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Using Neural Networks for Multiword Recognition in IR 
 
Abstract: In this paper, a supervised neural network has been used to classify pairs of terms as being 
multiwords or non-multiwords. Classification is based on the values yielded by different estimators, 
currently available in literature, used as inputs for the neural network. Lists of multiwords and non-
multiwords have been built to train the net. Afterward, many other pairs of terms have been classified 
using the trained net. Results obtained in this classification have been used to perform information 
retrieval tasks. Experiments show that detecting multiwords results in better performance of the IR 
methods. 
 
 
1. Introduction 
In this paper we present a new approach to solve the task of effectively detecting multiwords. 
A multiword is a succession of words whose sense taken as a whole differs from the sum of 
the senses of its  single words. Thus, a multiword can be considered in fact as a new concept. 
There exists a second kind of multiword composed of a set of words that complement their 
senses. Nevertheless, considering this kind of successions as multiwords does not provide 
information useful for information retrieval tasks. For this reason, this kind of multiwords 
have not been considered in the present work. 
Multiword detection can be successfully used in many different tasks. Information Retrieval 
(IR) methods, for instance, use the word as the information basic unit; thus, detecting 
multiwords in corpus and queries make IR systems getting better results.  Cross Language 
Information Retrieval  can be also improved by detecting multiwords, given that translating 
word by word results in lost of information. Natural Language Processing can also be helped 
when multiwords are correctly detected, because it makes easier text understanding. 
The new approach presented in this paper uses neural nets to discriminate against pairs of 
terms that really are multiwords from those that are not. We propose a well-known supervised 
neural network: the Kohonen’s Learning Vector Quantization (LVQ) widely used for 
classification tasks (Kohonen, 1995), (Kohonen, 1992). Inputs for the nets are the values 
yielded by estimators used in literature to perform this same task, and the output the nets 
provide is a class determining if that values corresponds to a multiword or a non-multiword. 
Nets learning is performed by training them with the values yielded by the cited estimators 
when they are applied to pairs of terms known to be either multiwords or non-multiwords. In 
order to test this new method, the network has been used to classify new pairs of terms; then, 
the information obtained has been used to perform some IR tasks. Experiments show that 
results obtained in these task are better than those obtained using only the estimators. 
The rest of the paper is organized as follows: section 2 gives a little introduction to the state of 
the art, briefly showing some of the currently available methods used to detect multiwords. 
These methods include the different estimators that will be lately used in our method. Section 
3 describes a new estimator developed for this work as well as the neural network that has 
been used. Section 4 shows the experiments carried out and the results obtained. Finally, 
section 5 outlines some conclusions, and also future research lines. 
 
 
 
 



2. A new approach 
Multiword recognition has been explored by many researchers as a way to improve traditional 
Text Retrieval, in general with a moderate degree of success. However, David Hull and 
Gregory Grefenstette (Hull, 1996) show that multiword detection and  correct translation 
largely  improve the precision in a CLIR system.   
Usually methods for automatizing terminological procedures have traditionally been statistical 
(Hull, 1996), (Ballesteros, 1998), and based on the co-occurrence of each particular pair of 
words in the text of work or corpus. Other works (Adriani, 1999) obtain the degree of 
similarity between terms using the co-occurrence factor, and the standard tf*idf term 
weighting formula. Recently, hybrid approaches incorporating linguistic information have 
been developed: Diana Maynard and Sophia Ananiadou (Maynard, 2000) make use of 
different types of contextual information: syntactic, semantic, terminological and statistical. 
Nevertheless, managing different types of information must be done by integrating them in 
any given way. The most straightforward way is by using a linear function, although this does 
not mean it is the best way this problem can be faced. 
 
For any of the features (syntactical, semantical, terminological and statistical) wanted to be 
integrated to perform multiword detection, there are some well-known estimators. This paper 
introduces a neural network based approach that integrates terminological and statistical 
estimators. Multiword detection is then thought as a categorization problem where only two 
categories have to be managed: multiword and non-multiword. Consequently, classifying a 
pair of terms turns into a two step process: firstly, obtain the values yielded by the different 
estimators; secondly, use those values as inputs for the neural network, and obtain the class to 
which the pair of terms belongs. More precisely, the estimators that have been used in this 
work are the following: 
 

1. Pearson’s χ2. A variant of  the χ2 statistic (Hull, 1996) 
2. Measure the importance of co-occurrence of the elements in a set by the em metric 

(Ballesteros, 1998) 
3. Dice similarity coefficient obtain the degree of similarity or association-relation 

between terms using a term association measure and the tf.idf weighting formula 
(Adriani, 1999).  

