
Identifying a reduced DTD

from marked up documents∗

Alejandro Bia†, Rafael C. Carrasco‡ and Mikel L. Forcada‡
†Miguel de Cervantes Digital Library. Universidad de Alicante. Spain

‡Dept. de Lenguajes y Sistemas Informáticos. Universidad de Alicante. Spain.

∗Work supported by the Spanish CICyT through grant TIC97–0941

Identifying a reduced DTD

from marked up documents∗

Abstract

This paper describes a method for the automatic generation of simplified
DTDs from a source DTD and a sample of marked up documents. The purpose
is to create the minimal DTD with which all the documents in the the sample
comply. In this way, new files can be created and parsed using this simpli-
fied DTD but still being compliant with the original, more general one. The
pruned DTD makes the task of markup easier, specially for non-experienced
XML writers.

This tool was used to obtain simplified versions of the Text Encoding Initia-
tive DTD to be used at the Miguel de Cervantes digital library1. This work is
part of a larger project in the field of text markup and derived applications [1].

Keywords: automatic learning, feature extraction, grammatical inference, docu-
ment analysis, document markup, digital libraries.

1 Introduction

An Extended Markup Language (XML) document type definition (DTD) specifies
the elements that are allowed in a document of this type. Document types are defined
by extended context-free grammars in which the right hand side of the productions
are unambiguous regular expressions [2]. Previous work has addressed the task of
identifying a DTD from examples. A common difficulty in this approach is the need
to find a correct degree of generalization. Some practical tools as FRED [3] let the
users customize their preferred degree of generalization. Ahonen [4, 5] builds a (k, h)-
testable model for the element contents and needs non-trivial further generalization
in order to disambiguate the model [6].

∗Work supported by the Spanish CICyT through grant TIC97–0941
1http://cervantesvirtual.com/

General

(wide scope)
DTD

XML
Sample

files

Analyze
markup
usage

Build
Glushkov
automata

Simplify
Regular

expressions

Simplified

DTD

Figure 1: Architecture of the DTD simplifier

Young-Lai and Tompa [7] rely on a stochastic approach to control overgeneral-
ization, based in turn on the algorithm by Carrasco and Oncina [8]. Presumably,
the stochastic approach needs large collections of hand-tagged documents. Pizza-
Chef [9] is a tool to generate DTDs suited to a collection of particular tasks and
compliant with the markup directives defined by the Text Encoding Initiative (TEI).

However, a general DTD defining a global frame that a whole set of files must
fulfill allows for a natural way to avoid overgeneralization. Indeed, any particular-
ized, narrow-scope DTD should not accept any document that is not accepted by
the general, wide-scope one.

Therefore, the objective of our approach is to automatically select only those
DTD features that are used by a set of valid documents and eliminate the rest of
them, obtaining a narrow scope DTD which defines a subset of the original markup
scheme. This pruned DTD can be used to build new documents of the same markup
subclass.

Using this automated method, the simplified DTD can be updated immediately
in the event that new features are added to (or even eliminated from) the sample
set of XML files. This process can be repeated as often as needed to generate an
updated DTD.

This technique also allows us to build a one-document DTD, i.e. the minimal
markup schema derived from the general DTD that a given XML document complies.
A further application of this technique is to generate statistics that may help DTD
designers improve their markup schemes. Information about the frequency of use
of certain elements within others helps us to detect unusual structures that could
reflect markup mistakes or DTD features that allow for unwanted generalization.

2 Motivation and general description

Saving the cost of developing our own DTD and text interchangeability are some
of the reasons why the teixlite.dtd2, XML version of the SGML teilite.dtd of
the TEI scheme, has been chosen at the Miguel de Cervantes Digital Library. But
the teixlite.dtd is still too complex for markup beginners. Our markup team
is composed mostly of humanists with some computer skills who appreciate their
computer work be simplified as much as possible.

On the other hand our XML documents do not use, and do not need all the
markup options provided by the teixlite.dtd. So a simpler DTD was needed to
simplify markup tasks and to avoid possible use of unwanted markup options. But
we still wanted our files to be TEI compliant and benefit from the advantages of
sharing a common DTD with other international digitization projects.

