
Unit 5: Introduction to object oriented
programming
Programming 2

Degree in Computer Engineering
University of Alicante
2022-2023

Index

1. Introduction

2. Core concepts

3. OOP in C++

4. Objects and memory management

5. Relationships

6. Compilation

7. Exercises

1

Introduction

Definition

• Object oriented programming (OOP) is a programming paradigm
that uses objects and their interactions to design software

• The whole application is treated as a set of cooperating objects
and their relationships

• C++ is an object oriented language, but it also allows imperative
(procedural) programming

• The approach when designing programs changes...
• ... but everything you have learned so far is still useful!

2

Classes and objects (1/4)

• We have already used classes and objects in Programming 2:

int i; // Declare a variable i of int type
string s; // Declare an object s of string class

• A class (or compound type) is a model for creating objects of that
type

• An object of a certain class is called an instance of that class
• In the example above, s is an instance/object of the class
string

• Classes are similar to simple types, although they allow many
more functionalities

3

Classes and objects (2/4)

• A struct is a simple type
• It can be considered as a “light” class that only stores visible
data:

struct Date{
int day;
int month;
int year;

};

4

Classes and objects (3/4)

• A class contains data and a set of functions that manipulate this
data, called member functions or methods

• You can control which data/methods are visible (public) and
which are hidden (private)

• Member functions can access public and private data of their
class

• Example of “basic” class equivalent to struct Date:*

class Date{
public: // Public data
int day;
int month;
int year;

};

*We say “basic” because it does not offer any advantages with respect to struct Date

5

Classes and objects (4/4)

• Direct access to elements of the object, as in a struct:
Date d;
d.day=12;

• In a good object oriented design, data is usually not accessed
directly: methods are used to modify the data

• In the example above, d.day=100 would not cause an error
• Methods can be used to control what values are given to the
data:
class Date{
private: // Only accessible from class methods
int day;
int month;
int year;

public:
bool setDate(int d,int m,int y){...};

};

6

Core concepts

Core concepts

• Principles on which object oriented design is based:
• Abstraction
• Encapsulation
• Modularity
• Inheritance
• Polymorphism

7

Abstraction

• Abstraction denotes the essential characteristics of an object and
its behaviour

• Each object can perform tasks, inform and change its state,
communicating with other objects in the system without revealing
how these features are implemented

• The abstraction process allows selecting the relevant features
within a set, identifying common behaviours to create new
classes

• The abstraction process takes place in the design phase

8

Encapsulation

• Encapsulation implies grouping together all the elements that
can be considered as belonging to the same entity at the same
level of abstraction

• The interface is the part of the object that is visible (public) to the
other objects: a set of methods and data available to
communicate with an object

• Each object hides its implementation (how it is done) and
exposes an interface (what it does)

• Encapsulation protects the properties of an object against
modification: only the object’s own methods can access its state

9

Modularity (1/2)

• Modularity is the property that allows a program to be divided into
smaller parts (called modules) as independent as possible

• These modules can be compiled separately, although they have
connections to other modules

• Generally, each class is implemented in a separate module, but
classes with similar functionalities can share a module

10

Modularity (2/2)

• A class myClass would be implemented using two source files:
• myClass.h: contains constants used in this file, declaration of the
class and its methods

• myClass.cc: contains constants used in this file, implementation
of the methods and maybe internal types used by the class

• The main function uses these classes as a client. It is included
in a separate file (for example, prog.cc)

• To get the executable, you have to compile all the modules
together. For example, to compile a program with two classes
(myClass1 and myClass2) and a main function (prog.cc):

Terminal
$ g++ myClass1.cc myClass2.cc prog.cc -o prog

• This compilation method is adequate only if there are few classes
• At the end of this unit we will see how to properly compile
programs with multiple classes using the make tool

11

Inheritance (1/2)

• Not studied in Programming 2
• Classes can be related to each other by forming a classification
hierarchy

• Inheritance allows defining a new class from another class
• This applies when there are sufficient similarities and most of the
features of the existing class are suitable for the new class

• In the following example, the subclasses Dog and Cat inherit the
methods and attributes specified by the superclass Mammal:

Mammal

Dog Cat

12

Inheritance (2/2)

