
Accurate computation of the relative entropy

between stochastic regular grammars

Rafael C. Carrasco
Departamento de Lenguajes y Sistemas Informáticos

Universidad de Alicante, E-03071 Alicante
E-mail: carrasco@dlsi.ua.es

Running head: Relative entropy between grammars.
Keywords: stochastic languages, relative entropy, grammatical inference.

1

Abstract

Works dealing with grammatical inference of stochastic grammars
often evaluate the relative entropy between the model and the true
grammar by means of large test sets generated with the true distri-
bution. In this paper, an iterative procedure to compute the relative
entropy between two stochastic deterministic regular grammars is pro-
posed.

Resumé

Les travails sur l’inférence de grammaires stochastiques évaluent
l’entropie relative entre le modèle et la vraie grammaire en utilisant
grands ensembles de test générés avec la distribution correcte. Dans
cet article, on propose une procédure itérative pour calculer l’entropie
relative entre deux grammaires.

2

1 Introduction

Stochastic models have been widely used in computer science, especially
in those tasks dealing with noisy data or random sources such as pattern
recognition, natural language modeling, etc. A stochastic model predicts
a probability distribution for the events in the class under consideration
and one of the most popular measures of the success in the prediction is
the so-called relative entropy or Kullback-Leibler distance (see, for instance,
ref. [2]). On the other hand, a number of algorithms [6, 4, 1] have been pro-
posed within the grammatical inference approach that identify stochastic
regular grammars from examples. Regular grammars define a rather small
subset of languages, in particular those whose that can be processed and
recognized by finite-state automata. However, they present the important
advantage that the identification problem is well defined and some algo-
rithms, as the one by Carrasco & Oncina [1] have been proved to converge
in the limit to the correct grammar. Usually, instead of the relative entropy
between the known grammar and the proposed model, the relative entropy
between a large test set (a collection of examples generated with the target
grammar) and the hypothesis is evaluated to check the different techniques.
However, an accurate estimation requires huge test sets to be generated, and
sometimes convergence can be very slow. Therefore, an algorithm providing
the exact distance without generating large test sets is of interest.

2 Preliminaries

Let A = {a, b, ...} be a finite alphabet, A∗ the set of strings generated by
A and λ the empty string. For every string x ∈ A∗, the expression xA∗
denotes the set of strings that contain x as a prefix. A stochastic language
L is defined by a probability density function p(x|L) for the strings x ∈ A∗.
The probability of any subset X ⊂ A∗ is

p(X|L) =
∑

x∈X

p(x|L). (1)

A stochastic regular grammar (SRG), G = (A, V, S,R, pG), consists of a
finite alphabet A, a finite set of variables V —one of which, S, is referred
to as the starting symbol—, a finite set of derivation rules R with either of
the following structures

X → aY
X → λ

(2)

3

where a ∈ A, X, Y ∈ V , and a real function pG : R → [0, 1] giving the
probability of each derivation. Obviously, the sum of the probabilities for
all derivations from a given variable X must be equal to one. The defini-
tion (2), although formally different, is equivalent to other definitions used
in the literature, as the one in [3]. A stochastic grammar G is said to be
deterministic if for all X ∈ V and for all a ∈ A there is at most one Y ∈ V
such that pG(X → aY) 6= 0.

Every stochastic deterministic regular grammar G defines a stochastic
deterministic regular language (SDRL) through the probabilities p(w|G) =
pG(S ⇒ w). The probability pG(S ⇒ w) that the grammar G generates the
string w ∈ A∗ is defined in a recursive way:

pG(X ⇒ λ) = pG(X → λ)
pG(X ⇒ aw) = pG(X → aY)pG(Y ⇒ w)

(3)

where Y is the only variable satisfying pG(X → aY) 6= 0. Provided that the
SDRG contains no useless symbols [5], the probabilities of all strings sum
up to 1:

p(A∗|G) =
∑

w∈A∗
p(w|G) = 1 (4)

