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In this paper we consider the communication complexity of maintaining the replicas of a logical

data-item, in a database distributed over a computer network. We propose a new method, called

the minimum spanning tree write, by which a processor in the network should multicast a write

of a logical data-item, to all the processors that store replicas of the item. Then we show that the

minimum spanning tree write is optimal from the communication cost point of view. We also

demonstrate that the method by which a write is mutlicast to all the replicas of a data-item

affects the optimal replication scheme of the item, i.e., at which processors in the network the

replicas should be located. Therefore, next we consider the problem of determining an optimal

replication scheme for a data item, assuming that each processor employs the minimum

spanning tree write at run-time. The problem for general networks is shown NP-Complete, but

we provide efficient algorithms to obtain an optimal allocation scheme for three common types of

network topologies. They are completely-connected, tree, and ring networks. For these topolo-

gies, efficient algorithms are also provided for the case in which reliability considerations dictate

a minimum number of replicas.

Categories and Subject Descriptors: H.2.4 [Database Management]: Transaction processing;

C.4 [Computer Systems Organization]: Performance of Systems; C .2.4 [Computer-Communi-
cation Networks]: Distributed Systems; D.2.8 [Software Engineering]: Metrics

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Complexity, computer network, file allocation, message

passing, NP-Complete

1. INTRODUCTION

Consider a replicated database that is distributed among the processors in a

communication network. We model the communication network by a con-

nected undirected graph; the nodes represent processors, and the edges

represent two-way communication links. A logical data-item is a file, a
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Fig. 1. A communication network.
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The shaded processors store replicas of a data-item.

relation, or part of a relation, and each such item is physically replicated at

one or more processors in the network. When a transaction writes the logical

data-item, the write has to be propagated to all its physical replicas. The first

question we address in this paper is what is the optimal write-multicast-policy,

i.e., way of multicasting a write of a logical data-item to all its physical

replicas? By an optimal write-multicast-policy, or simply an optimal write-

policy, we mean a propagation scheme that puts the minimum load on the

communication network.

For example, assume that six processors are interconnected in a ring, as in

Figure la. The shaded processors represent the residence set of a data-item,

i.e., the processors that store replicas of the data-item. Suppose that proces-

sor 6 is the writer, i.e., has to send the data-item to all the processors of the

residence set. The most efficient way for processor 6 to propagate the write is

the following. It sends the data-item to processor 1, which then sends the

data-item to processor 2; processor 2, in turn, sends the data-item to processor

3. Overall, the data item traverses three communication links. This is clearly

a lower load on the communication network than the one put by the write

policy that we call naive, in which processor 6 propagates the write in three
messages: from 6 to 1, from 6 to 2, and from 6 to 3. In this case the data item

traverses 1 + 2 + 3 communication links.

In this paper we first establish the optimal write-policy for an arbitrary

communication network, an arbitrary residence set, and an arbitrary writer
processor. It is the policy that we call the minimum-spanning-tree write, in

which the writer propagates the data-item along the edges of a minimum

spanning tree of the distance graph; it is a complete weighted graph in which

the nodes, or the participants, are the writer and the processors of the
residence set, and each edge represents the distance in the communica-

tion network between a pair of participants. When using the minimum-

spanning-tree write-policy, processor 6 in Figure la will indeed propagate the

logical data-item to processors 1, 2, and 3 in the efficient way suggested

above.
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Of course, efficient multicast algorithms have been studied previously 1 [2,

3, 5-7, 16]. However, the following question that arises in the database

context has not been addressed. Does the write policy used by the writers

affect the optimal residence set, i.e., the choice of the residence set for which

the total load on the communication network is minimized? The answer is

yes. For example, consider the ring network of Figure 1 and assume that

each processor performs two reads and one write of the logical data-item, per

time unit. Each read is, expectedly, performed from the closest (in terms of

links-distance in the network) processor of the residence set. If each processor

propagates each write that it performs using the minimum-spanning-tree
policy, then the optimal residence set is the one illustrated in Figure la

(obviously, any string of three processors is optimal). The total number of

transmissions of the data-item along a communication link is 24 per time

unit. On the other hand, if each processor uses the naive-write policy, as the

previous works have assumed, then the optimal residence set is the one in

Figure lb (26 link-transmissions per time unit). Moreover, the residence set

of Figure la is not optimal for the naive-write policy (35 link-transmissions),

and the residence set of Figure lb is not optimal for the minimum-spanning-

tree write policy (26 link-transmissions).

Therefore, after establishing that the minimum-spanning-tree write-policy

minimizes communication at run time, we assume that each processor uses

it, and we examine the optimal residence set problem. It is the problem of

determining where the replicas of a data-item should be placed, in order to

minimize the communication load. We take what Ceri et al. [4] call the user

viewpoint, by assuming that the network topology and the read/write activ-

ity at each processor are predefine.

The optimal residence set problem, also called the file-allocation problem,

has been studied extensively in the literature (see Dowdy and Foster [8] for a

survey). Most existing works address optimization of the communication cost,

as well as other parameters, such as storage costs [1, 14], communication

channels capacity [12], or the communication network topology [10]. Concen-

trating on the communication cost alone makes our model relatively simple.

Additionally, and more importantly, all the previous works that we are

aware of, with one exception discussed below, have assumed a naive write

policy [1, 8, 9, 15, 171. The naive-write policy assumption is implied by the
formulation of the total communication cost of a multicast transmission, as

simply the sum of the communication costs between the sender and each

one of the receivers. As the above example demonstrates, when using the

minimum-spanning-tree write, the cost of a multicast from processor 6 to

processors 1, 2, and 3 is not the sum 1 + 2 + 3. The observation that the

write policy affects the optimal residence set leads us to believe that the

lThe underlying assumptions are often different than ours, since they did not assume a
distributed database environment as we do. For example, Dolal and Metcalfe [8] present that
each processor in the network knows its own identity, but not necessarily the identity of its

neighbors. In contrast, notice that a processor usually does know at which processors the

database is distributed.
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optimal residence set problem must be reconsidered from this new angle, i.e.,

investigating other write-multicast policies. Since the optimal residence set

is determined with the purpose of minimizing the communication cost, it

makes sense to assume that each processor minimizes the communication

cost at run-time.

