
Learning deterministic regular grammars from

stochastic samples in polynomial time∗

Rafael C. Carrasco and Jose Oncina
Departamento de Lenguajes y Sistemas Informáticos

Universidad de Alicante, E-03071 Alicante
E-mail: (carrasco, oncina)@dlsi.ua.es

Running head: Learning stochastic regular grammars

Abstract

In this paper, the identification of stochastic regular languages is
addressed. For this purpose, we propose a class of algorithms which
allow for the identification of the structure of the minimal stochastic
automaton generating the language. It is shown that the time needed
grows only linearly with the size of the sample set and a measure of
the complexity of the task is provided. Experimentally, our implemen-
tation proves very fast for application purposes.

Resumé

Dans cet article, on étudie l’identification de langages réguliers stochas-
tiques. Pour ce but, nous proposons une classe d’algorithmes lesquels
permettent la identification de la structure de l’automate stochastique
minime que engendre le langage. On trouve que le temps nécessaire
croissait linéairement avec la taille de l’échantillon et on donne une
mesure de la complexité de la identification. Expérimentalement, notre
implementation est très rapide, ce que le rend très intéressant pour des
applications.

∗Work partially supported by the Spanish CICYT under grant TIC97–0941.

1

1 Introduction

Identification of stochastic regular languages (SRL) represents an important
issue within the field of grammatical inference. Indeed, in most applications
—as speech recognition, natural language modeling, and many others— the
learning process involves noisy or random examples. The assumption of
stochastic behavior has important consequences for the learning process.
Indeed, Gold (1967) introduced the criterion of identification in the limit
for successful learning of a language. He also proved that regular languages
cannot be identified if only text (i.e., a sample containing only examples of
strings in the language) is given, but they can be identified if a complete pre-
sentation is provided. A complete presentation is sample containing strings
classified as belonging (positive examples) or not (negative examples) to
the language. In practice, negative examples are usually scarce or difficult
to obtain. As proved by Angluin (1988), stochastic samples (i.e., samples
generated according to a given probability distribution) can compensate the
lack of negative data, although they do not enlarge the class of languages
that can be identified.

Some attempts to find suitable learning procedures using stochastic sam-
ples have been made in the past. For instance, Maryanski and Booth (1977)
used a chi-square test in order to filter regular grammars provided by heuris-
tic methods. Although convergence to the true one was not guaranteed,
acceptable grammars (i.e., statistically close to the sample set) were always
found. The approach of van der Mude and Walker (1978) merges variables
in a stochastic regular grammar, where Bayesian criteria are applied. In that
paper (van der Mude & Walker 1978), convergence to the true grammar was
not proved and the algorithm was too slow for application purposes.

In the recent years, neural network models were used in order to identify
regular languages (Smith & Zipser 1989; Pollack 1991; Giles et al. 1992;
Watrous & Kuhn 1992) and they have also been applied to the problem of
stochastic samples (Castaño, Casacuberta & Vidal 1993). However, these
methods share the serious drawback that long computational times and vast
sample sets are needed. Hidden Markov models are used by Stolcke and
Omohundro (1993). In order to maximize the probability of the sample,
they include a priori probabilities penalizing the size of the automaton.

Oncina and Garćıa (1992) proposed an algorithm, similar to the one pre-
sented by Lang (1992) which allows for the correct identification in the limit
of any regular language if a complete presentation is given. Moreover, the
time needed by this algorithm in order to output a hypothesis grows polyno-
mially with the size of the sample, and a linear time complexity was found
experimentally. In this paper, we follow a similar approach and develop the
algorithm rlips(Regular Language Inference from Probabilistic Samples)
which builds the prefix tree automaton from the sample and evaluates at
every node the relative probabilities of the transitions coming out from the

2

node. Next, it compares pairs of nodes, following a well defined order (essen-
tially, that of the levels in the prefix tree acceptor or lexicographical order).
Equivalence of the nodes is accepted if they generate —within statistical
uncertainty— the same stochastic language. The process ends when further
comparison is not possible.

A preliminary version of the algorithm was already presented in Car-
rasco and Oncina (1994). Here we develop a modified version which allows
us to prove that, with probability one, the algorithm identifies the correct
structure of the automaton generating the language.

Meanwhile, an algorithm with a different learning model (the PAC model)
and some connection points with ours has been proposed by Ron, Singer and
Tishby (1995). The differences between both approaches will be commented
in the next section, as well as the differences between stochastic and non-
stochastic identification. Some definitions will be introduced in section 3. A
more detailed description of our algorithm can be found in section 4, which
is proved to be correct in section 5. Finally, results and discussion will be
presented in section 6.

