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Introduction



Definition

• Object oriented programming (OOP) is a programming paradigm
that uses objects and their interactions to design software

• The whole application is treated as a set of cooperating objects
and their relationships

• C++ is an object oriented language, but it also allows imperative
(procedural) programming

• The approach when designing programs changes...
• ... but everything you have learned so far is still useful!

2



Classes and objects (1/4)

• We have already used classes and objects in Programming 2:

int i; // Declare a variable i of int type
string s; // Declare an object s of string class

• A class (or compound type) is a model for creating objects of that
type

• An object of a certain class is called an instance of that class
• In the example above, s is an instance/object of the class
string

• Classes are similar to simple types, although they allow many
more functionalities
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Classes and objects (2/4)

• A struct is a simple type
• It can be considered as a “light” class that only stores visible
data:

struct Date{
int day;
int month;
int year;

};
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Classes and objects (3/4)

• A class contains data and a set of functions that manipulate this
data, called member functions or methods

• You can control which data/methods are visible (public) and
which are hidden (private)

• Member functions can access public and private data of their
class

• Example of “basic” class equivalent to struct Date:*

class Date{
public: // Public data
int day;
int month;
int year;

};

*We say “basic” because it does not offer any advantages with respect to struct Date
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Classes and objects (4/4)

• Direct access to elements of the object, as in a struct:
Date d;
d.day=12;

• In a good object oriented design, data is usually not accessed
directly: methods are used to modify the data

• In the example above, d.day=100 would not cause an error
• Methods can be used to control what values are given to the
data:
class Date{
private: // Only accessible from class methods
int day;
int month;
int year;

public:
bool setDate(int d,int m,int y){...};

};
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Core concepts



Core concepts

• Principles on which object oriented design is based:
• Abstraction
• Encapsulation
• Modularity
• Inheritance
• Polymorphism
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Abstraction

• Abstraction denotes the essential characteristics of an object and
its behaviour

• Each object can perform tasks, inform and change its state,
communicating with other objects in the system without revealing
how these features are implemented

• The abstraction process allows selecting the relevant features
within a set, identifying common behaviours to create new
classes

• The abstraction process takes place in the design phase
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Encapsulation

• Encapsulation implies grouping together all the elements that
can be considered as belonging to the same entity at the same
level of abstraction

• The interface is the part of the object that is visible (public) to the
other objects: a set of methods and data available to
communicate with an object

• Each object hides its implementation (how it is done) and
exposes an interface (what it does)

• Encapsulation protects the properties of an object against
modification: only the object’s own methods can access its state
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Modularity (1/2)

• Modularity is the property that allows a program to be divided into
smaller parts (called modules) as independent as possible

• These modules can be compiled separately, although they have
connections to other modules

• Generally, each class is implemented in a separate module, but
classes with similar functionalities can share a module
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Modularity (2/2)

• A class myClass would be implemented using two source files:
• myClass.h: contains constants used in this file, declaration of the
class and its methods

• myClass.cc: contains constants used in this file, implementation
of the methods and maybe internal types used by the class

• The main function uses these classes as a client. It is included
in a separate file (for example, prog.cc)

• To get the executable, you have to compile all the modules
together. For example, to compile a program with two classes
(myClass1 and myClass2) and a main function (prog.cc):

Terminal
$ g++ myClass1.cc myClass2.cc prog.cc -o prog

• This compilation method is adequate only if there are few classes
• At the end of this unit we will see how to properly compile
programs with multiple classes using the make tool
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Inheritance (1/2)

• Not studied in Programming 2
• Classes can be related to each other by forming a classification
hierarchy

• Inheritance allows defining a new class from another class
• This applies when there are sufficient similarities and most of the
features of the existing class are suitable for the new class

• In the following example, the subclasses Dog and Cat inherit the
methods and attributes specified by the superclass Mammal:

Mammal

Dog Cat
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Inheritance (2/2)

• Inheritance allows adopting features already implemented by
other classes

• It facilitates the organisation of information at different levels of
abstraction

• Objects inherit the properties and behaviour of all the classes to
which they belong

• Derived objects can share (and extend) their behaviour without
having to implement it again