A single exception to the naive-write assumption in previous work is

presented by Casey [11. Although the results of Casey are also derived for the

naive-write policy, at the end of the paper, in the extensions section, Casey

does mention that a write should preferably be propagated along the edges of

a tree. Casey remarks that the exponential-time algorithm that he devises in

previous sections would still work in the tree-write case, but without guaran-

teeing an optimal allocation.

In this paper we determine that when the minimum spanning tree write is

used, the problem of finding an optimal residence set is NP-complete for

general communication networks. However, our simple problem formulation

enables us to provide efficient algorithms for solving the problem in the
following widely used network topologies: completely connected, tree and

ring. Moreover, for general networks, the problem is NP-complete even if the

number of reads of the data item is identical at all the processors, and so is

the number of writes (the balanced-load case). On the other hand, for the

special topologies the problem can be solved efficiently, even if different

processors have different access patterns to the data-item (the unbalanced-load

case).

So far we discussed replicated data from the performance point of view.

However, one of the main purposes for replicating data in computer networks

is improved reliability; if some, but not all, of the processors of the residence

set fail, then the applications should still be able to access the data-item.

Therefore, often the communication cost has to be optimized subject to the

constraint that the number of replicas in the network is not lower than some

threshold, t.This threshold is calculated a priori by means outside the scope

of this paper, such as the failure-probability of a processor. Consequently, for

the special topologies, i.e., completely-connected, tree, and ring, we also

provide efficient algorithms for the problem of finding the t-reliable optimal

residence set, i.e., the optimal residence set in which the number of replicas

is at least t.We do so for the balanced- and unbalanced-load cases.

The rest of the paper is organized as follows. In Section 2 we establish that

the minimum-spanning-tree write policy achieves the minimum communica-

tion cost. The optimal residence set problem is defined and is shown NP-

Complete for general networks, in Section 3. In Section 4 we present the
positive results, i.e., the algorithms that solve the optimal residence set
problem for completely-connected, tree, and ring networks. In Section 5 we

discuss the effect that reliability considerations have on the results presented

in Section 4. In Section 6 we conclude, and discuss future work.

2. READ AND WRITE MESSAGE COSTS

Read and write operations for logical entities (or data-items) are issued at

each processor in a computer-network. Each such operation is eventually
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translated into zero or more information messages transmitted in the net-

work; they carry the data-item to or from the processors storing the physical

replicas of the logical data-item. In this section we establish the minimum

number of network messages required for an arbitrary read and write by a

processor. The read case is simple, the write case slightly more involved. We

start with some definitions. A communication network, or network for short,

is an undirected connected graph, G = (V, E). V represents a set of proces-

sors, and an edge in the network between two processors represents a

bidirectional communication link between them. Given a network we define

a residence set to be a subset of V. It represents the processors where some

arbitrary fixed data-item is replicated. We assume that reading of a data-item

by a processor is implemented by transferring the closest replica to it.

Therefore, for a given network and residence set, the read cost of a processor

U, denoted rU, is the length (in edges) of the shortest path in the network

between u and a processor of the residence set. It represents the number of

information messages required for the data-item transfer. Obviously, if u is

in the residence set, then the read cost is zero.

Next we establish the write cost for a processor, given a residence set, R.

We assume that processor u = V writes the logical data-item, and call it the

writer; it may or may not belong to the residence set. The processors in

R U {u} are the participants in the write protocol, and are denoted by P. A

write instance is a directed graph, 1 = (P, A). Each arc of A represents a

replica transfer between two participants, and its cost is the shortest path in

the network between the processors at its endpoints. Since the data-item sent

by the writer reaches every other participant, we require that there is a path

in 1 from v to each processor in R. The write-instance cost is the total cost of

its arcs. We are interested in establishing the minimum cost of a write

instance, Clearly, for this purpose the only instances to be considered are

acyclic. A possible algorithm which sends exactly the messages of a given

acyclic instance, 1, is the following (assuming 1 is known to all participants):

the writer sends the data-item to its sons, and each processor, after receiving

the data-item, forwards it to its sons, and so on, until the data-item reaches

the leaves of 1.

For the next proposition we need to define the distance graph, D~( V), for

an arbitrary subset of processors V s V. D~( V ) is a complete, weighted,

undirected graph, having V as the set of nodes. The weight of an edge

between j and k in D~( V) is the length of the shortest path in G between j

and k. Denote by mst(D~( V)) a minimum-spanning-tree of D~( V).

PROPOSITION 2.1. Let G be a network, R a residence set, and v a writer.

Denote the set R U {v} by P. Then the necessary and sufficient cost of a write

instance, i.e. the minimum cost, is the total weight of mst(D~( P)).

I%OOF. (necessary) By the definition of a write instance, the underlying

undirected graph of any write instance is a connected subgraph of D~( P) that
spans all the processors of P. The minimum weight of such a graph is the
weight of mst(D~( P)).
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(suf~icient) Given an mst(D~(P)) we can build the required write instance

whose cost is equal to the weight of nzst(ll~( P)), by directing the edges of the

mst(D~( P)) to form a rooted-tree, rooted at the writer. ❑

Our definition of a write instance, and consequently Proposition 2.1, pre-

suppose that a nonparticipant processor of the network only acts as an

intermediary, and when it receives a replica, it simply forwards it along a

single communication link of the network. In particular, a nonparticipant

does not send an incoming replica to two or more of its neighbors (since doing

so would involve examination of the message by higher communication-

protocol layers). If a nonparticipant can multicast a replica, then all the

processors of the network are participants, and the problem of determining

the minimum cost of a write instance becomes the (NP-complete) Steiner

Tree problem.

Let G = (V, E) be a communication network. Given a residence-set, R, we

define the write cost of processor U, denoted WU, to be the total weight of

rnst( DG( P)). Let V’ ~ V. The subgraph induced by V is G’( V, E’), where

E’ ~ E consists of the edges that have both endpoints in V. Denote by dU,

the length of the shortest path in G between u and (some processor of) R. The

next lemma will be used extensively in our proofs.

LEMMA 2.1. Let G = (V, E) be a network, R a residence set, and i ~ V a

processor. If R induces a connected subgraph of G, then w, = d, + I R \ – 1.

PROOF. We prove first that any spanning tree of D~( R U { i}) is of weight

at least d, + I R I – 1.The I R I + 1 nodes of the distance graph require I R I

edges in order to form a spanning tree. The lightest edge that is connected to

i in DG( R U { i}) is obviously of weight d,. Each one of the other I R I – 1

edges is at least of weight one, therefore there is no spanning tree whose

weight is less than d, + I R \ – 1.