2 Identification of stochastic languages

At this point, it is worthwhile to remark on some differences between the
identification process of stochastic and non-stochastic regular languages.
Identification in the limit means that only finitely many changes of hy-
pothesis take place before a correct one is found. Non-stochastic regular
languages form a recursively enumerable set of classes R = {L1, L2, . . .}
and a simple enumerative procedure identifies in the limit R provided that
a complete sample S is provided. A complete sample presents all strings
classified as belonging or not to the language. If Lr is the true hypothesis,
there is only a finite number of incorrect Lk preceding Lr, and for all of
them a counterexample exists in S. Therefore, by choosing as hypothesis
the first Lk consistent with the first n strings in S, all incorrect languages
will be rejected provided that n is large enough (say n > N). Obviously,
the hypothesis is changed finitely many times (at most N times). Of course,
negative examples play a relevant role, since they may be necessary in or-
der to reject languages whose only difference with Lr lies on Lk − Lr (and
they may exist because an order which respects inclusion is not generally
possible).

In contrast, samples of stochastic languages contain only examples which
appear repeatedly, according to a probability distribution p(w|L) giving the
probability of the string w in the language L. There are no negative examples
in the sample and therefore, no explicit information about strings such that
p(w|L) = 0.

However, the statistical regularity is able to compensate for the lack of

3

negative examples (Angluin, 1988). In particular, stochastic regular lan-
guages with rational probabilities are identifiable with probability one, by
simply using enumerative algorithms. Because enumerative methods are ex-
perimentally unfeasible, the search of fast and reliable algorithms for iden-
tification becomes a challenging task.

A widespread measure for the success in learning a probability distri-
bution is the Kullback-Leibler distance or relative entropy (see Cover &
Thomas 1991). One can use this measure, for instance, in the reduced prob-
lem of learning the bias p of a coin. A traditional approach is to estimate
p with p̂, the rate between the number of heads and the number of tosses.
It is also possible to define a procedure in order to identify the bias p, pro-
vided that p is rational. However, except for very simple rational values of p
the estimation p̂ gives better results (in terms of relative entropy) than the
identification procedure. A typical result is shown in Figs. 1 and 2.

The situation changes when the number of possible outcomes in the
experiment is infinite. The support of L is the subset RL = {w ∈ A∗ :
p(w|L) > 0} of non-zero probability strings. For most languages, RL is
infinite and thus, there are strings whose probability is as small as desired.
Therefore, many strings in RL will not be represented by a finite sample
and their probability will be incorrectly estimated as zero, leading to a large
relative entropy. According to this, we have chosen to identify the structure
of the canonical generator of the language and then, estimate the transition
probabilities (which are a finite set of numbers) from the sample. Note that
it is not enough to identify the support RL, as the minimal acceptor for RL

is often smaller than the canonical generator for L.
In this way, we will find that the relative entropy between our model and

the true distribution decreases very fast as the sample size grows, something
that cannot be achieved without a good estimation of the probabilities of
all the strings in RL, especially for those not contained in the finite sample.
It is important to remark that we make no assumption about the under-
lying stochastic automaton. In contrast, the algorithm of Ron, Singer and
Tishby (1995) assumes that the states in the automaton are distinguishable
at a given degree µ and only outputs acyclic automata (in particular au-
tomata whose transitions go from states in level d to states in level d + 1).
Although one can always find an acyclic automaton close to the target one,
our approach identifies the structure even when cycles are present.

3 Definitions

Let A be a finite alphabet, A∗ the free monoid of strings generated by A
and λ the empty string. The length of w ∈ A∗ will be denoted as |w|. For
x, y ∈ A∗, if w = xy we will also write y = x−1w. The expression xA∗
denotes the set of strings which contain x as a prefix. On the other hand,

4

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0e+00 1e+04 2e+04 3e+04 4e+04 5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

Figure 1: Typical plot of the relative entropy (bits) between p = 0.875 and
the experimental bias as a function of the number of tosses. Continuous
line: estimation. Dotted line: identification procedure (drops to zero after
20000 experiments).

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

0e+00 1e+04 2e+04 3e+04 4e+04 5e+04 6e+04 7e+04 8e+04 9e+04 1e+05

Figure 2: Same as Fig. 1 with a bias p = 0.62. Identification takes place too
late for practical purposes.

5

x < y in lexicographical order if either |x| < |y| or |x| = |y| and x precedes
y alphabetically.