We started by defining what kinds of modifications will allowed in order to make
markup simpler to use but keeping TEI compatibility (except for minor exceptions).
In particular, we allowed for the following changes:

• To specify a set of normalized values for some attributes in order to enforce
their use instead of free data entry.

• To add new attributes only in a few necessary cases (this is the only exception
that may keep our files from being TEI compliant, but they can be easily
removed anytime we want full TEI compatibility).

• To impose restrictions in element inclusion rules in order to eliminate the
possibility of including certain elements at certain levels of the markup.

• To make some optional elements or attributes mandatory, following our specific
markup norms.

• To eliminate optional elements we will not use to simplify the markup task
and to avoid possible errors.

It is clear that doing the simplifications by hand is tedious and error prone.
Constructing a set of sample documents representative of all the types of documents
we need to markup together with a program that simplifies the DTD automatically
will alleviate this task.

A diagram of the process is shown in figure 1. As the diagram shows, the general
DTD is processed to extract the structure of the markup models and a Glushkov
automaton [10] is built for each one (that is, for each regular expression). The XML
sample files are then preprocessed to extract the elements used and their nesting

2Available through the TEI consortium at http://www.tei-c.org.

patterns. We keep track of the elements used in the sample files and mark the
visited states of the automata. Finally, we eliminate unused elements and simplify
the right parts of element definitions, i.e. the regular expressions that define further
nestings.

For the implementation of the DTD prune toolkit we needed both an XML and a
DTD parser. We assumed that both the XML sample files and the source DTD would
be well-formed and valid, so there would be no need to build validating parsers. In
particular, regular expressions are parsed against the EBNF grammar described in
the following section, although indeed, XML forces stricter parentization patterns.

3 Theoretical foundation

The set reg(Σ) of regular expressions over the alphabet Σ = {a1, a2, ..., a|Σ|} can
be defined as the language generated by the context-free grammar (V, T,R, E) with
rules

E → T |T“|”E
T → F |F“, ”T
F → W |W“ ∗ ”|W“ + ”|W“?”
W → “(”E“)”
W → a1|a2|...|a|Σ|

(1)

and terminals T = Σ∪{“|”, “, ”, “∗”, “+”, “?”, “(”, “)”}. For every regular expression
r ∈ reg(Σ), we denote with sym(r) ∈ Σ the subset of symbols used in r.

A marking of r is a pair (Φr, Er) with

• Er ∈ reg(N) such that no n ∈ N is used in Er more than once;
• Φr : N → Σ is a mapping such that r is the result of replacing every symbol

n ∈ sym(Er) in Er (called positions) with Φr(n).

For instance, if Σ = {a, b} and r = ((a, b)|a)∗, a marking of r is given by
Er = ((1, 2)|3)∗ with Φr(1) = Φr(3) = a and Φr(2) = b. We can immediately extend
Φr to work on subexpressions of Er if we assume that Φr is a homomorphism such
that Φr(Er) = r.

The XML standard requires the regular expressions describing the possible con-
tent of an element (that is, its content model)) to be unambiguous in the following
sense: an element or string in the document is witnessed without look-ahead by at
most one token in the regular expression. More precisely, a regular expression r
is 1-unambiguous if for all x, y, z ∈ N∗ (i.e., finite strings of naturals) and for all

n,m ∈ N
xny ∈ L(Er)
xmz ∈ L(Er)

n 6= m

 ⇒ Φr(xny) 6= Φr(xmy) (2)

The definition above can be formulated in an alternative fashion as follows.

Theorem 1 (Lemma 2.5 in [2]) A regular expression r is 1-unambiguous if and
only if the Glushkov automaton of r is deterministic.

Details on how to build the Glushkov automaton for a given expression r can be
found in the appendix and in [10]. Next theorem supports the validity of our sim-
plification process.

Theorem 2 Let r be a 1-unambiguous regular expression and f(Er) denote the
result of a homomorphism that replaces some positions in Er by the empty set symbol
∅. Then, Φr(f(Er)) is 1-unambiguous.