Now we prove that a spanning tree of such weight exists. R induces a

connected subgraph, thus, there are I R I – 1 edges of weight one, and this

set of edges spans the nodes of R in the distance graph. Also, there exists an

edge of weight d, between node i and some node of R. Therefore there exists

a spanning tree whose weight is di + I R I – 1. ❑

3. THE RESIDENCE SET PROBLEM

In this section we define the residence set problem, namely the problem of

placing the replicas of a given data item to minimize overall message traffic

in a computer-network. Then its complexity is established. We assume that
the transaction processing load is balanced in the following sense. The

number of data-item read operations per time unit, #R, is equal at all the

processors, and the same holds for the number of write operations per time

unit, #W. We denote the ratio +1R/ # W by a. In other words, for each write

there are a reads at each processor. We choose the size of the time unit, such

that # W = 1. Given a residence set, R, and a, the residence set cost, denoted

cost(R), is defined as X ,Gv w, + a “ Z, GVr,. We shall refer to the first sum in

the expression as the total-write-cost, and to the last sum multiplied by a, as
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the total-read-cost. Intuitively, Z ~e~ w, + a “ X ,,V r, represents the total

communication cost per time unit, when R is the residence set. We would

like to find an optimal residence set, i.e., a residence set with the minimum

cost. The residence set problem, denoted RS, is defined as follows:

Input: A communication network graph G = (V, E), and two positive real

numbers, a and C.

Question: Is there a residence set R G V, such that X,cv w, + a “ Z ,ev

ri < C?

THEOREM 3.1. RS is NP-Complete.

PROOF. see Appendix. ❑

Although the problem is NP-complete in general, for certain input parame-

ters it can be solved efficiently.

THEOREM 3.2. Let G = (V, E) be a network, and assume that the read-write

ratio, a, is bigger than I V I – 1. Then there is a unique optimal residence set,

and it is the set of all processors.

PRooF. Suppose that R c V is a residence set. Let k be a processor in

V - R, which has a neighbor in R. It is easy to see that cost(R U { k}) <

cost(R), as follows. The total read-cost for R U {k} is lower than the total

read-cost for R, by at least a. For each i # k, Wi for R U {k} is higher than

Wi for R, by at most one. Therefore, the total write-cost for R U {k} is higher

than the total write cost for R, by at most I V I – 1. Overall, since a >

\ V I -1, cost(R)> cost(R U {k}). El

In the next section we show that for certain common network topologies

the problem can be solved efficiently for any read-write ratio.

4. SPECIAL TOPOLOGIES

In this section we present the positive results concerning completely-

connected, tree, and ring networks. Each topology is treated in its own

subsection, in which we provide an algorithm for finding the optimal resi -

dence set, and prove its correctness. The algorithm deals with the balanced-

load case. At the end of each subsection we discuss the extension of the

algorithm to efficiently solve the problem, even if the load is unbalanced.

This is the case in which processor i in the network performs #R, >0 reads

per time-unit, and # Wi >0 writes per time unit. For different processors, i

and j, # R ~ may be different than # R~, and similarly, # W, may be different

form # W].

4.1 Completely Connected Network

In this subsection we provide a formula for computing, in constant time, the

optimal residence set in a completely connected network (i.e. a clique),

denoted G( V, E). We show that if a < I V I – 1,then the optimal residence
set consists of one processor, and if a z I V I – 1, then there exists an

optimal residence set that consists of all processors.
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The proof for this fact is as follows. Given a residence set, R, for every

processor j in R, i-l = O; for every processor k that is not in R, rh = 1.Thus,

Xl=vr, = I V I – I R1. For every processor j in R, w] = \ RI – 1 and for
every processor k that is not in R, w~ = I R 1. Thus, ~I,vw, = (1 V I – I Rl)

“IR]+IRI ”(IRI-l) =( IV-1 ). IRI. Overall,

cost(R) =~w, +a. ~r, =lR l“(\V1–c–l)+lVl.a. (1)
Zev i= V

Expectedly, the actual residence set is irrelevant, only its size determines the

communication cost. If a < I V I – 1, then the minimum of the cost(R)

function is obtained when I R I = 1,and if CY> I V I – 1,then the minimum

is obtained when I R \ = I V 1. If a = I V I – 1,then the costs of all possible

residence sets are equal.

Unbalanced load. Let R be some residence set. Consider how the cost of

R changes, when adding to it a processor, i, that does not belong to R. The

total write cost, increases by EJ,V. ~,} # W~, since the cost of each write by all

the processors, except i, increases by one. The total read cost decreases by

# R,. Therefore, the total increase in cost is ~~e ~ # W~ – ( #R, + # W,).

Consequently, the optimal residence set is

If there is no processor which satisfies the condition, then the optimal

residence set consists of one processor, the one for which # R ~ + # Wh is

maximum. The optimal residence set can obviously be found in linear (al-

though not constant) time.

4.2 Tree Network

In this subsection we first present a simple algorithm, called TREE-RS,

which determines the optimal residence set in a tree-network, T( V, E). Then

we prove the correctness of the algorithm, and finally, we show that the

algorithm works in linear time.

In the algorithm TREE-RS we use the term median of a tree. Intuitively,

the median is the node for which the sum of distances to the other nodes is

minimum. Note that generally the median of a tree is different than its

center. The latter is the node for which the maximum distance is minimum.

Formally, in a tree, let lUU denote the length of the simple path between u

and u. A median is a node, m, for which x ~l~U is minimum. It can be shown

that in a tree there are one or two medians [20].

The algorithm TREE-RS is given as parameters of a tree network, and a

read-write ratio. Starting from some median, it incrementally constructs the

optimal residence set, RS, by adding a processor to RS, if this does not

increase the cost of the set. The algorithm colors a processor blue if it is not

in RS, and red if it is in RS or if it has not been checked yet.
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TREE-RS[ T( V, E), a]: /* Algorithm for finding the optimal residence set of tree T

and read-write ratio a */

1. init: color all the processors of V red; initialize RS to a median, m.
2. while there exists a processor in RS with at least one red neighbor, j, do:
3. if cost(RS U {j}) s cost(RS) then add j to FM; else color j blue.
4. end while.
5. output: RS.

Next we prove that RS is an optimal residence set. The proof is concluded

by Theorem 4.2.1, and uses 5 lemmas. The first states that the optimal

residence set must induce a connected subgraph of the network.