• Multiple inheritance occurs when an object inherits from more
than one class
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Polymorphism

• Not studied in Programming 2
• Polymorphism is the property according to which the same
expression refers to different actions

• For example, a method move may refer to different actions if it is
applied to a plane or a car

• Different behaviours, associated with different objects, can share
the same name

• References and object collections can contain objects of different
types:

Mammal *a=new Dog;
Mammal *b=new Cat;
Mammal *c=new Seagull;
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OOP in C++



Declaration and implementation (1/2)

• In this exampe, the class SpaceShip is implemented as a
module usgin two files: SpaceShip.h and SpaceShip.cc

// SpaceShip.h (class declaration)
class SpaceShip{
private:
int maxSpeed;
string name;

public:
SpaceShip(int ms,string nm); // Constructor
~SpaceShip(); // Destructor
int trip(int distance);
string getName() const;

};
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Declaration and implementation (2/2)

// SpaceShip.cc (implementation of the methods)
#include "SpaceShip.h"

SpaceShip::SpaceShip(int ms,string nm){ // Constructor
maxSpeed=ms;
name=nm;

}

SpaceShip::~SpaceShip(){} // Destructor

int SpaceShip::trip(int distance){
return distance/maxSpeed;

}

string SpaceShip::getName() const{
return name;

}
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UML diagram (1/3)

• A UML diagram allows describing the classes and relationships
between classes in an object oriented design:

+ Rect(ax : int, ay : int, bx : int, by : int)
+ ~Rect()
+ width() : int
+ height() : int
+ area() : int

- x1 : int
- x2 : int
- y1 : int
- y2 : int

Rect

• The - in front of an attribute or method indicates that it is private
• The + indicates that it is a public attribute or method
• A horizontal line separates attributes (upper part) from methods
(lower part)
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UML diagram (2/3)

• Translation into code of the previous UML diagram:

// Rect.h (class declaration)
class Rect{
private:
int x1,y1,x2,y2;

public:
Rect(int ax,int ay,int bx,int by); // Constructor
~Rect(); // Destructor
int width();
int height();
int area();

};
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UML diagram (3/3)

// Rect.cc (implementation of the methods)
Rect::Rect(int ax,int ay,int bx,int by){
x1=ax;
y1=ay;
x2=bx;
y2=by;

}
Rect::~Rect(){}
int Rect::width(){ return (x2-x1); }
int Rect::height(){ return (y2-y1); }
int Rect::area(){ return width()*height(); }

// main.cc (main program)
int main(){
Rect r(10,20,40,50);
cout << r.area() << endl;

}
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Accessors

• It is not convenient to directly access the member attributes of a
class (encapsulation principle)

• Usually attributes are defined as private and accessed by
implementing setter/getter/is methods (called accessors):

+ getDay () : int
+ getMonth () : int
+ getYear() : int
+ setDay (d : int) : void
+ setMonth (m : int) : void
+ setYear (a : int) : void
+ isLeap () : bool

- day : int
- month : int
- year : int

Date

• Setter accessors allow controlling that attribute values are
correct
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Canonical form

• All classes must implement these four methods:
• Constructor
• Destructor
• Copy constructor
• Assignment operator

• The compiler creates these operations by default if they have not
been defined by the programmer
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Constructor (1/7)

• The constructor is automatically called when a new object of the
class is created

• Classes must have at least one constructor method
• If a constructor is not defined, the compiler creates one by
default without parameters (the member attributes of the objects
thus created will be uninitialised)

• A class can have several constructors with different parameters
(the constructor can be overloaded)

• Overloading is a type of polymorphism
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Constructor (2/7)

• Examples of constructors:
Date::Date(){ // Without parameters
day=1;
month=1;
year=1900;

}

Date::Date(int d,int m,int y){ // With three parameters
day=d;
month=m;
year=y;

}

• Calls to the constructors:
Date d;
Date d(10,2,2010);
Date d(); // Compilation error!
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Constructor (3/7)

• Constructors (as other functions) can have default parameters
• These default values are only declared in the header file (.h):

// Date.h
class Date{
...
Date(int d=1,int m=1,int y=1900);
...