• Inheritance allows adopting features already implemented by
other classes

• It facilitates the organisation of information at different levels of
abstraction

• Objects inherit the properties and behaviour of all the classes to
which they belong

• Derived objects can share (and extend) their behaviour without
having to implement it again

• Multiple inheritance occurs when an object inherits from more
than one class

13

Polymorphism

• Not studied in Programming 2
• Polymorphism is the property according to which the same
expression refers to different actions

• For example, a method move may refer to different actions if it is
applied to a plane or a car

• Different behaviours, associated with different objects, can share
the same name

• References and object collections can contain objects of different
types:

Mammal *a=new Dog;
Mammal *b=new Cat;
Mammal *c=new Seagull;

14

OOP in C++

Declaration and implementation (1/2)

• In this exampe, the class SpaceShip is implemented as a
module usgin two files: SpaceShip.h and SpaceShip.cc

// SpaceShip.h (class declaration)
class SpaceShip{
private:
int maxSpeed;
string name;

public:
SpaceShip(int ms,string nm); // Constructor
~SpaceShip(); // Destructor
int trip(int distance);
string getName() const;

};

15

Declaration and implementation (2/2)

// SpaceShip.cc (implementation of the methods)
#include "SpaceShip.h"

SpaceShip::SpaceShip(int ms,string nm){ // Constructor
maxSpeed=ms;
name=nm;

}

SpaceShip::~SpaceShip(){} // Destructor

int SpaceShip::trip(int distance){
return distance/maxSpeed;

}

string SpaceShip::getName() const{
return name;

}

16

UML diagram (1/3)

• A UML diagram allows describing the classes and relationships
between classes in an object oriented design:

+ Rect(ax : int, ay : int, bx : int, by : int)
+ ~Rect()
+ width() : int
+ height() : int
+ area() : int

- x1 : int
- x2 : int
- y1 : int
- y2 : int

Rect

• The - in front of an attribute or method indicates that it is private
• The + indicates that it is a public attribute or method
• A horizontal line separates attributes (upper part) from methods
(lower part)

17

UML diagram (2/3)

• Translation into code of the previous UML diagram:

// Rect.h (class declaration)
class Rect{
private:
int x1,y1,x2,y2;

public:
Rect(int ax,int ay,int bx,int by); // Constructor
~Rect(); // Destructor
int width();
int height();
int area();

};

18

UML diagram (3/3)

// Rect.cc (implementation of the methods)
Rect::Rect(int ax,int ay,int bx,int by){
x1=ax;
y1=ay;
x2=bx;
y2=by;

}
Rect::~Rect(){}
int Rect::width(){ return (x2-x1); }
int Rect::height(){ return (y2-y1); }
int Rect::area(){ return width()*height(); }

// main.cc (main program)
int main(){
Rect r(10,20,40,50);
cout << r.area() << endl;

}

19

Accessors

• It is not convenient to directly access the member attributes of a
class (encapsulation principle)

• Usually attributes are defined as private and accessed by
implementing setter/getter/is methods (called accessors):

+ getDay () : int
+ getMonth () : int
+ getYear() : int
+ setDay (d : int) : void
+ setMonth (m : int) : void
+ setYear (a : int) : void
+ isLeap () : bool

- day : int
- month : int
- year : int

Date

• Setter accessors allow controlling that attribute values are
correct

20

Canonical form

• All classes must implement these four methods:
• Constructor
• Destructor
• Copy constructor
• Assignment operator

• The compiler creates these operations by default if they have not
been defined by the programmer

21

Constructor (1/7)

• The constructor is automatically called when a new object of the
class is created

• Classes must have at least one constructor method
• If a constructor is not defined, the compiler creates one by
default without parameters (the member attributes of the objects
thus created will be uninitialised)

• A class can have several constructors with different parameters
(the constructor can be overloaded)

• Overloading is a type of polymorphism

22

Constructor (2/7)

• Examples of constructors:
Date::Date(){ // Without parameters
day=1;
month=1;
year=1900;

}

Date::Date(int d,int m,int y){ // With three parameters
day=d;
month=m;
year=y;

}

• Calls to the constructors:
Date d;
Date d(10,2,2010);
Date d(); // Compilation error!