LEMMA 4.2.0. Assume that a residence set R induces a disconnected graph

in a tree network. Then there is another residence set, R’, such that cost( R’) <

cost(R), and I RI < \ R’ 1.

PROOF. The construction of R’ proceeds as follows. Since the graph by R

is not connected, there must be at least two processors of R, i and j, such

that if we denote the unique path between them by i, bl, . . . . b~, j for k >1,

then the b,’s do not belong to R. Take the pair i, j of such processors, with

minimum distance between them. To obtain R’, we add to R all the proces-

sors on the path between i and j. The total read cost for R’ is less than the

total read cost for R, since R c R’. The write cost of a processor 1, for R’, is
equal to its write cost for R, for the following reason. There is a minimum

spanning tree of D~( R U {1}) in which the path between i and j is either

i — j, or i — 1—j. In both cases, the path can be replaced by i, bl, . . ., bk, j or

i, bl, . . .. b~. l, bh+l, ..., bk, j, respectively, to obtain an equal weight mini-

mum spanning tree of D~( R’ U { 1}). ❑

Denote the processors of a communication network, G, by V(G). For the

rest of this subsection, let R be a residence set that induces a connected

subgraph of the tree-network, and assume that processor i is not in R, but is

a neighbor of some processor in R. Consider the removal of the edge between

i and its neighbor in R. It disconnects the network into two subtrees: a

subtree that contains i, denoted T,, and a subtree that contains R, denoted

T~. Figure 2 illustrates the description.

LEMMA 4.2.1. cost(R U {i}) = cost(R) – a “ I V(T,)I + I V(T~)l.
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PROOF. Observe that adding i to R decreases the read cost of each

processor of T, by one, and does not change the read cost of T~’s processors.

Also, adding i to R increases the write cost of each processor of T~ by one,

and does not change the write cost of T,’s processors. The lemma follows. U

LEMMA 4.2.2. Let t, be a subtree of the network such that i e V(t,) and

V(t,) fl R = @ (see Figure 2). If cost(R U { i}) > cost(R) then cost(R U

V(ti) > cost(R).

PROOF. Consider how the addition of V(t,) to R changes costs. It de-

creases the read cost of each processor of T, by at most I V( t,) 1, and does not

change the read cost of T~’s processors. It also increases the write cost of

each processor of T~ by I V(t,) I (by Lemma 2.1), and does not decrease the

write cost of T,’s processors. Note that cost( R U V( t,)) = cost(R) – [decrease

in read cost] + [increase in write cost]. Thus,

cost(R U V(t,)) ~ cost(R) – a . I V(T,)I “ \ V(t,)l + I V(T~)/ o I V(t,)l

= cost(R) + lV(t,)l “ (lV(T~)l – a“ IV(T,) I).

Since it is given that cost( R U { i}) > cost(R), then by Lemma 4.2.1,

I V(T~) I - a “ I V(Ti) I >0. The lemma follows. Cl

LEMMA 4.2.3. Let R’ be a residence set that induces a connected subgraph,

and assume that R c R’. Furthermore, assume that processor i, the neighbor

of some processor in R, is not in R’ (see Figure 3). Then cost(R U { i)) <

cost(R) if and only if cost(R’ U { i}) s cost(R’).

PROOF. Straightforward from Lemma 4.2.1. ❑

The last lemma indicates that for each median there is an optimal resi-

dence set which contains it. It uses the following median property (see

Zelinka [21 and Korach et al. [111). A node m is a median of a tree T, if and

only if for each neighbor, w, of m it is true that if the edge (m, w) is removed,

then in the connected component which contains w there are at most half the

number of nodes in T.
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LEMMA 4.2.4. Let m be a median. If m $ R, then there is another residence

set, R’, such that R’ induces a connected subgraph of the tree network, and

m cR’, and I R I = I R’ 1, and cost(R’) s cost(R).

PROOF. Intuitively, the proof shows that if R is “shifted” towards m then

the cost cannot increase. Formally, consider the unique path in the network

from m to the closest member of R. Denote by k the last node on this path,

which is not in R (see Figure 4). If R contains more than one member, then

denote by j a leaf of the subtree induced by R, which is not a neighbor of k.

Otherwise let j be the unique member of R. Let R’ = (R U { k}) – {j}. We

shall show that cost (R’) s cost ( R). Denote by T~ the subtree of the network

which contains k, and is obtained by removing the edge between k and its

neighbor in R. Similarly, we define Tj (again, consult Figure 4). It is easy to

verify that cost(R’) = cost(R) + I V(Tj) I – I V(Th) I + a( I V(T~) I –

\ V(7’J I). The median property implies that I V(Tk) I > I V(q) 1, and there-

fore cost( R’) s cost(R). The procedure can be repeated until m is contained

in R’. ❑

THEOREM 4.2.1. For any tree-network and for any read- write ratio, the

residence set output by the algorithm TREE-RS (denoted RS) is optimal.

PRooF. We will prove that RS satisfies the following condition. It is a

minimum cost residence set that contains m (the median to which TREE-RS

initializes RS), with a maximum (among all minimum cost residence sets

that contain m) number of processors. By Lemma 4.2.4, such a residence set

is optimal. Assume, by way of contradiction, that RS does not satisfy the

condition, and denote by RS’ a residence set which does so. The set RS’

induces a connected subgraph of the network (by Lemma 4.2. O), and RS

induces a connected subgraph (by the way TREE-RS adds nodes to the

residence set). We will analyze two cases.

Case 1. RS c RS’. Observe that the graph induced in the network by

RS’ – RS is a forest. Consider a tree, t,,of this forest. It contains a processor,
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i, that has a neighbor in RS. Step 3 of TREE-RS must have been executed for

i, but it did not add i to R. In other words, adding i would have increased

the cost. From Lemmas 4.2.2 and 4.2.3 we can conclude that by removing the

processors of t,from RS’ a lower cost residence set can be obtained. Contra-

diction to the minimality of RS”S cost.