}

• With this constructor we could create objects in several ways:

Date d; // day = 1, month = 1, year = 1900
Date d(10,2,2010); // day = 10, month = 2, year = 2010
Date d(10); // day = 10, month = 1, year = 1900
Date d(18,5); // day = 18, month = 5, year = 1900
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Constructor (4/7)

• The default parameters in the above example would be
displayed as follows in a UML diagram:

Date

- day: int

- month: int

- year: int

+ Fecha (dia: int=1, mes: int=1, anyo: int=1900)

...

Date (day: int=1, month: int=1, year: int=1900)
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Constructor (5/7)

• If the parameters passed to the constructor are incorrect, the
object should not be created

• This can be controlled through the use of exceptions:
• An exception can be thrown with throw to indicate that an error
occurred

• An exception can be captured with try/catch to react to the error

• If an exception occurs and it is not captured, the program
terminates immediately

• Exceptions should only be used when there is no other option
(e.g. in constructors)
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Constructor (6/7)

• Example of exception usage:

int root(int n){
if(n<0)
throw exception(); // Throw exception and finishes

return sqrt(n);
}

int main(){
try{ // Try to run these instructions
int result=root(-1); // Causes an exception
cout << result << endl; // This line is not executed

}
catch(...){ // Exceptions are captured here
cout << "Negative number" << endl;

}
}
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Constructor (7/7)

• Example of constructor with exceptions:
Coordinate::Coordinate(int cx,int cy){
if(cx>=0 && cy>=0){
x=cx;
y=cy;

}
else
throw exception();

}

int main(){
try{
Coordinate c(-2,4); // This object is not created

}
catch(...){
cout << "Wrong coordinate" << endl;

}
}
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Destructor (1/2)

• The destructor of the class must free the resources (usually
dynamic memory) that the object is using

• A class only has one destructor function that has no arguments
and returns no value

• It is a method with the same name as the class and preceded by
the character ∼:

// Declaration
~Date();
// Implementation
Date::~Date(){
// Free allocated memory (if necessary)

}
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Destructor (2/2)

• All classes need a destructor and, if not specified, the compiler
creates one by default

• The compiler automatically calls the object destructor when
object’s scope ends

• It is also invoked by doing delete
• The destructor of an object implicitly invokes the destructors of
all its attributes
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Copy constructor (1/2)

• A copy constructor creates a new object from an existing one:

// Declaration
Date(const Date &d);

// Implementation
Date::Date(const Date &d){
day=d.day;
month=d.month;
year=d.year;

}
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Copy constructor (2/2)

• The copy constructor is automatically called when:
• A function returns an object
• An object is initialised when it is declared:

Date d2(d1); // Constructor
Date d2=d1; // Constructor
d2=d1; // Constructor is not called, but = operator

• An object is passed by value to a function:

void function(Date d);
function(d);

• If no copy constructor is specified, the compiler creates one by
default that makes a copy, attribute by attribute, of the object
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Assignment operator

• Not studied in Programming 2
• The assignment operator (=) allows a direct assignment of two
objects:

Date d1(10,2,2011); // Constructor
Date d2; // Constructor
d2=d1; // Assignment operator

• By default, the compiler creates an assignment operator that
copies attribute by attribute

• It can be redefined if necessary
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Inline declarations (1/2)

• Methods with little code can be implemented directly in the class
(inline declaration):

// Rect.h
class Rect{
private:
int x1,y1,x2,y2;

public:
Rect(int ax,int ay,int bx,int by);
~Rect(){}; // Inline
int width(){ return (x2-x1); }; // Inline
int height(){ return (y2-y1); }; // Inline
int area();

};
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Inline declarations (2/2)

• It is more efficient to declare inline functions
• When compiling, the generated code for the inline functions is
inserted at the point where the function is called (instead of
putting the code somewhere else and making a call)

• Inline functions can also be implemented outside the class
declaration, in the .cc file, using the reserved word inline:

inline int Rect::width(){
return (x2-x1);

}
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Constant methods (1/2)

• Methods that do not modify object attributes can be declared as
constant methods:
int Date::getDay() const{ // Constant method
return day;

}

• Only constant methods can be called upon a constant object:
int Date::getDay(){ // Not declared as const
return day;