A stochastic language L is defined by a probability density function over
A∗ giving the probability p(w|L) that the string w ∈ A∗ appears in the
language. The probability of any subset X ⊂ A∗ is given by

p(X|L) =
∑

x∈X

p(x|L), (1)

and the identity of stochastic languages is interpreted as follows:

L1 = L2 ⇔ p(w|L1) = p(w|L2) ∀w ∈ A∗, (2)

or, equivalently,

L1 = L2 ⇔ p(wA∗|L1) = p(wA∗|L2) ∀w ∈ A∗. (3)

In other approaches (Ron, Singer, Tishby 1995) a minimal difference µ > 0
between the probabilities is assumed. However, we will make no assumption
of this kind about the probability distribution.

A stochastic regular grammar (SRG), G = (A, V, S,R, p), consists of a
finite alphabet A, a finite set of variables V —one of which, S, is referred
to as the starting symbol—, a finite set of derivation rules R with either of
the following structures:

X → aY
X → λ

(4)

where a ∈ A, X, Y ∈ V , and a real function p : R → [0, 1] giving the
probability of the derivation. The sum of the probabilities for all derivations
from a given variable X must be equal to one. The form of Eq. (4), although
formally different, is equivalent to other ones used in the literature, as in Fu
(1982). The stochastic grammar G is deterministic if for all X ∈ V and for
all a ∈ A there is at most one Y ∈ V such that p(X → aY) 6= 0.

Every stochastic deterministic regular grammar G defines a stochas-
tic deterministic regular language (SDRL), LG, through the probabilities
p(w|LG) = p(S ⇒ w). The probability p(S ⇒ w) that the grammar G
generates the string w ∈ A∗ is defined in a recursive way:

p(X ⇒ λ) = p(X → λ)
p(X ⇒ aw) = p(X → aY)p(Y ⇒ w)

(5)

where Y is the only variable satisfying p(X → aY) 6= 0 (if such variable
does not exist, then p(X → aY) = 0).

A stochastic deterministic finite automaton (SDFA), A = (QA,A, δA, qA
I , pA),

consists of an alphabet A, a finite set of nodes QA = {q1, q2, . . . qn}, with
qA
I ∈ QA the initial node, a transition function δA : QA × A → QA and a

probability function pA : QA×A → [0, 1] giving the probability p(qi, a) that

6

symbol a follows after a prefix leading to state qi. The probability pA(qi, λ)
is defined as

pA(qi, λ) = 1−
∑

a∈A
pA(qi, a) (6)

and represents the probability that the string ends at node qi or, equivalently,
an end of string symbol follows the prefix. The constraint pA(qi, λ) ≥ 0 holds
for all correctly defined SDFA. As usual, the transition function is extended
to A∗ as δA(qi, aw) = δA(δA(qi, a), w).

Every SDFA A defines a SDRL, LA, through the probabilities p(w|LA) =
πA(qA

I , w), defined recursively as

πA(qi, λ) = pA(qi, λ)
πA(qi, aw) = pA(qi, a)πA(δA(qi, a), w)

(7)

If δA(qi, a) is undefined, then πA(δA(qi, a), w) = 0.
A comparison of equations (5) and (7) shows the equivalence between

SDRG and SDFA. In case the SDRG contains no useless symbols (Hopcroft
and Ullman 1979), the probabilities of the strings sum up to 1:

p(A∗|LG) =
∑

w∈A∗
p(w|LG) = 1 (8)

The quotient x−1L is the stochastic language defined by the probabilities
of the strings in L starting with x, conveniently normalized:

p(w|x−1L) =
p(xw|L)
p(xA∗|L)

(9)

If p(xA∗|L) = 0, then by convention x−1L = ∅ and p(w|x−1L) = 0. Note
that λ−1L = L.

If L is a SDRL, the canonical generator M = (QM ,A, δM , qM
I , pM) is

defined as:
QM = {x−1L 6= ∅ : x ∈ A∗}

δM (x−1L, a) = (xa)−1L
qM
I = λ−1L

pM (x−1L, a) = p(aA∗|x−1L)

(10)

The automaton M is the minimal SDFA generating L, and its construction is
supported by the following facts which allow us to extend the Myhill-Nerode
theorem (Hopcroft & Ullman 1979) for stochastic automata:

1. The automaton M is finite and not larger than any other automaton
A = (QA,A, δA, qA

I , pA) generating L. By writing qx = δA(qI , x), and
making repeated use of (7) one gets from the definition (9),

p(w|x−1LA) =
πA(qI , xw)
πA(qI , xA∗) =

πA(qx, w)
πA(qx,A∗) = πA(qx, w). (11)

7

As the number of different values for qx is bounded by |QA|, the size
of the automaton A, so is the number of different languages x−1L, and
therefore |QM | ≤ |QA|.