Case 2. RS ~ RS’. Let k be the first processor that the algorithm TREE-

RS adds, such that k e RS and k ~ RS’. Denote by S the residence set that

the algorithm has, before adding k. Note that S # o (because at least m = S),
and S G RS’. The algorithm adds k to S, so cost(S U { k}) s cost(S). The

processor k is a neighbor of some processor in S. By Lemma 4.2.3, cost( RS’

U { k}) < cost(l?S’). If cost(RS’ U { k}) < cost(RS’) then RS’ is not an opti-

mal residence set, and if cost( RS’ U {~}) = cost( RS’) then RS’ does not have

a maximum number of processors. U

Now consider the time complexity of TREE-RS. A median can be found by

using the median property. It necessitates establishing in advance, for each

edge e of the tree, how many nodes are in each one of the two connected

components that are obtained when e is removed. This can be done in linear

time, and then finding the median simply involves scanning the nodes. In

Step 2 of the algorithm TREE-RS, every processor of the tree-network is

examined at most once. For the red processors Step 3 is performed. By using

Lemma 4.2.1, which indicates how the addition of a processor to the resi-

dence set changes costs, Step 3 can be performed in constant time. Specifi-

cally, cost(R U {~}) s cost(R) if and only if u . I V(T1) I = I V(T~) 1. There-

fore, the optimal residence set can be found in linear time.

Unbalanced load. The algorithm TREE-RS is still performed as given, to

obtain the optimal residence set, except that the set RS, in Step 1, is

initialized to a weighted median. It is the node, m, for which z.( # R. +

# Wu)“ lmuis minimum. A weighted median can still be found in linear time

using the following weighted median property. A node is a weighted median

if and only if for each neighbor, w, of m it is true that if the edge (m, w) is

removed, then

x (# Ru+#Wu)>
u e the-co nnected-component- that-contains-m

x (#RU+ #WU).
u G the-connected-component-that-contams-w

The proof that RS is an optimal residence set can be repeated almost

verbatim, except that Lemma 4.2.1, that is also used in step 3 of TREE-RS,
becomes: cost(R U { i}) = cost(R) – ZJev(TL)# RJ + ZJ=v(~~j# WJ.

4.3 Ring

The main result of this subsection is Theorem 4.3.1. It provides a formula to

compute the optimal residence set in constant time. First we prove 4 lemmas,

enabling us to conclude that for any size ring, and for any read-write ratio,

there is an optimal residence set that induces a connected subgraph of a ring

ACM Transactions on Database Systems, Vol. 16, No 1, March 1991



The Multlcast Policy and Its Relationship to Rephcated Data Placement . 193

(a) (b)

Fig. 5. A ring. Shaded processors are members of the residence set.

network. We refer to a connected subgraph of the ring network as a string.

The first lemma enables us to speak subsequently in more intuitive terms of

strings, rather than the distance-graph.

LEMMA 4.3.1. Let G be a ring network, R be a residence set, and i be a

processor of G. Then w,, the write cost of processor i, equals to the number of

edges in the shortest string of G that contains all the processors of R U { i}.

PROOF. Obvious. El

Given a residence set, R, in a ring network, consider the subgraph, Q,

induced by the processors of the network that do not belong to R. A

connected component of Q is a hole. For example, in Figure 5a H. and Hb
are holes.

LEMMA 4.3.2. For any residence set, R, which induces three or more

strings in a ring network, there is a residence set having a lower cost.

PRooF. Denote by H the set of processors, each of which is not in R, and

is not in the two biggest holes of R. Since there are more than two holes, H

is not empty. Consider the residence set, R’, which is R U H (we fit all but

the two biggest holes). Since R’ is a proper superset of R, the total cost of

reads for R’ is less than for R. consider an arbitrary processor, u. If v does

not belong to in the biggest hole of R, then it is easy to see, by Lemma 4.3.1,

that its write cost is

(number of edges in the network) - (number of edges in the biggest hole) -2,

regardless of whether R or R’ is the residence set.

If u belongs to the biggest hole of R, then, given the residence set R’, there

are two possibilities: either v writes by “skipping” part of the biggest

hole (Figure 6a), or it writes by “skipping” the whole second biggest hole

(Figure 6b). However, notice that in both cases, if R is the residence set, then
u writes in the same fashion. Therefore, the total write cost of all the

processors given the residence set R, is equal to the total write cost of all the
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(b) (a)

Fig. 6. Hb is the biggest hole, and H, is of equal, or smaller, size.

processors given the residence set R’. Thus, since the total cost of reads is

smaller for R’, cost(l?’) < cost(l?). ❑

LEMMA 4.3.3. If the read-write ratio a >1, then for any residence set that

induces two strings there exists a residence set that has a lower cost.

PROOF. Let R be a residence set that induces two strings (see Figure 5a).

Denote by H. and H6 the sets of processors of the smaller hole and of the

bigger hole, respectively (of course, their size may be equal]. Consider the

residence set, R’, which is R U H. (see Figure 5b). We will show that

cost( R’) < cost(R). For each processor in R U Hb, the read costs using R and

R’ are equal. The read cost of a processor of H. is zero using R’, and nonzero

using R. First we compute the total decrease in the cost of reads, when

substituting R’ for R.

Case 1. I H. I is even. Then there are two processors in H, at distance i

from R, for each 1< i < I H. I /2. The total read cost decreases by

(3)

Case 2. I H, I is odd. Then there are two processors in H. at distance i

from R, for each 1 s i < ( I H.\ – 1)/2, and there is one processor at distance

( I H$ I + 1)/2. The total read cost when using R’ instead of R decreases by

(l~,l– 1)/2
2“ ~ i+l Hs~+l

‘( ’HSL+ 1)2
(4)

L=l

Now consider the write costs. The write cost of a processor in R U H. has

not changed, because by Lemma 4.3.1 it equals the number of edges in the

string induced by R U H~; and this is the same string (i. e, the ring minus the

biggest hole) for R or R’. In H~ however, there are two types of processors

(see Figure 6). The first type (Figure 6a) are processors for which a shortest
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string that contains them and R, contains the whole ring except some

processors of H~. For these processors the shortest string has not changed,

and by Lemma 4.3.1 their write cost has not changed. Therefore, if H~

contains only processors of the first type, then the total cost is smaller for R’

(compared to R), and the proof is complete.

The second type of processors in Hb (Figure 6b) are processors for which

the shortest string contains the whole ring, except the processors of H..

Precisely, let i be the distance from R of a processor in H~. Then, the

processor is of type two if I H.\ > I H~ I – i, or in other words, i > I H~ I –

I H, I; otherwise it is of type one. For a processor of type two, the shortest

string that contains it and the processors of R’ is longer than the shortest

string that contains it and the processors of R. Denote by A 1 the increase in

the total write cost, when substituting R’ for R. The following two cases give

an upper bound on A 1. From this upper bound, and the fact that a > 1, and

(3) and (4), the lemma follows.