23

Constructor (3/7)

• Constructors (as other functions) can have default parameters
• These default values are only declared in the header file (.h):

// Date.h
class Date{
...
Date(int d=1,int m=1,int y=1900);
...

}

• With this constructor we could create objects in several ways:

Date d; // day = 1, month = 1, year = 1900
Date d(10,2,2010); // day = 10, month = 2, year = 2010
Date d(10); // day = 10, month = 1, year = 1900
Date d(18,5); // day = 18, month = 5, year = 1900

24

Constructor (4/7)

• The default parameters in the above example would be
displayed as follows in a UML diagram:

Date

- day: int

- month: int

- year: int

+ Fecha (dia: int=1, mes: int=1, anyo: int=1900)

...

Date (day: int=1, month: int=1, year: int=1900)

25

Constructor (5/7)

• If the parameters passed to the constructor are incorrect, the
object should not be created

• This can be controlled through the use of exceptions:
• An exception can be thrown with throw to indicate that an error
occurred

• An exception can be captured with try/catch to react to the error

• If an exception occurs and it is not captured, the program
terminates immediately

• Exceptions should only be used when there is no other option
(e.g. in constructors)

26

Constructor (6/7)

• Example of exception usage:

int root(int n){
if(n<0)
throw exception(); // Throw exception and finishes

return sqrt(n);
}

int main(){
try{ // Try to run these instructions
int result=root(-1); // Causes an exception
cout << result << endl; // This line is not executed

}
catch(...){ // Exceptions are captured here
cout << "Negative number" << endl;

}
}

27

Constructor (7/7)

• Example of constructor with exceptions:
Coordinate::Coordinate(int cx,int cy){
if(cx>=0 && cy>=0){
x=cx;
y=cy;

}
else
throw exception();

}

int main(){
try{
Coordinate c(-2,4); // This object is not created

}
catch(...){
cout << "Wrong coordinate" << endl;

}
}

28

Destructor (1/2)

• The destructor of the class must free the resources (usually
dynamic memory) that the object is using

• A class only has one destructor function that has no arguments
and returns no value

• It is a method with the same name as the class and preceded by
the character ∼:

// Declaration
~Date();
// Implementation
Date::~Date(){
// Free allocated memory (if necessary)

}

29

Destructor (2/2)

• All classes need a destructor and, if not specified, the compiler
creates one by default

• The compiler automatically calls the object destructor when
object’s scope ends

• It is also invoked by doing delete
• The destructor of an object implicitly invokes the destructors of
all its attributes

30

Copy constructor (1/2)

• A copy constructor creates a new object from an existing one:

// Declaration
Date(const Date &d);

// Implementation
Date::Date(const Date &d){
day=d.day;
month=d.month;
year=d.year;

}

31

Copy constructor (2/2)

• The copy constructor is automatically called when:
• A function returns an object
• An object is initialised when it is declared:

Date d2(d1); // Constructor
Date d2=d1; // Constructor
d2=d1; // Constructor is not called, but = operator

• An object is passed by value to a function:

void function(Date d);
function(d);

• If no copy constructor is specified, the compiler creates one by
default that makes a copy, attribute by attribute, of the object

32

Assignment operator

• Not studied in Programming 2
• The assignment operator (=) allows a direct assignment of two
objects:

Date d1(10,2,2011); // Constructor
Date d2; // Constructor
d2=d1; // Assignment operator

• By default, the compiler creates an assignment operator that
copies attribute by attribute

• It can be redefined if necessary

33

Inline declarations (1/2)

• Methods with little code can be implemented directly in the class
(inline declaration):

// Rect.h
class Rect{
private:
int x1,y1,x2,y2;

public:
Rect(int ax,int ay,int bx,int by);
~Rect(){}; // Inline
int width(){ return (x2-x1); }; // Inline
int height(){ return (y2-y1); }; // Inline
int area();

};

34

Inline declarations (2/2)

• It is more efficient to declare inline functions
• When compiling, the generated code for the inline functions is
inserted at the point where the function is called (instead of
putting the code somewhere else and making a call)

• Inline functions can also be implemented outside the class
declaration, in the .cc file, using the reserved word inline:

inline int Rect::width(){
return (x2-x1);

}

35

Constant methods (1/2)

• Methods that do not modify object attributes can be declared as
constant methods:
int Date::getDay() const{ // Constant method
return day;