2. The transition function δM is well defined, i.e.,

x−1L = y−1L ⇒ δM (x−1L, a) = δM (y−1L, a). (12)

Indeed, for all w ∈ A∗

p(w|a−1x−1L) =
p(aw|x−1L)
p(aA∗|x−1L)

=
p(xaw|L)
p(xaA∗|L)

= p(w|(xa)−1L). (13)

and therefore (xa)−1L = a−1x−1L. With this, Eq. (12) is straightfor-
ward. In addition, the previous relation allows one to write δM (qI , w) =
w−1L.

3. The automaton M generates LM = L. In fact, it is easier to prove
πM (x−1L,wA∗) = p(wA∗|x−1L) for all x,w ∈ A∗, which includes the
initial state (x = λ) as a special case. The equation trivially holds for
all x when w = λ. According to (7)

πM (x−1L, awA∗) = pM (x−1L, a)πM ((xa)−1L,wA∗) (14)

Finally, by induction in w and using (10), one gets

πM (x−1L, awA∗) = p(aA∗|x−1L)p(wA∗|(xa)−1L) = p(awA∗|L).
(15)

In order to identify the canonical generator, we need to define the prefix
set and the short-prefix set of L as:

Pr(L) = {x ∈ A∗ : x−1L 6= ∅} (16)
Sp(L) = {x ∈ Pr(L) : x−1L = y−1L ⇒ x ≤ y} (17)

Note that x−1L 6= y−1L for all x, y ∈ Sp(L) such that x 6= y, and therefore,
the strings in Sp(L) are representatives of the states in the canonical gen-
erator M . Accordingly, we will use them in the construction of M and add
transitions of the type δ(x, a) = xa, except when xa is not a short prefix.
In order to deal with these undefined transitions we will use the kernel and
the frontier set of L, defined respectively as:

K(L) = {λ} ∪ {xa ∈ Pr(L) : x ∈ Sp(L) ∧ a ∈ A} (18)
F (L) = K(L)− Sp(L) (19)

Note that K(L) has size at most 1+ |M ||A| and contains Sp(L) as a subset.
Our aim is to identify the canonical generator from random examples.

A stochastic sample S of the language L is an infinite sequence of strings

8

generated according to the probability distribution p(w|L). We denote with
Sn the sequence of the n first strings (not necessarily different) in S, which
will be used as input for the algorithm. The number of occurrences in Sn of
the string x will be denoted with cn(x), and for any subset X ⊂ A∗,

cn(X) =
∑

x∈X

cn(x). (20)

The sequence Sn defines a stochastic language Ln with the probabilities

p(x|Ln) =
1
n

cn(x). (21)

The prefix tree automaton of Sn is a SDFA, Tn = (QT ,A, δT , qT
I , pT),

which generates Ln and can be interpreted as a model for the target language
L assigning to every string the experimental probability. Formally,

QT = Pr(Ln)

δT (x, a) =
{

xa if xa ∈ Pr(Ln)
∅ otherwise

qT
I = λ

pT (x, a) = cn(xaA∗)
cn(xA∗)

(22)

Probabilities of the type pT (x, λ) are evaluated according to (6).

4 The inference algorithm

We define the boolean function equivL : K(L)×K(L) → {true, false} as

equivL(x, y) = true ⇔ x−1L = y−1L. (23)

Note that equivL is an equivalence relation for the strings in the kernel
K(L). We will make use of the following lemma:

Lemma 1 Given L, a SDRL, the structure of the canonical generator of L
is isomorphic to:

Q = Sp(L)
qI = λ

δ(x, a) = y
(24)

where, for every (x, a) ∈ Sp(L)×A, y is the only string in Sp(L) such that
equivL(xa, y).

Proof. Let Φ : Q → QM be defined as Φ(x) = x−1L. The mapping Φ is
an isomorphism if δM (Φ(x), a) = Φ(δ(x, a)), which means (xa)−1L = y−1L.
Therefore, Φ is isomorphism if and only if y is a string in Sp(L) satisfying

9

equivL(xa, y) and, according to definition (17), y is unique. Note that
x ∈ Sp(L) ⇒ xa ∈ K(L), and equivL remains well defined.

The next lemma shows that the problem of inferring the structure of the
canonical generator can be reduced to that of learning the correct function
equivL.

Lemma 2 The structure of the canonical generator of L can be obtained
from equivL and any D ⊂ Pr(L) such that K(L) ⊂ D with the algorithm
depicted in Fig. 3, which gives Sp(L) and F (L) as byproducts.

Proof.(sketch) Induction in the number of iterations shows that Sp[i] ⊂
Sp(L), F [i] ⊂ F (L) and W [i] ⊂ K(L), where the super-index denotes the
result after i iterations. On the other hand, if xa is in K(L), induction in the
length of the string shows that xa eventually enters the algorithm. Follow-
ing Lemma 1, for every x ∈ Sp(L), if xa is also in Sp(L), then δ(x, a) = xa.
However, if xa 6∈ Sp(L), there exists y ∈ Sp(L) such that equivL(xa, y) and
δ(x, a) = y.