}
int main(){
const Date d(10,10,2011);
cout << d.getDay() << endl; // Compilation error

}

• get methods must be declared constant, as they simply return
values and never modify the object
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Constant methods (2/2)

• They are represented by putting <<const>>> in front of the
method name in UML diagrams:

• In this example there are four constant methods: getSubtotal,
getAmount, getPrice and getDescription:

Line
- amount: int
- price: float
- description: string

+ Line()
+ <<const>> getSubtotal(): float
+ <<const>> getAmount(): int
+ <<const>> getPrice(): float
+ <<const>> getDescription(): string
+ setAmount(amount: int): void
+ setPrice(price: float): void
+ setDescription(description: string): void
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Friend functions

• A friend function does not belong to the class but it can access
class’ private part

• The reserved word friend is used in the declaration:

class MyClass{
friend void aFriendFunction(int,MyClass &);
public:
...

private:
int privateData;

};

void aFriendFunction(int x,MyClass &c){
c.privateData=x; // Correct, because it is friend

}
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Input/output overload (1/4)

• Input/output operators of any class can be overloaded:

Date d;
cin >> d;
cout << d;

• The problem is that these functions cannot be member functions
of a class, because the first operand (cin/cout) is not an object
of that class (it is a stream)

• Operators are overloaded using friend functions:

friend ostream& operator<<(ostream &o,const Date &d);
friend istream& operator>>(istream &o,Date &d);
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Input/output overload (2/4)

• Declaration:

class Date{
friend ostream& operator<<(ostream &os,const Date &d);
friend istream& operator>>(istream &is,Date &d);
public:
Date(int day=1,int month=1,int year=1900);
...

private:
int day,month,year;

};
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Input/output overload (3/4)

• Implementation:

ostream& operator<<(ostream &os,const Date &d){
os << d.day << "/" << d.month << "/" << d.year;
return os;

}

istream& operator>>(istream &is,Date &d){
char dummy;
is >> d.day >> dummy >> d.month >> dummy >> d.year;
return is;

}
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Input/output overload (4/4)

• In a UML diagram, the word <<friend>> is put in front of the
operator (as it is a friend function)

• In this example, the output operator (operator<<) is
overloaded:

Invoice
- nextId: int = 1
+ VAT: const int = 21
- date: string
- id: int

+ Invoice(c: Client*, date: string)
+ addLine(num: int, desc: string, price: float): void
- getNextId(): int
+ <<friend>> operator<<: ostream &
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Class attributes and methods (1/4)

• Class attributes have the same value for all the objects in the
class (they are like global variables for the class)

• Class methods produce the same output for all the objects in the
class and can only access class attributes

• They are also called static attributes and methods
• They are declared using the reserved word static when the
class is defined:
class Date{
public:
static const int weeksPerYear=52;
static const int daysPerWeek=7;
static const int daysPerYear=365;
static string getFormat();
static bool setFormat(string);

private:
static string formatString;

};
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Class attributes and methods (2/4)

• In the file where the methods are implemented (.cc) the word
static should not be included in the definition

• For the class Date of the previous example, we would have the
following code:

// Date.cc
string Date::getFormat(){ // Don't write static
...

}

bool Date::setFormat(string s){ // Don't write static
...

}

44



Class attributes and methods (3/4)

• They are represented underlined in UML diagrams
• In this example there are two static attributes (VAT and nextId)
and a static method (getNextId):

Invoice
- nextId: int = 1
+ VAT: const int = 21
- date: string
- id: int

+ Invoice(c: Client*, date: string)
+ addLine(num: int, desc: string, price: float): void
- getNextId(): int
+ <<friend>> operator<<: ostream &
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Class attributes and methods (4/4)

• If the static attribute is not a simple type or is not constant, it
must be declared in the class but gets its value outside of it:
// Date.h
class Date{
...
static const string endWorld;
...