}

• Only constant methods can be called upon a constant object:
int Date::getDay(){ // Not declared as const
return day;

}
int main(){
const Date d(10,10,2011);
cout << d.getDay() << endl; // Compilation error

}

• get methods must be declared constant, as they simply return
values and never modify the object

36

Constant methods (2/2)

• They are represented by putting <<const>>> in front of the
method name in UML diagrams:

• In this example there are four constant methods: getSubtotal,
getAmount, getPrice and getDescription:

Line
- amount: int
- price: float
- description: string

+ Line()
+ <<const>> getSubtotal(): float
+ <<const>> getAmount(): int
+ <<const>> getPrice(): float
+ <<const>> getDescription(): string
+ setAmount(amount: int): void
+ setPrice(price: float): void
+ setDescription(description: string): void

37

Friend functions

• A friend function does not belong to the class but it can access
class’ private part

• The reserved word friend is used in the declaration:

class MyClass{
friend void aFriendFunction(int,MyClass &);
public:
...

private:
int privateData;

};

void aFriendFunction(int x,MyClass &c){
c.privateData=x; // Correct, because it is friend

}

38

Input/output overload (1/4)

• Input/output operators of any class can be overloaded:

Date d;
cin >> d;
cout << d;

• The problem is that these functions cannot be member functions
of a class, because the first operand (cin/cout) is not an object
of that class (it is a stream)

• Operators are overloaded using friend functions:

friend ostream& operator<<(ostream &o,const Date &d);
friend istream& operator>>(istream &o,Date &d);

39

Input/output overload (2/4)

• Declaration:

class Date{
friend ostream& operator<<(ostream &os,const Date &d);
friend istream& operator>>(istream &is,Date &d);
public:
Date(int day=1,int month=1,int year=1900);
...

private:
int day,month,year;

};

40

Input/output overload (3/4)

• Implementation:

ostream& operator<<(ostream &os,const Date &d){
os << d.day << "/" << d.month << "/" << d.year;
return os;

}

istream& operator>>(istream &is,Date &d){
char dummy;
is >> d.day >> dummy >> d.month >> dummy >> d.year;
return is;

}

41

Input/output overload (4/4)

• In a UML diagram, the word <<friend>> is put in front of the
operator (as it is a friend function)

• In this example, the output operator (operator<<) is
overloaded:

Invoice
- nextId: int = 1
+ VAT: const int = 21
- date: string
- id: int

+ Invoice(c: Client*, date: string)
+ addLine(num: int, desc: string, price: float): void
- getNextId(): int
+ <<friend>> operator<<: ostream &

42

Class attributes and methods (1/4)

• Class attributes have the same value for all the objects in the
class (they are like global variables for the class)

• Class methods produce the same output for all the objects in the
class and can only access class attributes

• They are also called static attributes and methods
• They are declared using the reserved word static when the
class is defined:
class Date{
public:
static const int weeksPerYear=52;
static const int daysPerWeek=7;
static const int daysPerYear=365;
static string getFormat();
static bool setFormat(string);

private:
static string formatString;

};

43

Class attributes and methods (2/4)

• In the file where the methods are implemented (.cc) the word
static should not be included in the definition

• For the class Date of the previous example, we would have the
following code:

// Date.cc
string Date::getFormat(){ // Don't write static
...

}

bool Date::setFormat(string s){ // Don't write static
...

}

44

Class attributes and methods (3/4)

• They are represented underlined in UML diagrams
• In this example there are two static attributes (VAT and nextId)
and a static method (getNextId):

Invoice
- nextId: int = 1
+ VAT: const int = 21
- date: string
- id: int

+ Invoice(c: Client*, date: string)
+ addLine(num: int, desc: string, price: float): void
- getNextId(): int
+ <<friend>> operator<<: ostream &

45

Class attributes and methods (4/4)

• If the static attribute is not a simple type or is not constant, it
must be declared in the class but gets its value outside of it:
// Date.h
class Date{
...
static const string endWorld;
...