The algorithm 3 performs a branch and bound process following the
prefix tree. Every time a short prefix x is found (a string which has no shorter
equivalent string) the possible continuations xa are added as candidates for
elements in Sp. On the contrary, if x is not a short prefix, no string is added
and only the corresponding transition is stored.

One can replace the subset D with Pr(Ln) ⊂ Pr(L), which contains
K(L) when n large enough. On the other hand, equivL is always well
defined because the function is never called out of its domain. As x ∈ K(L)
and y ∈ Sp(L), the algorithm makes at most |K(L)| × |Sp(L)| calls to
equivL. Thus, the global complexity of the algorithm is O(|A||M |2) times
the complexity of function equivL.

5 Convergence of the algorithm

In order to evaluate the equivalence relation x−1L = y−1L, we will use a
variation of (3) which improves1 convergence:

L1 = L2 ⇔ p(aA∗|z−1L1) = p(aA∗|z−1L2) ∀a ∈ A, z ∈ A∗ (25)

Taking into account (10), the above relation means that for all z ∈ A∗ and
a ∈ A ∪ {λ}

pM ((xz)−1L, a) = pM ((yz)−1L, a) (26)

In practice, L is unknown and function equivL(x, y), defined as x−1L =
y−1L, is replaced with the experimental function compatiblen(x, y), which
checks x−1Ln = y−1Ln instead. This means using pT instead of pM in (26).

1This method allows one to distinguish different probabilities faster, as more informa-
tion is always available about a prefix than about the whole string.

10

algorithm rlips
input:D ⊂ Pr(L) such that K(L) ⊂ D
output:QM = Sp (short prefix set)

F (frontier set)
δK (transition function)

begin algorithm
Sp = {λ} (short prefix set)
F = ∅ (frontier set)
W = A (candidate strings)
do (while W 6= ∅)

x = minW
W = W − {x}
if ∃y ∈ Sp : equivL(x, y) then

F = F ∪ {x} [x is not a short prefix]
δM (w, a) = y [with wa = x, a ∈ A, w ∈ A∗]

else
Sp = Sp ∪ {x} [x is a short prefix]
W = W ∪ {xa ∈ D : a ∈ A} [add new candidates]
δM (w, a) = x [with wa = x, a ∈ A, w ∈ A∗]

endif
end do

end algorithm

Figure 3: Algorithm rlips.

As Ln is stochastic, a confidence range has to be defined for the difference
between the probabilities in x−1Ln and y−1Ln. There is a number of dif-
ferent statistical tests (Hoeffding 1963; Feller 1950; Anthony & Biggs 1992)
leading to a class of algorithms rather than a single one. We have chosen
the Hoeffding (1963) bound as described in the Appendix and implemented
in function different (Fig. 5). It returns the correct answer with proba-
bility greater than (1 − α)2, being α an arbitrarily small positive number.
Because the number of checks grows when the size t of the prefix tree au-
tomaton grows, we will allow the parameter α to depend on n.

According to (26), compatibility of two states x and y in QT will be
rejected if some z ∈ A∗ is found such that the estimated transition probabil-
ities from xz and yz are different. We will show that compatiblen(x, y),
as plotted in Fig. 4, returns in the limit of large n the same value as
equivL(x, y) for all x, y ∈ K(L) . Therefore, following Lemma 2, the cor-
rect structure of the canonical acceptor can be inferred in the limit, and the
transition probabilities pM (x, a) defined in Eq. (10) can be evaluated from
Sn by means of the experimental ones pT (x, a), defined in Eq. (22).

11

algorithm compatiblen

input:x, y (strings)
Tn (prefix tree automaton)

output:boolean
begin algorithm
do (∀z ∈ A∗: xz ∈ Pr(Ln) ∨ yz ∈ Pr(Ln)

if different (cn(xz), cn(xzA∗), cn(yz), cn(yzA∗), α) then
return false

endif
do (∀a ∈ A)

if different (cn(xzaA∗), cn(xzA∗), cn(yzaA∗), cn(yzA∗), α) then
return false

endif
end do

end do
return true

end algorithm

Figure 4: Algorithm compatible. Function different is plotted in Fig. 5.

Theorem 3 Let the parameter αn in function different be such that the
sum

∑∞
n=0 nαn is finite. Then, with probability one, function equivL(x, y)

and function compatiblen(x, y) return the same value for any x, y ∈ K(L)
except for finitely many values of n.