4. The mutual information ratio, or association ratio, µ (Johansson, 1996). 
5. Finally,  a new estimator, a variant of Dice similarity coefficient based on the Simpson 

index, has been developed. 
 
2.1. A new estimator: Simpson Similarity coefficient 
Roughly, Dice index is based on the association between two terms by calculating the 
coefficient of the intersection of two sets and their union. Usually, this approach is convenient 
to estimate the correlation between words, but not always.  “Bill Clinton”, for instance, is a 
multiword, but “Bill” is a very common word, so the term frequency is very high, and  “Bill” 
set is huge. In the other hand,  “Clinton” is not too frequent, so “Clinton” set is small. Thus, 
the coefficient of the intersection and the union of both sets will be small, because “Clinton” 
set is small. In other way, Simpson index estimates the association between two sets by 
calculating the coefficient of the intersection of two sets and the smaller of them, so “Bill 
Clinton” will reach a high value for the Simpson coefficient, and a low value for the Dice  
coefficient. 
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where: 
w xi = the weight of term x in the document i. 
w yi = the weight of term y in document i. 
w’ xi = w xi if term y also occurs in document i, or 0 otherwise. 
w’ yi = w yi if term x also occurs in document i, or 0 otherwise. 
n = the number of documents in the collection. 
 
 
2.2. Neural Network approach: The LVQ algorithm 
The LVQ algorithm is a classification method based on neural competitive learning, which 
allows to define a group of categories on the space of input data by a reinforced learning, 
either positive (prize) or negative (punishment). LVQ uses supervised learning to define class 
regions in the input data space. To this end a subset of similarly labeled codebook vectors is 
placed into each class region. 
Given a sequence of input data, an initial group of reference vectors wk (codebook) is 
selected. In each iteration, a input vector xi is selected and the vectors W are updated, so that 
they fit  xi in a better way. The LVQ algorithm works as follows: 
For each class, k, a weight vector wk is associated. In each repetition, the algorithm selects an 
input vector, xi , and compares it with every weight vector, wk, using the euclidean distance  
||xi-wk||, so that the winner will be the weight vector wc nearest to xi, being c its index: 
 

{ }kik
wxiwix −=− min  

The classes compete between them in order to find the most similar to the input vector, so that 
the winner is the one with less euclidean distance regarding the input vector. Only the winner 
class will modify its weights using a reinforced learning algorithm, either positive or negative, 
depending on the classification being correct or not. Thus, if the winner class belongs to the 
same class of the input vector (the classification has been correct), it will increase the weights, 
coming slightly close to the input vector (prize). On the contrary, if the winner class is 
different from the input vector class (the classification has not been correct), it will decrease 
the weights, coming slightly far from the input vector (punishment). 
Let xi(t) be an input vector at time t, and wk(t) represents the weight vector for the class k at 
time t. The following equation defines the basic learning process for the LVQ algorithm. 
 [ ])()()()()1( tcwtixtstcwtcw −⋅⋅+=+ α  

 
where s = 0, if k≠c; s = 1, if xi(t) and wc(t) belong to the same class; and s = -1, if they do not, 
and where α(t) is the learning rate, being 0<α(t)<1, a monotonically decreasing function of 
time. It is recommended that α(t) be rather small initially, say, smaller than 0.5,  and that it 
decreases to a given threshold, u, very close to 0 (Kohonen, 1995). 
 
The experiments showed in section 4, were carried out using the implementation described in 
LVQ_PAK documentation (Kohonen, 1991) with default parameters. Thus, every experiment 



started with the same number of codebooks per class (10 for class 0 and 10 for class 1) and 
the learning rate being initialized to 0.3. 
 
