
almost like a discrete-state RNN because neurons are usually very saturated; the
reader is however, reminded of the fact that these values of H are (a) derived
from a worst-case-based study (which considers the maximum possible number
of transitions); (b) used to scale a particular discrete-state RNN encoding of
the NFSTA; smaller values of H may therefore still guarantee correct NFSTA
behavior for many NFSTA. If, instead of using a single scaling parameter H
specialized parameters were used for each unit (as in [8]), weight values would
get even smaller.

M = 1 M = 2 M = 3 M = 4

nX = 2 7.18 7.38 8.47 9.25

nX = 3 8.36 10.22 11.93 14.25

nX = 4 9.15 11.92 14.52 17.04

nX = 5 9.73 13.14 16.36 19.48

Table 1. General values of the scaling factor H as a function of the number of state
units nX and the maximum rank M for NFSTA encoding on a high-order Elman
recursive neural network.

5 Conclusion

We have studied a strategy to encode nondeterministic finite-state tree automata
(NFSTA) on a high-order sigmoid recursive neural network (RNN) architecture.
This strategy has been derived from a strategy to encode a NFSTA in a discrete-
state RNN by first turning it into a sigmoid RNN and then looking for the
smallest value of the gain H of the sigmoid that ensures correct NFSTA behavior,
using a worst-case criterion. It has to be noted that the values of H obtained are
derived from general worst cases that may not occur in general, and therefore
sigmoid RNN having a smaller gain may still show correct NFSTA behavior.

The values of H obtained suggest that, even though in principle RNN with
finite weights can simulate exactly the behavior of NFSTA, it will in practice be
very difficult to learn the exact finite-state behavior from examples because of
the very small gradients present when weights reach adequately large values.

References

1. Rafael C. Carrasco and Mikel L. Forcada. Simple strategies to encode tree au-
tomata in analog recursive neural networks. IEEE Transactions on Knowledge
and Data Engineering, 2000. Accepted for publication.

2. Rafael C. Carrasco, Mikel L. Forcada, M. Ángeles Valdés-Muñoz, and Ramón P.
Ñeco. Stable encoding of finite-state machines in discrete-time recurrent neural
nets with sigmoid units. Neural Computation, 12, 2000. In press.

3. J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.
4. M. L. Forcada and R. C. Carrasco. Learning the initial state of a second-order

recurrent neural network during regular-language inference. Neural Computation,
7(5):923–930, 1995.

5. Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for
adaptive data structures processing. IEEE Transactions on Neural Networks,
9(5):768–786, 1998.

6. R.C. Gonzalez and M.G. Thomason. Syntactical pattern recognition. Addison-
Wesley, Menlo Park, CA, 1978.

7. Stefan C. Kremer. On the computational power of Elman-style recurrent networks.
IEEE Transactions on Neural Networks, 6(4):1000–1004, 1995.

8. Stefan C. Kremer. A Theory of Grammatical Induction in the Connectionist
Paradigm. PhD thesis, Department of Computer Science, University of Alberta,
Edmonton, Alberta, 1996.

9. Alessandro Sperduti. On the computational power of neural networks for struc-
tures. Neural Networks, 10(3):395–400, 1997.

10. Alessandro Sperduti and Antonina Starita. Supervised neural networks for the
classification of structures. IEEE Transactions on Neural Networks, 8(3):714–735,
1997.

11. J.W. Thatcher. Tree automata: An informal survey. In A.V. Aho, editor, Currents
in the theory of computing. Prentice-Hall, Englewood-Cliffs, NJ, 1973.