Proof. Following (26), the loop over z in function compatiblen checks, for
the subtrees rooted at x and y, if the transition probabilities pT (xz, a) and
pT (yz, a) are similar (in the sense of function different) and also compares
pT (xz, λ) with pT (yz, λ) at every node. There are at most tn−1 arcs plus tn
nodes in a subtree, and therefore, a maximum of 2tn calls to different in
compatiblen. Let An be the event equivL(x, y) 6= compatiblen(x, y) and
p(An) its probability. As different works with a confidence level above
(1 − αn)2, the probability p(An) is smaller than 4αnτn, where τn is the
expected size of the prefix tree automaton after n examples. According
to the Borel-Cantelli lemma (Feller, 1950), if

∑
n p(An) < ∞ then, with

probability one, only finitely many events An take place. As the expected
size τn of the prefix tree automaton cannot grow faster than linearly with n,
it is sufficient that

∑
n nαn < ∞ for compatiblen(x, y) and equivL(x, y)

to return the same value, except for finietly many values of n.
An immediate consequence from the previous proof is that the complex-

ity of compatiblen is bounded by n and, according to the discussion at the
end of the former section, the algorithm rlips works in time O(n|A||M |2).
Therefore, the algorithm is, in the limit of large sample sets, linear with the

12

algorithm different
input:n, f, n′, f ′, α
output:boolean
begin algorithm
if n = 0 or n′ = 0 then

return false
endif

return
∣∣∣ f
n − f ′

n′

∣∣∣ > εα(n) + εα(n′)
end algorithm

Figure 5: Algorithm different. Function εα is defined by Eq. 31.

size of the sample, and usually dominated by input/output processes.
Recall that rlips only needs compatiblen(x, y) to be correct within the

finite set K(L)× Sp(L). Thus, with probability one, there exists an N such
that all calls to compatiblen with n > N return the correct value and, then,
rlips outputs the correct structure of the canonical generator.

6 A lower bound on the sample size for conver-
gence

An interesting question is the number of examples necessary in order to
correctly infer a SDFA. This number depends on the detailed structure of
the automaton and the statistical tests being applied. However, a lower
bound for any algorithm of the class described in this paper can be found.

For every pair of strings x1, x2 ∈ Sp(L) such that x1 6= x2, a minimum
number of examples needed in order to find x−1

1 L 6= x−1
2 L will be denoted

with γ(x1, x2). Following (26), there exist z ∈ A∗ and a ∈ A ∪ {λ}, such
that

|pM (x′1, a)− pM (x′2, a)| 6= 0, (27)

being x′1 = x1z and x′2 = x2z. One cannot expect convergence to take place
before the statistical error of the experimental range becomes smaller than
the above difference. An algorithm-independent estimate of the error range
is given by the sum of standard deviations σ1 + σ2 with

σi '
√

pM (x′i, a)(1− pM (x′i, a))
np(x′iA∗|L)

, (28)

where n is the number of examples in Sn.
Therefore, comparison of pM (x1z, a) and pM (x2z, a) cannot be expected

13

Figure 6: SFA corresponding to the Reber grammar

to be correct before n > N(x1, x2, z, a) with

N(x1, x2, z, a) =

√
pM (x′1,a)(1−pM (x′1,a))

p(x′1A∗|L)
+

√
pM (x′2,a)(1−pM (x′2,a))

p(x′2A∗|L)

pM (x′1, a)− pM (x′2, a)

2

(29)

We may take now γ(x1, x2) = min(z,a){N(x1, x2, z, a)}, because one string z
and one symbol a are enough to find x1 and x2 not compatible. The most
difficult comparison gives a lower bound for the difficulty of identifying the
canonical generator:

Γ1 = max
x,y∈Sp(L)

{γ(x, y) : y < x} (30)

A similar bound Γ2 applies when x ∈ K(L) and y ∈ Sp(L), but in this
case it is enough to look for all y < z where z is the only string in Sp(L)
equivalent to x. As an example, the Reber grammar of Fig. 6, has a lower
bound Γ ' 330 corresponding to x1 = BT , x2 = BTX and z = λ and
compatible with the experimental results discussed in next section.

7 Results and discussion

The performance of the algorithm has been tested with a variety of gram-
mars. For each grammar, different samples were generated with the canoni-
cal generator of the grammar and given as input for rlips. For instance, the
Reber grammar (Reber 1967) of Fig. 6 has been used in order to compare
rlips with previous works on neural networks which used this grammar as
check (Castaño, Casacuberta & Vidal 1993).