};

// Date.cc
const string Date::endWorld="2020"; // Don't write static

• It is possible to access static attributes or methods from outside
of the class:
cout << Date::daysPerYear << endl; // Static attribute
cout << Date::getFormat() << endl; // Static method

46

The this pointer

• The this pointer is a pseudovariable that is not declared and
cannot be modified

• Is is an implicit argument received by all the methods (excluding
the static ones), which points to the object receiving the message

• It is necessary when we want to disambiguate the name of a
parameter, or when we want to pass the object as an argument
to a nested function:

void Date::setDay(int day){
// day=day; Warning: day is assigned to itself
this->day=day;
cout << this->day << endl;

}

47

Objects and memory management

Automatic objects and dynamic objects (1/5)

• Regarding their lifetime in memory, objects can be automatic or
dynamic

• Dynamic objects are created at runtime using the operator new
• They stay in memory (usually in the heap) until they are explicitly
deleted using the operator delete*

• Automatic objects are (automatically) allocated in memory
(usually in the stack) at runtime when their scope is accessed

• They are (automatically) destroyed when outside their scope

*All these concepts were described in Unit 4

48

Automatic objects and dynamic objects (2/5)

• Creation of one automatic object and one dynamic object:

void func() {
Date d1; // Automatic object
Date *d2=NULL;
d2=new Date; // Dynamic object

}
int main() {
func();
...

}

• Right after calling func, d1 is not in memory but d2 is, although
is no longer accesible

• Problem: the memory address pointed by d2 is never deleted
and continues occupied until the end of the program

49

Automatic objects and dynamic objects (3/5)

• In the previous example, we can return the pointer so that the
object originally pointed by d2 can be accessed:

Date* func(){ // func returns a pointer to Date
Date d1; // Automatic object
d1.setDay(10);
Date *d2=NULL;
d2=new Date; // Dynamic object
d2->setDay(20);
return d2;

}
int main(){
Date *d=NULL;
d=func();
cout << d->getDay(); // Prints "20"
d->setMonth(1);
delete d; // Dynamic object removed from memory

}

50

Automatic objects and dynamic objects (4/5)

• This is the previous example but returning an automatic object
instead of a dynamic one:

Date func() {
Date d1; // Automatic object
d1.setDay(10);
return d1; // Copy constructor called

}
int main(){
Date d=func(); // Automatic object
cout << d.getDay(); // Prints "10"
d.setDay(1);

}

• The copy constructor will be called in this case to initialise the
object d in the function main

51

Automatic objects and dynamic objects (5/5)

• Assigning automatic and dynamic objects:
Date d1,d2,*d3=new Date,*d4=new Date;
d2.setDay(15);
d3->setDay(10);
d4->setDay(20);
d1=d2; // The assignment operator is called
Date d5=d1; // Copy constructor is called
d3=d4; // The object originally assigned to d3 cannot

// be deleted
// d3 and d4 refer now to the same object

cout << d3->getDay(); // Prints "20"
delete d3;
d4->setDay(5); // As wrong as d3->setDay(5);

// d3 and d4 point to not valid memory

• The last instruction is incorrect, but it could work sometimes
• Deleting an object marks its memory address as ready to be
reallocated (the memory is not immediately set to zero or
assigned to new data)

52

Deep copy and shallow copy

• Consider an object of a class A which has a field which is a
dynamic object:
class A{B *b; ... }

• A copy constructor of A is said to perform a deep copy of the
object if it allocates new memory positions for the dynamic object:
A::A(const A &a) {
...
b=new B(a.b);

}

• A copy constructor of A is said to perfom a shallow copy of the
object if it simply makes the new field to point to the old one:
A::A(const A &a) {
...
b=a.b;

}

• Both options may be useful under different circumstances. 53

Relationships

Object relationships

• Main relationships between objects and classes:

Association
Aggregation
Composition
Use

Between objects

GeneralizationBetween classes

• Most relationships have cardinality:
• One or more: 1..∗ (1..n)
• Zero or more: ∗
• Fixed value: m

• In Programming 2 we will study only aggregation and
composition

54

Aggregation and composition (1/6)

• Aggregation and composition are whole-part relationships where
an object is part of another

• They are asymmetric relationships
• The difference between aggregation and composition is the
strength of the relationship: aggregation is a weaker relationship
than composition

55

Aggregation and composition (2/6)

• In composition, when the container object is destroyed, the
objects it contains are also destroyed

• E.g.: the wing is part of the plane and makes no sense outside it (if
the plane is sold, the wings are included)