Proof: Let µ ⊂ sym(Er) be the subset of positions n in Er such that f(n) 6= ∅.
Then, L(f(Er)) = L(Er) ∩ reg(µ) and then L(f(Er)) ⊆ L(Er). Therefore, we may
substitute L(Er) by L(f(Er)) in definition (2) and the implication remains valid.
Then, Φr(f(Er)) is 1-unambiguous.

4 Regular expression pruning

The process by means of which each regular expression is simplified is based on a
bottom-up parse of the original regular expression. A syntax-directed definition [11]
is shown in an appendix. The process replaces any unwitnessed position in the
expression Er by the regular expression corresponding to the empty set (∅); then the
expression is projected into the reg(Σ) space; finally, the resulting regular expression
is rearranged to avoid using symbols not in Σ.

The following simplification rules, used in the last step, preserve unambiguity
as the resulting expression after each replacement exactly defines the same language.

∅, E = E, ∅ = ∅+ = ∅
∅|E = E|∅ = E
∅∗ = ∅? = λ

λ,E = E, λ = E

λ|E = E|λ =
{

E if empty(E)
E? otherwise

λ∗ = λ+ = λ? = λ
(3)

where λ is a special symbol denoting the empty string, not allowed in a valid reg-
ular expression and empty() is a boolean function determining whether the regular

expression accepts the empty string or not (the way to compute it efficiently can be
found in the appendix and in [10]).

5 Conclusions and future work

We have developed a method which has been used to automatically generate sim-
plified DTDs at the Miguel de Cervantes Digital Library. On this first stage, we
addressed the simplification of element type descriptions based on sample files. On
a second stage, we plan to add the automatic elimination or addition of attributes.
We also plan to collect statistics to detect unusual patterns that may reflect markup
mistakes.

References

[1] Alejandro Bia and Andrés Pedreño. The Miguel de Cervantes Digital Library: The
Hispanic Voice on the WEB. Literary and Linguistic Computing Journal, (to appear)
2000.

[2] Anne Brüggemann-Klein and Derick Wood. One-unambiguous regular languages. In-
formation and Computation, 142(2):182–206, 1998.

[3] Keith E. Shafer. Creating DTDs via the GB-engine and Fred. Technical report, OCLC
Online Computer Library Center, Inc., 6565 Frantz Road, Dublin, Ohio 43017-3395,
1995.

[4] Helena Ahonen. Automatic generation of SGML content models. Electronic Publishing
Origination, Dissemination, and Design, 8(2/3):195–206, June/September 1995.

[5] H. Ahonen, H. Mannila, and E. Nikunen. Generating grammars for SGML tagged texts
lacking DTD. Mathematical and Computer Modelling, 26(1):1–13, 1997.

[6] H. Ahonen. Disambiguation of SGML content models. Lecture Notes in Computer
Science, 1293:27, 1997.

[7] Matthew Young-Lai and Frank W. M. Tompa. Stochastic grammatical inference of text
database structure. Machine Learning, 40(2):1, 2000.

[8] Rafael C. Carrasco and Jose Oncina. Learning deterministic regular grammars from
stochastic samples in polynomial time. RAIRO (Theoretical Informatics and Applica-
tions), 33(1):1–20, 1999.

[9] Lou Burnard. The Pizza Chef: a TEI Tag Set Selector.
http://www.hcu.ox.ac.uk/TEI/pizza.html, September 1997.

[10] Caron and Ziadi. Characterization of Glushkov automata. TCS: Theoretical Computer
Science, 233:75–90, 2000.

[11] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Techniques,
and Tools. Addison Wesley, 1986.

A Building the Glushkov automata of an expression

Given a regular expression r we describe the procedure [10] to build a Glushkov
automaton. In the following n ∈ N is any position according to a marking Er of r;
F,G ∈ reg(N) denote subexpressions of Er.