14

In Fig. 7 we plot the average (after 10 experiments) number of nodes
in the automaton found by rlips as a function of the size of the sample
set generated by the Reber grammar. As seen in the figure, the number of
states converges to the right value when the sample is large enough. In order
to check that also the structure was correctly inferred, the relative entropy
(Cover & Thomas 1991) between the hypothesis and the target grammar has
been plotted in Fig. 8. For comparison, the relative entropy of the strings
in the sample (or, equivalently, of the prefix tree automaton) is also plotted,
and shows a much slower convergence. Indeed, if the symmeterized form is
used, this latter distance becomes infinite.

As indicated by Fig. 7, when the number of examples available is small
the algorithm tends to propose hypothesis which over-generalize the target
language. In this range, because the estimations of the transition probabil-
ities are not accurate, most pairs of states are taken to be equivalent and
the automaton found contains fewer states than the correct one. However,
when enough information is available, the algorithm always finds the cor-
rect structure of the canonical generator. The number of examples needed to
achieve convergence is relatively small (about eight hundred) and consistent
with the bound of previous section. This number compares rather favorably
with the performance of recurrent neural networks (Castaño, Casacuberta
& Vidal 1993) which cannot guarantee convergence for this grammar even
after tens of thousands of examples. The algorithm behaved robustly with
respect to the choice of parameter α, due to its logarithmic dependence on
the parameter.

In Fig. 9, the average time needed by the algorithm is plotted as a
function of the number of examples in the sample (dispersions are negligible
in this picture). The linear complexity is observed and the algorithm proves
very fast even for huge sample sets.

Fig. 10 shows the number of examples needed in order to identify 250
randomly generated automata. The correlation with Γ suggests that the
bound Γ = max(Γ1,Γ2) obtained in previous section can be regarded as
an indication of the difficulty in the identification. These experiments also
showed that even some small automata can be difficult to identify, in the
sense that huge samples are needed, if they contain quasi-equivalent states
(states with almost identical transition probabilities) or states which are
very unlikely reached from the initial state. Therefore, in order to keep the
experiments with larger automata feasible, we excluded those with Γ > 106.
With this restriction, rlips was able to correctly identify any randomly
generated medium-size automata as the one depicted in Fig. 11, where Γ '
500000 and identification was reached after 3 million examples.

15

0

2

4

6

8

10

0 200 400 600 800 1000
size of sample

Figure 7: Number of nodes in the hypothesis for the Reber grammar as a
function of the size of the sample.

1e-05

0.0001

0.001

0.01

0.1

1

1000 10000 100000 1e+06
size of sample

+ + + + + + +

Figure 8: Lower dots: relative entropy (in bits) between the hypothesis and
the target language. Upper dots: same between sample and target.

16

0

5

10

15

20

0 20000 40000 60000
size of sample

Figure 9: Time (in seconds) needed by our implementation of rlips running
on a Hewlett-Packard 715 (40 MIPS) as a function of the size of the sample.

10

100

1000

10000

100000

1e+06

10 100 1000 10000 100000

si
ze

 o
f s

am
pl

e

Γ

Figure 10: Sample size n needed for convergence as a function of Γ for 250
randomly generated automata. The line n = Γ is plotted to guide the eye.

17

0(0.72)

1(0.28)

0(0.31)

1(0.34)

1(0.40)
0(0.60)

0(0.79)

1(0.21)

0(0.50)

1(0.28)

0(0.23)

1(0.77)

1(0.35)

0(0.34)

1(0.65)

0(0.15)

0(0.46)

1(0.49)

0(0.36)

1(0.38)

0(0.44)

1(0.11)

0(0.89)

1(0.39)

0(0.61)

0(0.26)

1(0.72)

0(0.28)

1(0.03)

1(0.74)

1(0.61)

0(0.39) 0(0.82)

1(0.18)

0(0.18)

1(0.28)

1(0.31)

0(0.10)

0(0.50)

1(0.50)

Figure 11: Medium-size automaton identified by rlips after 3 million ex-
amples.

18

8 Conclusions

An algorithm has been proposed which identifies the minimal stochastic
automaton generating a deterministic regular language. Identification is
achieved from stochastic samples of the strings in the language, and no neg-
ative examples are used. Experimentally, the algorithm needs very short
times and comparatively small samples in order to identify the regular set.
For large samples, linear time is needed (about one minute for a sample
containing one million examples running on a Hewlett-Packard 715). The
algorithm is suitable for recognition tasks where noisy examples or random
sources are common. In this line, applications to speech recognition prob-
lems are planned.

Acknowledgments

The authors want to acknowledge useful suggestions from M.L. Forcada and
E. Vidal.