};

// Date.cc
const string Date::endWorld="2020"; // Don't write static

• It is possible to access static attributes or methods from outside
of the class:
cout << Date::daysPerYear << endl; // Static attribute
cout << Date::getFormat() << endl; // Static method
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The this pointer

• The this pointer is a pseudovariable that is not declared and
cannot be modified

• Is is an implicit argument received by all the methods (excluding
the static ones), which points to the object receiving the message

• It is necessary when we want to disambiguate the name of a
parameter, or when we want to pass the object as an argument
to a nested function:

void Date::setDay(int day){
// day=day; Warning: day is assigned to itself
this->day=day;
cout << this->day << endl;

}
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Automatic objects and dynamic objects (1/5)

• Regarding their lifetime in memory, objects can be automatic or
dynamic

• Dynamic objects are created at runtime using the operator new
• They stay in memory (usually in the heap) until they are explicitly
deleted using the operator delete*

• Automatic objects are (automatically) allocated in memory
(usually in the stack) at runtime when their scope is accessed

• They are (automatically) destroyed when outside their scope

*All these concepts were described in Unit 4
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Automatic objects and dynamic objects (2/5)

• Creation of one automatic object and one dynamic object:

void func() {
Date d1; // Automatic object
Date *d2=NULL;
d2=new Date; // Dynamic object

}
int main() {
func();
...

}

• Right after calling func, d1 is not in memory but d2 is, although
is no longer accesible

• Problem: the memory address pointed by d2 is never deleted
and continues occupied until the end of the program
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Automatic objects and dynamic objects (3/5)

• In the previous example, we can return the pointer so that the
object originally pointed by d2 can be accessed:

Date* func(){ // func returns a pointer to Date
Date d1; // Automatic object
d1.setDay(10);
Date *d2=NULL;
d2=new Date; // Dynamic object
d2->setDay(20);
return d2;

}
int main(){
Date *d=NULL;
d=func();
cout << d->getDay(); // Prints "20"
d->setMonth(1);
delete d; // Dynamic object removed from memory

}
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Automatic objects and dynamic objects (4/5)

• This is the previous example but returning an automatic object
instead of a dynamic one:

Date func() {
Date d1; // Automatic object
d1.setDay(10);
return d1; // Copy constructor called

}
int main(){
Date d=func(); // Automatic object
cout << d.getDay(); // Prints "10"
d.setDay(1);

}

• The copy constructor will be called in this case to initialise the
object d in the function main
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Automatic objects and dynamic objects (5/5)

• Assigning automatic and dynamic objects:
Date d1,d2,*d3=new Date,*d4=new Date;
d2.setDay(15);
d3->setDay(10);
d4->setDay(20);
d1=d2; // The assignment operator is called
Date d5=d1; // Copy constructor is called
d3=d4; // The object originally assigned to d3 cannot

// be deleted
// d3 and d4 refer now to the same object

cout << d3->getDay(); // Prints "20"
delete d3;
d4->setDay(5); // As wrong as d3->setDay(5);

// d3 and d4 point to not valid memory

• The last instruction is incorrect, but it could work sometimes
• Deleting an object marks its memory address as ready to be
reallocated (the memory is not immediately set to zero or
assigned to new data)
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Deep copy and shallow copy

• Consider an object of a class A which has a field which is a
dynamic object:
class A{B *b; ... }

• A copy constructor of A is said to perform a deep copy of the
object if it allocates new memory positions for the dynamic object:
A::A(const A &a) {
...
b=new B(a.b);

}

• A copy constructor of A is said to perfom a shallow copy of the
object if it simply makes the new field to point to the old one:
A::A(const A &a) {
...
b=a.b;

}

• Both options may be useful under different circumstances. 53
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Object relationships

• Main relationships between objects and classes:

Association
Aggregation
Composition
Use

Between objects

GeneralizationBetween classes

• Most relationships have cardinality:
• One or more: 1..∗ (1..n)
• Zero or more: ∗
• Fixed value: m

• In Programming 2 we will study only aggregation and
composition
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Aggregation and composition (1/6)

• Aggregation and composition are whole-part relationships where
an object is part of another

• They are asymmetric relationships
• The difference between aggregation and composition is the
strength of the relationship: aggregation is a weaker relationship
than composition
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Aggregation and composition (2/6)

• In composition, when the container object is destroyed, the
objects it contains are also destroyed

• E.g.: the wing is part of the plane and makes no sense outside it (if
the plane is sold, the wings are included)