The Boolean function empty : reg(N) → boolean is true if the subexpression
contains the empty string and can be computed as

empty(n) = FALSE
empty(F |G) = empty(F) ∨ empty(G)
empty(F, G) = empty(F) ∧ empty(G)
empty(F∗) = TRUE
empty(F+) = empty(F)
empty(F?) = TRUE

(4)

The subset first : reg(N) → 2N gives the positions that can be found as the first
symbol in a string and is given by

first(n) = {n}
first(F |G) = first(F) ∪ first(G)

first(F,G) =

{
first(F) ∪ first(G) if empty(F)
first(F) otherwise

first(F∗) = first(F)
first(F+) = first(F)
first(F?) = first(F)

(5)

The subset last : reg(N) → 2N gives the positions that can be found as the last
symbol in a string and is given by

last(n) = {n}
last(F |G) = last(F) ∪ last(G)

last(F,G) =

{
last(F) ∪ last(G) if empty(G)
last(G) otherwise

last(F∗) = last(F)
last(F+) = last(F)
last(F?) = last(F)

(6)

Finally, the subset follow : reg(N) → 2N×N gives the pairs of positions that can

be found consecutive in a string and is given by

follow(n) = ∅
follow(F |G) = follow(F) ∪ follow(G)
follow(F, G) = follow(F) ∪ follow(G) ∪ last(F)× first(G)
follow(F∗) = follow(F) ∪ last(F)× first(F)
follow(F+) = follow(F) ∪ last(F)× first(F)
follow(F?) = follow(F)

(7)

With the above elements, the Glushkov automaton [2] (Q,N, δ, I, F) is given by

• Q = {I} ∪ sym(Er)

• δ(I, a) = {n ∈ first(Er) : Φr(n) = a}
• δ(n, a) = {m ∈ Q : (n,m) ∈ follow(Er) ∧ Φr(m) = a}

• F =

{
{I} ∪ last(Er) if empty(Er)
last(Er) otherwise

where I is any position not in sym(Er).

B Syntax-directed definition

The simplified regular expression is stored in attribute .s, whereas attributes .n and
.e are auxiliary boolean attributes which store if the subexpression is simple and
accepts the empty string respectively

Production Translation

E0 → T |E1

E0.n := T.n and E1.n; E0.e := T.e or E1.e;
if T.w = ∅
then E0.w := E1.w
else if T.w = λ

then if E1.w = ∅ or T.w = λ or E1.e
then E0.w := E1.w
else E0.w := E1.w||“?”
endif

else if E1.w = λ
then if T.e

then E0.w := T.w
else E0.w := T.w||“?”
endif

else if E1.w 6= ∅
then begin E0.w := T.w||“|”||E1.w;

E1.n := FALSE
end

endif
endif

endif
endif

E → T E.w := T.w; E.n := T.n; E.e := T.e

T0 → F ,T1

T0.n := F.n and T1.n; T0.e := F.e and T1.e;
if F.w = ∅ or F.w = λ
then T0.w := T1.w
else if T1.w = ∅ or T1.w = λ

then T0.w := F.w
else begin

T0.w := F.w||“, ”||T1.w;
T0.n := FALSE

end
endif

endif

T → F T.w := F.w;T.n := F.n; T.e := F.e

Figure 2: Syntax-directed definition for the regular expression simplification process
(part 1). All attributes are synthetic.

Production Translation
F → W F.w := W.w;F.n := W.n; F.e := W.e

F → W∗

F.n := TRUE;F.e := TRUE;
if W.w = ∅ or W.w = λ
then F.w := λ
else F.w := W.w||“ ∗ ”
endif

F → W+

F.n := TRUE;F.e := W.e;
if W.w = ∅ or W.w = λ
then F.w := W.w
else F.w := W.w||“ + ”
endif

F → W?

F.n := TRUE;F.e := TRUE;
if W.w = ∅ or W.w = λ
then F.w := λ
else F.w := W.w||“?”
endif

W → name

W.n := TRUE;W.e := FALSE;
if HasWitnesses(name.w)
then W.w := name.w
else W.w := ∅
endif

W → (E)

W.n := E.n; W.e := E.e;
if E.w = ∅ or E.w = λ
then W.w := E.w
else if E.n

then W.w := E.w
else begin

W.w := ”(”||E.w||”)”;
W.n := TRUE
end

endif
endif

Figure 3: Syntax-directed definition for the regular expression simplification process
(part 2). All attributes are synthetic.