Appendix

We have chosen the following bound, due to Hoeffding (1963), for the ob-
served frequency f/m of a Bernoulli variable of probability p. Let α > 0
and let

εα(m) =

√
1

2m
log

2
α

(31)

then, with probability greater than 1− α,
∣∣∣∣p−

f

m

∣∣∣∣ < εα(m) (32)

Consistently, for every couple of Bernoulli variables with probabilities p and
p′ respectively, with probability greater than (1− α)2,

∣∣∣ f
m − f ′

m′

∣∣∣ < εα(m) + εα(m′) if p = p′

∣∣∣ f
m − f ′

m′

∣∣∣ > εα(m) + εα(m′) if |p− p′| > 2εα(m) + 2εα(m′)
(33)

and only one of the two conditionals stands for m and m′ large enough,
as εα(m) → 0 when m grows. This is the check implemented through the
logical function different, shown in Fig. 5. The return value will be correct
for large samples with probability greater than (1− α)2. In our algorithm,
α will depend polynomially on the size of the sample, but even in this case
the implicit condition εα(t)(cn(x)) → 0 remains true, as the logarithm in
Eq. (31) cannot compensate the growth in the denominator.

19

References

• Angluin, D.(1988): Identifying Languages from Stochastic Examples. Inter-
nal Report YALEU/DCS/RR–614.

• Anthony, M. and Biggs, N. (1992): Computational Learning Theory. Cam-
bridge University Press, Cambridge.

• Carrasco, R.C. and Oncina, J. (1994): Learning stochastic regular grammars
by means of a state merging method, in Grammatical Inference and Appli-
cations, (R.C. Carrasco and J. Oncina, Eds.). Lecture Notes in Artificial
Intelligence 862, Springer-Verlag, Berlin.

• Castaño, M.A., Casacuberta, F., Vidal, E. (1993): Simulation of Stochastic
Regular Grammars through Simple Recurrent Networks, in New Trends in
Neural Computation (Eds. J. Mira, J. Cabestany and A. Prieto). Springer
Verlag, Lecture Notes in Computer Science 686, 210–215.

• Cover, T.M and Thomas, J.A. (1991): Elements of Information Theory. John
Wiley and Sons, New York.

• Feller, W. (1950): An introduction to probability theory and its applications.
John Wiley and Sons, New York.

• Fu, K.S. (1982): Syntactic Pattern Recognition and Applications. Prentice
Hall, Englewood Cliffs, N.J.

• Giles, C.L., Miller, C.B., Chen, D., Chen, H.H., Sun, G.Z., and Lee, Y.C.
(1992): Learning and Extracting Finite State Automata with Second Order
Recurrent Neural Networks. Neural Computation 4, 393–405.

• Gold, E.M. (1967): Language identification in the limit. Information and
Control 10, 447–474.

• Hoeffding, W. (1963): Probability inequalities for sums of bounded random
variables. American Statistical Association Journal 58, 13–30.

• Hopcroft, J.E. and Ullman, J.D. (1979): Introduction to Automata The-
ory, Languages and Computation. Addison Wesley, Reading, Massachusetts
(1979).

• Lang, K. (1992): Random DFA’s can be Approximately Learned from Sparse
Uniform Examples, in Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory.

• Maryanski, F. J. and Booth, T.L. (1997): Inference of Finite-State Proba-
bilistic Grammars. IEEE Transactions on Computers C26, 521–536.

• Oncina, J. and Garćıa, P. (1992): Inferring Regular Languages in Polynomial
Time, in Pattern Recognition and Image Analysis (N. Pérez de la Blanca,
A. Sanfeliu and E. Vidal Eds.), World Scientific.

• Pollack, J.B. (1991): The Induction of Dynamical Recognizers. Machine
Learning 7, 227–252.

• Reber, A.S. (1967): Implicit Learning of Artificial Grammars. Journal of
Verbal Learning and Verbal Behaviour 6, 855–863.

• Ron, D., Singer, Y., Tishby, N. (1995): On the Learnability and Usage of
Acyclic Probabilistic Finite Automata, in Proceedings of the 8th Annual Con-
ference on Computational Learning Theory (COLT’95), 31–40. ACM Press,
New York, 1995.

20

• Smith, A.W. and D. Zipser, Z. (1989): Learning Sequential Structure with the
Real-Time Recurrent Learning Algorithm. International Journal of Neural
Systems 1, 125–131.

• Stolcke A. and Omohundro,S. (1993): Hidden Markov Model Induction by
Bayesian Model Merging, in Advances in Neural Information Processing Sys-
tems 5 (C.L. Giles, S.J. Hanson and J.D. Cowan Eds.), Morgan Kaufman,
Menlo Park, California.

• van der Mude, A., and Walker, A. (1978): On the Inference of Stochastic
Regular Grammars. Information and Control 38, 310–329.

• Watrous R.L., and Kuhn, G.M. (1992): Induction of Finite-state Languages
Using Second-Order Recurrent Networks. Neural Computation 4, 406–414.

21