Case 1. IH5 I is even. Then there are two processors at distance i for

each

lH,l-lflsl<i=lllbl/2,

and

Al =2”
i=

(
= 1+

lHhl/2

x (lH~l+i-lH,l)

H51–]HJ+l

Given that lH~l>lH,l>lHbl/2,if lH~l is even then AIslll,l/2.

(1 + I H~l/2), and if I H~l isodd then Al< (lH~l + 1)2/4.

case 2. I Hb I is odd. Then there are two processors at distance i, for each

I H6 I - I HS I < i s (I Hb I - 1)/.2, and one processor at distance ( I Ilb I +
1)/2. It can be easily verified that

[

(l Hbl -1)/2

Al= 2“ E
](

(lH~l+i-lHbl) + lH~l- ‘Hb~-l
i=l Hbl–l H,l+l )

( )
2

= \H,l-l Hb)-l .

Again, given that I Hbl = \ H~l, if I H,l is even then Al < I H,l/2 “ (1 +

I H,l/2), and if lH~l isodd then Al< (IH,I + 1)2/4. El

LEMMA 4.3.4. Let the read-write ratio a <1, and let R be a residence set

which induces two strings, and denote by H, the set of processors of the

smallest hole. Then there is another residence set, R’, that induces at most two
strings, and cost(R’) < cost(R), and I R’ I = I R 1, and I H. I > I H[ 1, where

H: is the set of processors of the small hole for R’.
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ROOF. Intuitively, we shall define R’ to be the “shift” of the long string

induced by R, closer by one position to the short string (thus reducing I H, I

by one). Denote by S~ and S. the sets of processors of the big and small

strings induced by R, respectively. Denote by n, the processor of H. which is

closest to the big string, and by nb the processor of S~ which is closest to the

big hole (see Figure 7).
Let R’ = S. U (Sb – { n~}) U { rt~}. Denote by H~ and H6 the sets of

processors of the big holes, for R and R’, respectively. It is easy to calculate

that the total read-cost is higher for R’ than for R, by

““(H+H+’)
Consider now the write costs. We shall show that there is a decrease in the

total write cost, and this decrease is at least as high as the increase in read

costs. Since I Hi \ = I H~ I + 1,the write cost of a processor of S, U H, U S6

- { n~} is lower by one for R’ than for R. For nb, the write-cost is equal for

the two residence sets. Left is only to evaluate the change in write costs for

the processors of H~. Assume that the processors of H~ do not change type

(see proof of Lemma 4.3.3 for the definition of type) when going from R to

R’. In other words, if a processor of H~ writes R by skipping part of H~
(Figure 6a), then it writes R’ by skipping part of H;, and if it writes R by

skipping H., then it writes R’ by skipping Hi.

If all the processors of H~ are of type one, then the write cost of each one of

f \ H, I /21 processors is lower by one for R’ than for R. Overall, the total
write cost is lower for R’ than for R by

cost[R’) – COSt(R) s
[+1 - [%1

+l–l S~l–l Hsl–ls~l

+,- E?l! <,,I 2

and the lemma follows.
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Suppose now that there are processors of type two in H~ (i.e. processors for

which their distance from R is more than I H~ I – I H. I). There are I H~ I –
2.1 H. \ such processors. Then the write cost of each one of I Hb I - I H. I

processors of type one is lower by one for R’ (compared to R); the write cost of

the I Hb I – 2 “ I II. I processors of type two is higher by one for R’. Then the

total write cost is lower for R’ than for R by

lS.l+l Hsl+l Sbl-l+l Hbl-l Hsl -20 lHsl+lHbl

=IS. I+ IS, I+201H, I-1-2 .IH, I,

Overall, since a S 1,

cost( R’) – COSt( R) <
l+l-l+l+l-lssl-sl

–2”l Hb/–l+2”l H.l <o.

We have assumed that the processors of H~ do not change type when going

from R to R’. If they do, it is because their write cost can be decreased

further, and our inequalities obviously continue to hold, ❑

COROLLARY 4.3.1. If the read-write ratio a <1, then for any residence set

R that induces two strings, there is another residence set R’ that induces only

one string, and cost(R’) < cost(R), and I R I s I R’ 1.

ROOF. Immediate from Lemma 4.3.4, since the size of the smaller hole

can be iteratively reduced to zero. ❑

By Lemma 4.3.3 and Corollary 4.3.1, we conclude that for each ring, and

for each read-write ratio, there exists an optimal residence set with at most

one hole; in other words, there exists an optimal residence-set that induces a

connected subgraph of the network. Because of the ring topology, and the fact

that all the processors have the same access pattern, it is clear that all the

residence sets that induce a string of the same size, have the same cost.

Therefore, we only have to provide a formula for computing the cardinality of

the optimal residence set. This we do in the next theorem.

THEOREM 4.3.1. Let n be the size of the ring, and a be the read-write ratio.

Then the cardinality of the optimal residence set equals to n . (a - 1)/

(Ci+l)+l.

ROOF. If R is a string of size k, then for u e R the cost WV = k – 1 and

the cost rU = O; for v~R at distance i from R, w“ = i + k – 1 and ru = i.

Summing up we obtain cost(R) = n “ (k – 1) + (a + 1)/4 . [(n – k + 1)2 –

c], where c = 1 if n – k is even, and c = O if n – k is odd. In both cases, the

derivative of cost(R) with respect to k is n + 1/2 “ (u + l)(k – n – 1).This

indicates that the minimum of cost(R) is obtained when k = n(a – 1)/

(CY+l)+l. El

Unbalanced load. Only Lemmas 4.3.1 and 4.3.2 still hold in case each

processor has a different access pattern ( # R ~ and # W,). However, Lemma
4.3.2 is enough to provide a polynomial (although not constant) time algo-

rithm. Specifically, the fact that we know that in an optimal residence set
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there are at most two holes, enables finding the optimal residence set as

follows. Assume that the ring is of size n. It is easy to see that there are

0( n4) different residence sets, each with at most two holes. Finding the cost

of a residence set can be done in 0(n). Consequently, the time complexity of

finding the optimal residence set is 0( n5).