 
3. Experiments and results 
In order to train and test the neural nets, a set of samples composed of input-output pairs had 
to be built, every sample corresponding to a pair of terms.  In one hand, input values were 
obtained by applying the different estimators described in section 3. In the other, every output 
value consisted on a single number classifying the sample as multiword or non-multiword. In 
ours experiment only multiwords with two relevant terms have been used, and stop words 
have been removed from the multiword 
Obtaining a list of multiwords was done by resorting to WordNet (Miller, 1995), a lexical 
database where multiwords can be found. Nevertheless, not all the pairs of terms said to be 
multiwords really were. For this reason, each multiword returned by WordNet was newly 
searched in the electronic dictionary Encarta1 to remove pairs of terms that, even appearing 
together very frequently, were not real multiwords. 
Non-multiwords list (needed to train the nets)  was taken from the corpus used in  CLEF 
20002 . Pairs of  terms were taken from this corpus and then searched in the list of multiwords 
previously described, checking that they did not appear in it. If they did not appear, they were 
once more searched in the electronic dictionary to assure they did not formed a multiword. 
Once both multiwords and non-multiwords lists have been created, the above cited estimators 
were applied to them, obtaining the file with the samples to be used with the supervised 
network. This file was split to use 75% of the samples to train the neural network and the 
remaining 25% to validate it. 
Los Angeles Time 1994 collection, borrowed from the English CLEF 2000 collection, was 
used to test the method. This collection is composed of  113,005 articles of the 1994 edition 
of Los Angeles Times, and 40 queries (Title + Description) with relevance judgments.  The 
collection was indexed twice using Zprise software3, with Okapi (Robertson, 2000) weighting 
formula. First index was created without carrying out multiword detection, while second 
index uses multiword detection, as depicted above.  
Table 1 shows average precision reached by 
both methods. It shows that multiwords 
usage improves precision scarcely. 
Anyway, a more detailed analysis of the 
results leads to conclude that multiwords 
detection is useful for IR task. Table 2 
shows the precision reached by some 
queries, and the detected multiwords for 
each one. 
 

 
Original query set Query set with 

multiwords detection 
0.375 0.410 
Table 1 – Average Precision 

Query Original 
AvgP. 

AvgP. With 
Multiwords Detected multiwords 

#7 0.3969 0.4452 “world soccer” 

#9 0. 1022 0.2027 “war ii” “ii war”  “war rwanda” 
“world war” 

#3 0.3912 0.3220 “decisions made”, “hard soft” 
#32 0.4126 0.2511 “women priest”, “change direction” 

Table 2 – Four detailed queries. 
 



As table 2 shows, query #7 gained 5% of absolute precision because “world soccer” was 
effectively detected as a multiword. Results were even better in query #9, in which “world 
war”, “war rwanda” “war ii” and “ii war” multiwords were correctly detected. As can be seen, 
precision obtained in this query by the new method is twice the precision obtained without 
multiword detection.  
In the other side,  query #3 lost 7% of precision with multiword inclusion. Bigrams “decisions 
made” and “hard soft” are in fact non-multiwords, but the neural network method marked 
both of them as being. Finally, query #32 lost 16% of precision. “women priest” and “change 
direction” because, once more, they are not multiwords. 
 
4. Conclusions and future work. 
This paper presents a new method to detect multiwords. This method uses the values obtained 
by estimators, present in literature and developed to perform this same task, as inputs for a 
neural net that automatically determines whether those values belong to a real multiword or 
simply to a pair of terms that appear together in a document.  
Results show that automatic multiword detection is useful for IR. Nevertheless, the method 
used must get a higher accuracy, because bad detection of multiwords damages precision of 
the IR system. Conservative methods must be used to assess multiwords. Classifying 
multiwords as non-multiwords is better than recognizing too many multiwords. In other 
words, multiword detection must improve precision over recall. 
Future lines of research include the use of new kind of neural networks, such as Radial Basis 
Function Nets (Broomhead, 1988) (Rivas, 2001), as well as RCE (Zboril, 2000), and also 
unsupervised training networks as Self-Organization Maps (Kohonen, 1995).  
New estimators based on semantic information can be used to improve the results. Others 
applications for this method must also be investigated, especially its influence in Cross 
Language Information Retrieval. 
 
Notes 
1 Encarta is available at http://www.encarta.com [2/2/2002]. Encarta has been used because it includes 
proper nouns that are considered to be multiwords. 
2 Cross Language Evaluation Forum (CLEF) aims at promoting research and development in CLIR. 
For more information, see: http://www.clef-campaign.org 
3 ZPrise is a software developed by NIST. It is available at 
http://www.itl.nist.gov/iaui/894.02/works/papers/zp2/zp2.html [2/2/2002] 
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