• Regarding aggregation, this is not the case
• E.g.: a team can be sold, but the players can go to another club
(they do not disappear with the team)

Team

Player

Plane

Wing

* 2

1..11..*

56

Aggregation and composition (3/6)

• Some relationships can be considered as aggregations or
compositions depending on the context in which they are used

• E.g.: the relation between a bicycle and its wheels

• Some authors consider that the only difference between the two
concepts lies in their implementation: a composition is an
“aggregation by value”

57

Aggregation and composition (4/6)

• Composition implementation:

class A {
 private:

B b;
 ...
};

class A {
 private:

B b[10];
 ...
};

class A {
 private:

vector b;
 static const int N=10;
 ...
};

class A {
 private:

vector b;
 ...
};

A A A A

B B B B

-b-b1 -b -b*0..1010

58

Aggregation and composition (5/6)

• Example of aggregation implementation:

class A {
 private:

B *b;
 ...
};

class A {
 private:

B *b[10];
 ...
};

class A {
 private:

vector<B*> b;
 static const int N=10;
 ...
};

class A {
 private:

vector<B*> b;
 ...
};

A A A A

B B B B

-b-b1 -b -b*0..1010

59

Aggregation and composition (6/6)

• Aggregation implementation:

class A{
private:
B *b;

public:
A(B *b){ this->b=b; } // Constructor

};

int main(){ // Two ways to implement aggregation
// 1- Using a pointer
B *b=new B;
A a(b); // Call to constructor
// 2- Using an object
B b;
A a(&b); // Call to constructor

}

60

Compilation

The compilation process

• The translation of a source code into an executable program is
done in two steps:

• Compilation: the compiler translates the source code into object
code (non-executable)

• Link: the linker combines the object code with the language
libraries (C/C++) and generates the executable file

• In C++ these two steps are carried out using the following
instruction:

Terminal
$ g++ program.cc -o program

• Using the option -c the code is only compiled, generating object
code (.o) but without linking it:

Terminal
$ g++ program.cc -c

61

Separate compilation (1/2)

• When a program consists of several source files (.cc), the
process to obtain the executable is:
1. Compile each source file separately, obtaining several object code

files (.o):
Terminal
$ g++ -c C1.cc
$ g++ -c C2.cc
$ g++ -c prog.cc -c

2. Link the object code files with the language libraries and generate
an executable:
Terminal
$ g++ C1.o C2.o prog.o -o prog

• If the program consists of few source files, the process can be
done all at once:

Terminal
$ g++ C1.cc C2.cc prog.cc -o prog

62

Separate compilation (2/2)

• Problem: there is a header file .h that is used in several source
files .cc

• What must be done if something is changed in the .h file?
• Option 1: everything is recompiled again (“brute force”)
• Option 2: search “by hand” where the header is used and
recompile only these files

• Option 3: automatically search where the header is used and only
recompile these classes

• The best is “Option 3” and there is a tool called make that helps
us do it

63

The make tool (1/6)

• The make tool helps in compiling large programs
• Allows setting dependencies between files
• Compiles a file when one of the files it depends on changes
• The text file makefile specifies the dependencies between files
and what to do when something changes

64

The make tool (2/6)

• The make tool searches by default for a file called makefile
• This file describes a main objective (usually the executable
program) and a series of secondary objectives

• The format of each objective in the makefile is:
<objective> : <dependencies>
[tab]<instruction>

• The algorithm of make is very simple: “If the date of any
dependency is more recent than the date of the objective, then
execute instruction”

65

The make tool (3/6)

• Imagine that you have the following files:
// C1.cc
#include "C1.h"
...

// C2.cc
#include "C2.h"
#include "C1.h"
...