• Regarding aggregation, this is not the case
• E.g.: a team can be sold, but the players can go to another club
(they do not disappear with the team)

Team

Player

Plane

Wing

* 2

1..11..*
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Aggregation and composition (3/6)

• Some relationships can be considered as aggregations or
compositions depending on the context in which they are used

• E.g.: the relation between a bicycle and its wheels

• Some authors consider that the only difference between the two
concepts lies in their implementation: a composition is an
“aggregation by value”
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Aggregation and composition (4/6)

• Composition implementation:

class A {
    private: 

B b;
    ...
};

class A {
    private: 

B b[10];
    ...
};

class A {
    private: 

vector<B> b;
         static const int N=10;
    ...
};

class A {
    private: 

vector<B> b;
    ...
};

A A A A

B B B B

-b-b1 -b -b*0..1010
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Aggregation and composition (5/6)

• Example of aggregation implementation:

class A {
    private: 

B *b;
    ...
};

class A {
    private: 

B *b[10];
    ...
};

class A {
    private: 

vector<B*> b;
         static const int N=10;
    ...
};

class A {
    private: 

vector<B*> b;
    ...
};

A A A A

B B B B

-b-b1 -b -b*0..1010
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Aggregation and composition (6/6)

• Aggregation implementation:

class A{
private:
B *b;

public:
A(B *b){ this->b=b; } // Constructor

};

int main(){ // Two ways to implement aggregation
// 1- Using a pointer
B *b=new B;
A a(b); // Call to constructor
// 2- Using an object
B b;
A a(&b); // Call to constructor

}
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Compilation



The compilation process

• The translation of a source code into an executable program is
done in two steps:

• Compilation: the compiler translates the source code into object
code (non-executable)

• Link: the linker combines the object code with the language
libraries (C/C++) and generates the executable file

• In C++ these two steps are carried out using the following
instruction:

Terminal
$ g++ program.cc -o program

• Using the option -c the code is only compiled, generating object
code (.o) but without linking it:

Terminal
$ g++ program.cc -c
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Separate compilation (1/2)

• When a program consists of several source files (.cc), the
process to obtain the executable is:
1. Compile each source file separately, obtaining several object code

files (.o):
Terminal
$ g++ -c C1.cc
$ g++ -c C2.cc
$ g++ -c prog.cc -c

2. Link the object code files with the language libraries and generate
an executable:
Terminal
$ g++ C1.o C2.o prog.o -o prog

• If the program consists of few source files, the process can be
done all at once:

Terminal
$ g++ C1.cc C2.cc prog.cc -o prog
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Separate compilation (2/2)

• Problem: there is a header file .h that is used in several source
files .cc

• What must be done if something is changed in the .h file?
• Option 1: everything is recompiled again (“brute force”)
• Option 2: search “by hand” where the header is used and
recompile only these files

• Option 3: automatically search where the header is used and only
recompile these classes

• The best is “Option 3” and there is a tool called make that helps
us do it
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The make tool (1/6)

• The make tool helps in compiling large programs
• Allows setting dependencies between files
• Compiles a file when one of the files it depends on changes
• The text file makefile specifies the dependencies between files
and what to do when something changes
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The make tool (2/6)

• The make tool searches by default for a file called makefile
• This file describes a main objective (usually the executable
program) and a series of secondary objectives

• The format of each objective in the makefile is:
<objective> : <dependencies>
[tab]<instruction>

• The algorithm of make is very simple: “If the date of any
dependency is more recent than the date of the objective, then
execute instruction”
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The make tool (3/6)

• Imagine that you have the following files:
// C1.cc
#include "C1.h"
...

// C2.cc
#include "C2.h"
#include "C1.h"
...