A stochastic deterministic finite automaton (SDFA), A = (Q,A, δ, qI , pA),
consists of an alphabet A, a finite set of nodes Q = {q1, q2, . . . qn}, with
qI ∈ Q the initial node, a transition function δ : Q × A → Q and a prob-
ability function pA : Q × A → [0, 1]. The probability pA(qi, λ), defined for
every node qi as

pA(qi, λ) = 1−
∑

a∈A
pA(qi, a) , (5)

represents the probability that the string ends at qi. Every SDFA generates
a SDRL through the probabilities p(w|A) = π(qI , w), defined recursively as

π(qi, λ) = pA(qi, λ)
π(qi, aw) = pA(qi, a)π(δ(qi, a), w)

(6)

The comparison of equations (3) and (6) directly suggests the way of
building a SDFA that generates the same language as a given grammar G.
Indeed, it suffices to take Q = V , qI = S and for all a ∈ A and X, Y ∈ V

δ(X, a) = Y iff X ⇒ aY ∈ R
pA(X, a) = pG(X ⇒ aY)

. (7)

4

3 Entropy of a SRDL

The entropy of the stochastic language L is defined [2] as

H(L) = −
∑

x∈A∗
p(x|L) log p(x|L) (8)

with the convention 0 log 0 = 0. When the logarithm is binary, the result
is expressed in bits. The entropy is always a positive number related to
the average length of the strings in a minimal coding of the language and
to the average number of yes/no questions (with an optimal interrogation
strategy) necessary in order to identify the result of a random extraction of
a word in L.

Two stochastic languages having the same entropy are not necessarily
identical. However, the magnitude

H(L1, L2) =
∑

x∈A∗
p(x|L1) log

p(x|L1)
p(x|L2)

(9)

has the property that H(L1, L2) = 0 if and only if p(x|L1) = p(x|L2) for all
strings x in A∗. This magnitude is known as relative entropy or Kullback-
Leibler distance, although it is not a true distance (even if it can be easily
symmeterized, it does not satisfy the triangular inequality). The relative
entropy indicates the penalty (in bits) for using a wrong distribution instead
of the true one when coding a word or when predicting the result of a random
experiment.

In the following, pL(a|x) will denote the conditioned probability that
symbol a follows the prefix x in L:

pL(a|x) =
p(xaA∗|L)
p(xA∗|L)

(10)

Consistently with eq. (5), we will denote with pL(λ|x) the probability that
the “end of string” is observed after the prefix x, i.e., that x is not followed
by any other symbol. In other words,

pL(λ|x) =
p(x|L)

p(xA∗|L)
(11)

With these conventions, for instance, the probability p(ab|L) for the string
ab in the language L satisfies:

log p(ab|L) = log pL(a|λ) + log pL(b|a) + log pL(λ|ab) (12)

5

Thus, when evaluating the entropy as defined in eq. (8), the term log pL(b|a)
will appear for every string containing ab as a prefix. In general, a factor
log pL(a|x), will appear for every string in the subset xaA∗, while the factor
log pL(λ|x) will only multiply p(x|L). Therefore,

H(L) = −
∑

x∈A∗

∑

a∈A
p(xaA∗|L) log pL(a|x)−

∑

x∈A∗
p(x|L) log pL(λ|x). (13)

By using eqs. (10) and (11), one can rewrite the above equation in a simpler
form:

H(L) = −
∑

x∈A∗

∑

a∈A′
p(xA∗|L)pL(a|x) log pL(a|x) (14)

where A′ = A ∪ {λ}.
If L is generated by a SRG, there is an associated automaton A =

(Q,A, δ, qi, pA) generating L, and pL(a|x) may take only a finite number
of different values. Indeed, for all x satisfying δ(qI , x) = qi and for all
a ∈ A′ one gets pL(a|x) = pA(qi, a). The different subsets Li = {x ∈ A∗ :
δ(qI , x) = qi} define a partition in L and, if one defines

ci =
∑

x∈Li

p(xA∗|L), (15)

the entropy becomes

H(L) = −
∑

qi∈Q

∑

a∈A′
ci pA(qi, a) log pA(qi, a) (16)

This sum can be computed straightforwardly once the coefficients ci are
known.