// prog.cc
#include "C1.h"
#include "C2.h"
...
int main(){
...
}

66

The make tool (4/6)

• The makefile content would be:*
prog : C1.o C2.o prog.o

g++ -Wall -g C1.o C2.o prog.o -o prog
C1.o : C1.cc C1.h

g++ -Wall -g -c C1.cc
C2.o : C2.cc C2.h C1.h

g++ -Wall -g -c C2.cc
prog.o : prog.cc C1.h C2.h

g++ -Wall -g -c prog.cc

*The -Wall option shows all the warnings whereas -g adds debugging information

67

The make tool (5/6)

• In the previous example, if C2.cc is modified and make is run:

Terminal
$ make
g++ -Wall -g -c C2.cc
g++ -Wall -g C1.o C2.o prog.o -o prog

• And if C2.h is modified and make is run:
Terminal
$ make
g++ -Wall -g -c C2.cc
g++ -Wall -g -c prog.cc
g++ -Wall -g C1.o C2.o prog.o -o prog

68

The make tool (6/6)

• Previous example using constants (more “professional”):*
CC = g++
CFLAGS = –Wall -g
OBJS = C1.o C2.o prog.o

prog : $(OBJS)
$(CC) $(CFLAGS) $(OBJS) -o prog

C1.o : C1.cc C1.h
$(CC) $(CFLAGS) -c C1.cc

C2.o : C2.cc C2.h C1.h
$(CC) $(CFLAGS) -c C2.cc

prog.o : prog.cc C1.h C2.h
$(CC) $(CFLAGS) -c prog.cc

clean:
rm -rf $(OBJS)

*More information at: https://en.wikipedia.org/wiki/Make_(software) 69

https://en.wikipedia.org/wiki/Make_(software)

Header guards

• Compilation errors can occur when a header file is included in
multiple files in our code

• The compiler thinks that the class in that header file is being
declared multiple times

• It is necessary to use the instructions #ifndef, #define and
#endif in our header files to avoid it

// C1.h
#ifndef _C1_H_
#define _C1_H_
...
class C1{
...

};
#endif

70

Exercises

Exercises (1/3)

Exercise 1

Implement the class in the following diagram:

+ Coordenada (cx: float=0, cy: float = 0)
+ Coordenada (const Coordenada &)
+ ~Coordenada()
+ <<const>> getX() : float
+ <<const>> getY() : float
+ setX (cx:float) : void
+ setY (cy:float) : void
+ <<friend>> operator << : ostream &

- x : float
- y : float

Coordenada

Create the files Coordinate.cc and Coordinate.h, and a
makefile to compile them with a program principal.cc. The main
function has to ask the user for two numbers and create with them a
coordinate to print it with the output operator in the format (x,y).
Write the code necessary for each method to be used at least once.

71

Exercises (2/3)

Exercise 2

Implement the code corresponding to the following UML diagram:

+ Linea()
+ <<const>> getSubtotal() : float
+ <<const>> getCantidad() : int
+ <<const>> getPrecio() : float
+ <<const>> getDescripcion() : string
+ setCantidad(cant : int) : void
+ setPrecio(precio : float) : void
+ setDescripcion(descripcion : string) : void

- cantidad : int
- precio : float
- descripcion : string

Linea

+ Factura(c: Cliente*, fecha : string)
+ anyadirLinea(cant : int, desc : string, prec : float) : void
- getSigId() : int
+ <<friend>> operator<< : ostream &

- sigId : int = 1
+ IVA : const int = 18
- fecha : string
- id : int

Factura

1

+ Cliente(nom: string, dir : string, tel : string)
+ <<const>> getNombre() : string
+ <<const>> getTelefono() : string
+ <<const>> getDireccion(): string
+ setNombre(nombre : string) : void
+ setTelefono(telefono : string) : void
+ setDireccion(direccion : string) : void

- nombre : string
- direccion : string
- telefono : string

Cliente

*

-cliente

-lineas

2121

72

Exercises (3/3)

Exercise 2 (continues)

Make a program that creates a new invoice, adds a product and
prints it. From the constructor of Factura the method getSigId is
called, which returns the value of sigId and increases it. Output
example when printing an invoice:

Invoice No.: 12345
Date: 18/4/2011

Customer data

Name: Agapito Piedralisa
Address: c/ Río Seco, 2
Phone: 123456789

Invoice details

Line;Product;Quantity;Price per unit;Total price
--
1;USB mouse;1;8.43;8.43
2;RAM 2GB;2;21.15;42.3
3;Speakers;1;12.66;12.66

Subtotal: 63.39 €
VAT (21%): 13.3119 €
TOTAL: 76.7019 €

73

	Introduction
	Core concepts
	OOP in C++
	Objects and memory management
	Relationships
	Compilation
	Exercises