5. RELIABILITY CONSIDERATIONS

As mentioned in the introduction, often the number of processors in the

residence set should not fall below some threshold, t. Therefore, although the

optimal residence set contains, for example, one processor, this may be

unacceptable for reliability reasons. Consequently, we are often interested in

finding the t-reliable optimal residence set. The resulting t = RS problem is

formally defined as follows, for the balanced-load case (unbalanced load is

addressed at the end of this section). Given a network, G = (V, E), and

read-write ratio, a, and a reliability threshold, t < I V \, what is the resi-

dence set R G V such that I R I > t and co.st( R) is minimal? The problem

remains NP-complete (we have proved it NP-complete for t = 1) but for the

special topologies discussed in Section 4, it can be solved efficiently.

Consider first a completely connected network. If the cardinality of the

optimal residence set is less than the threshold t,it means that a < I V I – 1,

and that the optimal residence set is of size one. But then, based on formula

(1) in subsection 4.1, it is easy to see that the solution to the t = RS problem

is any subset of t processors.

Next, consider a ring network. Based on Lemma 4.3.3 and on Corollary

4.3.1, we can disregard residence sets which induce more than one connected

component. Then the formula developed in the proof of Theorem 4.3.1, for

cost(R) as a function of the size of the residence set, is a polynomial of rank

two having a minimum value. Consequently, since t is bigger than the

optimal residence set size (otherwise the problem is trivial), the solution to

the t = RS problem is a string of size t.

Finally, we consider a tree network. For this network topology the solution

is slightly more complicated. We present a quadratic time algorithm, TREE-

tRS, which provides a solution to the t-RS problem. Given a tree T, a

residence set R which induces a connected subgraph of T, and a node j of T

which is not in R, but is a neighbor of some node i in R assume that we

remove the edge (i, J“) from T; then remember that we denote by Tj the

connected component which includes j, and by T~ the other one. The

algorithm is formally given below, but intuitively, it starts with RS, the

optimal residence set output by TREE-RS, and iteratively adds to it the
neighbor J’ for which I T7 I is minimal. Obviously, each addition of a node to

RS increases the communication cost.

TREE-tRS[ T( V, E), a, t];

1. initialize R, to RS, the optimal residence set output by TREE-RS[T( V, E), a];

2. while I Rt I < t do;

3. add to R, the neighbor J’ for which I T~ I is maximum;

4. end;

5. output R,.
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CGD “’””8

Figure 9

Next we shall prove that the set R,, output by TREE = tRS, indeed

provides a solution to the t = RS problem. First we need some notation.

Denote by RS, a solution to the t – RS problem which satisfies the following

two conditions: (1) it includes the median, m, used by TREE-RS (according to

Lemma 4.2.4 there is such), and (2) is of maximum size among all the

solutions that satisfy condition (l). Obviously, I RSt I > t. By Lemma 4.2.0,

RSt induces a connected subtree of the network. Denote by RS the optimal

residence set obtained by the procedure TREE-RS, when starting from m. We

obviously suppose that \ RS I < t.

LEMMA 5.1. RS c RSt.

I%OOF. Suppose that RS ~ RSt. Note that RS (1 RSt # Q1, because m

belongs to both sets. Therefore, consider a processor i c RS – RSt which is a

neighbor of a processor in RSt (see Figure 8). By Lemma 4.2.3, and by the

fact that TREE-RS added i to the residence set, it is clear that cost(( RS (l

RS,) U { i}) s cost(RS n RS,). Then, again by Lemma 4.2.3, cost(RS, U { i})

< cost( RSt). But if cost( RSt U { i}) < cost( RSt) then this contradicts the cost

minimality of RSt, and if cost( RSt U { i}) = cost( RSt) then this contradicts

the maximality of the size of RSt. ❑

THEOREM 5.1. cost(RS,) = cost(R,).

PRooF. First we shall show that in RS, there are exactly t processors. By

Lemma 5.1 and by Step 3 of algorithm TREE-RS, the cost of RS, is strictly

higher than cost(RS) (remember also that I RS I < t). Thus, if I RSt I > t,

then, by Lemma 4.2.1, at least one processor can be omitted from RS,, to

obtain a residence set of lower cost, that is of size a t.This contradicts the

cost minimalit y of RSt.

Next we shall show that RSt can be transformed into R ~ by a sequence of

add-processor-drop-processor transformations, such that each transformation

is cost preserving. Denote H = R ~ n RSt (see Figure 9).

By Lemma 5,1 H 2 RS, and consequently, H # a. If RS, – H = a, or
R, – H = @, then RS, = R,, since both sets are of the same size. Then the

theorem trivially follows. Assume that RSt – H # @, and consequently

ACM Transactions on Database Systems, Vol. 16, No. 1, March 1991.



200 . ouri Wolfson and Amlr MIIO

R, – H # @. We shall show that every processor in RSt – H is a neighbor of

H, and so is every processor in R, – H; furthermore, each add-processor-

drop-processor cost-preserving transformation consists of dropping any node

in RSt – H, and adding any node in R ~ – H. Since R ~ – H are of the same

size, the theorem follows.

Let 1 be some leaf of the subtree induced by RS,, such that 1 is not in H
(see Figure 9). Let k be some processor in R, – RS, which is a neighbor of H
(see Figure 9). By Lemma 4.2.1, co.st(RS, – {l}) = a “ I V(TZ) \ –

I V(T~s,. ~1}) I + cost(RS,). If 1 is not a neighbor of H, then by Step 3 of
TREE-tRS, I V(Tl) I < [ V(T~) I; therefore, cost((RS, – { 1}) U { k}) <

cost( RSt), and this contradicts the cost minimality of RSt. Consequently, 1 is

a neighbor of H. 1 is an arbitrary leaf of the subtree induced by RSi, that is

not in H. Therefore any such leaf is a neighbor of H, and consequently, any

internal processor of the subtree is in H. Thus any processor of RSt – H is a

neighbor of H. Now let 1 denote an arbitrary processor of RSt – H. It is easy

to see, again by Lemma 4.2.1, that adding k to RSf – {1} gives a residence

set, Q, whose cost is not higher than the cost of RSt; otherwise Step 3 of

TREE-tRS would have added 1 to Rt before adding k. The cost of Q cannot

be lower than the cost of RSt, because of the way RSt was defined. In other

words, by Lemma 4.2.1, T1 has exactly as many nodes as T~. Suppose that

Rt - H contains a processor, g, that is not a neighbor of H; then in Step 3 of

TREE-tRS. 1 would have been selected before the selection of g, since Tl has

as many nodes as T~. Thus any processor, say g, of R ~ – H is a neighbor of

H, and T~ has exactly as many nodes as T~. Therefore, any processor of

RSt – H can be replaced in RSt by any processor of Rt – H, to obtain a

residence set of cost equal to cost( RSt). ❑

Unbalanced load: Completely connected network. This case can be re-

solved based on the case unconstrained by reliability considerations (Section

4.1). The optimal residence set, RS, found there for the unbalanced-load case,

should be extended by adding to it t – IRS I processors, in the following

fashion. Sort the processors that are not in RS in decreasing order of their

sum #R, + # W,. Then add to RS the first t – ]RS I processors in the

sequence so obtained. As explained in subsection 4.1, this will least increase

the cost of RS.