Note that always λ ∈ LI (being I the index of the initial state) and recall
that p(A∗|L) = 1. This allows us to deal separately with the special case
x = λ and write

ci = δiI +
∑

x∈A∗

∑

a∈A
xa∈Li

pA(xaA∗|L) (17)

where δij is Kronecker’s delta. As L =
⋃

j Lj and for every x ∈ Lj ,
p(xaA∗|L) = p(xA∗|L)pA(qj , a), one gets

ci = δiI +
|Q|∑

j=1

∑

x∈Lj

∑

a∈A
δ(qj ,a)=qi

p(xA∗|L)p(qj , a) (18)

6

Therefore, the coefficients ci can be obtained through an iterative method:

c
[t+1]
i =

|Q|∑

j=1

Aijc
[t]
j + δiI (19)

with

Aij =
∑

a∈A
δ(qj ,a)=qi

pA(qj , a). (20)

and c
[0]
i = 0. It is easy to prove by induction in t that c

[t+1]
i ≥ c

[t]
i but

c
[t]
i ≤ ci, and therefore, the iterative calculation converges rapidly to the

correct value.

4 The relative entropy between SDRL

An analogous procedure can be applied to the relative entropy between two
stochastic regular languages L and L′, generated by M and M ′ respectively.
In this case,

H(L,L′) =
∑

qi∈Q

∑

q′j∈Q′

∑

a∈A′
cij pM (qi, a) log

pM (qi, a)
pM ′(q′j , a)

(21)

with the coefficients

cij =
∑

x∈Lij

p(xA∗|L), (22)

where

Lij = {x ∈ A∗ : δ(qI , x) = qi ∧ δ′(q′I′ , x) = q′j}. (23)

The coefficients cij are evaluated through the relation:

c
[t+1]
ij = δiIδI′j +

|Q|∑

k=1

|Q′|∑

l=1

Aijkl c
[t]
kl (24)

where

Aijkl =
∑

a∈A
δ(qk,a)=qi

δ′(q′l,a)=q′j

pM (qk, a). (25)

The above expression for cij
[t+1] is straightforward to prove following the

same steps of former section and noting that λ ∈ LII′ .

7

2

2.5

3

3.5

4

10 100 1000 10000 100000 1e+06
size of test set

Figure 1: Relative entropy (in bits) between two randomly generated gram-
mars of size 10. Solid line: exact computation. Dots: estimation using
samples.

5 Results and Conclusion

The Figure 1 shows the relative entropy between two randomly generated
grammars, each with 10 variables and 30 rules, both working with the alpha-
bet A = {0, 1}. The solid line is the result of the algorithm, while the dots
represent the results and deviations of the relative entropy with random test
sets of increasing size. It can be seen that even for relatively simple gram-
mars as these, the convergence to the true value is rather slow, and huge
samples are needed in order to get a good estimate of the relative entropy
between the languages. Therefore, the procedure described in this paper
can be used for a more accurate testing of grammatical inference methods.

Acknowledgements

This work was partially supported by the Spanish CICYT under grant TIC-
97-0941. I also thank Dr. Mikel Forcada for his suggestions.

8

References

[1] Carrasco, R.C. and Oncina, J. (1994): Learning stochastic regular
grammars by means of a state merging method, in Grammatical In-
ference and Applications (R.C. Carrasco and J. Oncina, Eds.). Lecture
Notes in Artificial Intelligence 862, Springer-Verlag, Berlin.

[2] Cover, T.M and Thomas, J.A. (1991): Elements of Information Theory.
John Wiley and Sons, New York.

[3] Fu, K.S. (1982): Syntactic Pattern Recognition and Applications. Pren-
tice Hall, Englewood Cliffs, New Jersey.

[4] Stolcke A. and Omohundro, S. (1993): Hidden Markov Model Induc-
tion by Bayesian Model Merging, in Advances in Neural Information
Processing Systems 5 (C.L. Giles, S.J. Hanson and J.D. Cowan Eds.),
Morgan Kaufman, Menlo Park, California.

[5] Hopcroft, J.E. and Ullman, J.D. (1979): Introduction to automata
theory, languages and computation. Addison Wesley, Reading, Mas-
sachusetts.

[6] van der Mude, A. and Walker, A. (1978): On the Inference of Stochastic
Regular Grammars. Information and Control 38, 310–329.

9