// prog.cc
#include "C1.h"
#include "C2.h"
...
int main(){
...
}
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The make tool (4/6)

• The makefile content would be:*
prog : C1.o C2.o prog.o

g++ -Wall -g C1.o C2.o prog.o -o prog
C1.o : C1.cc C1.h

g++ -Wall -g -c C1.cc
C2.o : C2.cc C2.h C1.h

g++ -Wall -g -c C2.cc
prog.o : prog.cc C1.h C2.h

g++ -Wall -g -c prog.cc

*The -Wall option shows all the warnings whereas -g adds debugging information
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The make tool (5/6)

• In the previous example, if C2.cc is modified and make is run:

Terminal
$ make
g++ -Wall -g -c C2.cc
g++ -Wall -g C1.o C2.o prog.o -o prog

• And if C2.h is modified and make is run:
Terminal
$ make
g++ -Wall -g -c C2.cc
g++ -Wall -g -c prog.cc
g++ -Wall -g C1.o C2.o prog.o -o prog
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The make tool (6/6)

• Previous example using constants (more “professional”):*
CC = g++
CFLAGS = –Wall -g
OBJS = C1.o C2.o prog.o

prog : $(OBJS)
$(CC) $(CFLAGS) $(OBJS) -o prog

C1.o : C1.cc C1.h
$(CC) $(CFLAGS) -c C1.cc

C2.o : C2.cc C2.h C1.h
$(CC) $(CFLAGS) -c C2.cc

prog.o : prog.cc C1.h C2.h
$(CC) $(CFLAGS) -c prog.cc

clean:
rm -rf $(OBJS)

*More information at: https://en.wikipedia.org/wiki/Make_(software) 69
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Header guards

• Compilation errors can occur when a header file is included in
multiple files in our code

• The compiler thinks that the class in that header file is being
declared multiple times

• It is necessary to use the instructions #ifndef, #define and
#endif in our header files to avoid it

// C1.h
#ifndef _C1_H_
#define _C1_H_
...
class C1{
...

};
#endif

70



Exercises



Exercises (1/3)

Exercise 1

Implement the class in the following diagram:

+ Coordenada (cx: float=0, cy: float = 0)
+ Coordenada (const Coordenada &)
+ ~Coordenada()
+ <<const>> getX() : float
+ <<const>> getY() : float
+ setX (cx:float) : void
+ setY (cy:float) : void
+ <<friend>> operator << : ostream & 

- x : float
- y : float

Coordenada

Create the files Coordinate.cc and Coordinate.h, and a
makefile to compile them with a program principal.cc. The main
function has to ask the user for two numbers and create with them a
coordinate to print it with the output operator in the format (x,y).
Write the code necessary for each method to be used at least once.

71



Exercises (2/3)

Exercise 2

Implement the code corresponding to the following UML diagram:

+ Linea()
+ <<const>> getSubtotal() : float
+ <<const>> getCantidad() : int
+ <<const>> getPrecio() : float
+ <<const>> getDescripcion() : string
+ setCantidad(cant : int) : void
+ setPrecio(precio : float) : void
+ setDescripcion(descripcion : string) : void

- cantidad : int
- precio : float
- descripcion : string

Linea

+ Factura(c: Cliente*, fecha : string) 
+ anyadirLinea(cant : int, desc : string, prec : float) : void
- getSigId() : int
+ <<friend>> operator<< : ostream &

- sigId : int = 1
+ IVA : const int = 18
- fecha : string
- id : int

Factura

1

+ Cliente(nom: string, dir : string, tel : string) 
+ <<const>> getNombre() : string
+ <<const>> getTelefono() : string
+ <<const>> getDireccion(): string
+ setNombre(nombre : string) : void
+ setTelefono(telefono : string) : void
+ setDireccion(direccion : string) : void

- nombre : string
- direccion : string
- telefono : string

Cliente

*

-cliente

-lineas

2121
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Exercises (3/3)

Exercise 2 (continues)

Make a program that creates a new invoice, adds a product and
prints it. From the constructor of Factura the method getSigId is
called, which returns the value of sigId and increases it. Output
example when printing an invoice:

Invoice No.: 12345
Date: 18/4/2011

Customer data
-------------
Name: Agapito Piedralisa
Address: c/ Río Seco, 2
Phone: 123456789

Invoice details
---------------
Line;Product;Quantity;Price per unit;Total price
--
1;USB mouse;1;8.43;8.43
2;RAM 2GB;2;21.15;42.3
3;Speakers;1;12.66;12.66

Subtotal: 63.39 €
VAT (21%): 13.3119 €
TOTAL: 76.7019 €
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