Tree network. The algorithm TREE-tRS can be extended to provide the

t-reliable optimal residence set in an unbalanced-load environment. Assume

that processor i in the network performs #R, reads per time-unit, and # W,

writes per time unit. Then the algorithm TREE-tRS can still be executed as
given, except that step 3 becomes

add to R ~ a neighbor j for which z #RU
u-is-a-processor-o fT~

— x # WU is maximum.
u-ts-a-processor-o fiT~

Lemma 5.1, and Theorem 5.1 continue to hold, and their proof is identical to

the one given for the balanced-load case.
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Figure 10

Ring network. This case can be handled in the same fashion as the case

unconstrained by reliability considerations (subsection 4. 3). The cost of each

residence set of size at least t,and having at most two holes, is computed.

The minimum cost of such a set is the desired one.

6. DISCUSSION

In this paper we first proposed a new minimum-communication method by

which a processor should write all replicas of a data item. The processor

should construct a minimum spanning tree of what we called the distance

graph, and then propagate the data item along its edges. The read, as usual,

is carried out from the closest replica. Then we showed that determining a

residence set for minimizing overall communication is NP-Complete in net-

works modeled by general graphs. However, we provided constant time

algorithms for determining the optimal residence set in completely-connected

networks and rings, and a linear time algorithm for determining the optimal

residence set in tree-networks. Extensions for the algorithms in case reliabil-

ity constraints exist, were provided.

Next, we would like to demonstrate that the communication cost improve-

ment obtained by using the residence sets proposed in this paper is signifi-

cant. Consider, for example, in a ring network of n processors, how the

proposed residence set compares with a trivial residence set consisting of all

n processors. Denote the number of messages per time unit for this trivial

residence set by cost., and the number of messages per time unit for the

optimal residence set (Theorem 4.3. 1) by costOPt. Then, if the read-write ratio

is a, Costopt = n2a /cY + 1, and cost. = n(n – 1). Furthermore,

Costn / Costopt + 1 + 1/a. Therefore, if, for example, a = 2, then as the

number of pr’o~~ssors grows, our proposed residence set is 33 percent better

than the trivial one. Similarly, one can show that if we consider another

trivial residence set, consisting of one processor, then Costl / costOPt + (a +

1)2 /4a, and for a = 4, a 36 percent gain is realized.
n-cc

An additional remark is that although the optimal residence set for the

discussed topologies induces a connected graph, this is not necessarily the
case in a general network. For example, for the network in Figure 10, and for

a = 1.8, the unique optimal residence set is {4, 8}.
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As far as future work is concerned, much remains to be done. First, it

would be interesting to generalize our results to other network topologies,

e.g., the hypercube. Second, bounded error approximations for general net-

works should be investigated. Third, what happens when communication

time, in addition to communication cost, is an issue? (Such an analysis was

carried out by Segall and Wolfson [18]. ) Fourth, it would be interesting to

generalize the results to majority-voting access schemes, as opposed to read-

one-write-all. Fifth, how are our results affected by other query processing

considerations, such as contention and interdependence of allocation schemes
for different data-items (e.g., Yu et al. [19])?

APPENDIX

PROOF OF THEOREM 3.1 It is easy to see that RS e NP. Guess a subset

R G V, find w, and r, for each i e V, and verify that E,=vw, + a “ Zl=vr, < C.

Obviously, this can be done in polynomial time.

Next we show that RS is NP-Hard. This is done by transforming the

Steiner Tree (ST) problem to RS. In ST the input consists of a graph

G’ = (V, E’), a subset X q V and a positive integer B < I V’ \ The ques-
tion is whether there exists a subtree of G that includes all the nodes of X,

and such that its number of edges is no more than B. We shall assume

without loss of generality that 1 < I X I < B < I V’ 1.

Given an instance of the ST problem we construct an instance of the RS

problem as follows. The graph G consists of G, with every node u ~ X
connected to a “crown” of I V’ 13 new nodes: Ul, Uz, . . . , ul ~, 3. For example,

in Figure 1 lb there is graph constructed from the graph of Figure 1 la, where

X={a, b,c}. Leta=Band C=2. l V’13.1XI(B+ l).
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We claim that there exists a solution to the ST problem if and only if there

exists a solution to the RS problem. In the course of the proof we shall refer

to the nodes of G in G as old nodes, and to the nodes of the “crowns” as new

nodes.

(only if) Assume that there exists a Steiner Tree, T, in G whose weight is

no more than B. We choose as the residence set, R, all the nodes of T, and

we shall show that it constitutes a solution to the RS problem. Note that for

every new node, say k, r~ = 1, and for every old node, j, r-j s I V’ 1. There-

fore, the total cost for reading is ~zcvr, s I V’ 13 “ I X I + I V’ \ 2. By Lemma

2.1, for every new node, k, Wk s B + 1. The distance of every old node from

Ris at most lV’1– B–l, and lRl<B+l, sow~<l V’1. Therefore, the

total cost for writing is

ZW, SIV13.1XI ”(B+l)+IV’12.
ic V

Totaling, the cost is

~vwl+~”zL
ieV

<Iv’13.1XI-(B+1)+IV12 +B.(IV’13.1XI+IV’12)

S(’) IV’13.1X I”(2” B+1)+IV’13

< ‘2)2 .1 V’13.1XI. (B+l)=C.

(1) since \ V’ I > B, and

(2) since I X I >1. Thus, R is a solution to the RS problem.

(if) Assume now that the set R constitutes a solution to the RS problem.

We use 3 lemmas for this direction of the proof.

LEMMA 3.0. There exists a residence set, R’, which does not contain any

new nodes, and cost( R’) s cost(R).

PROOF. To obtain R’ we will repeatedly perform one of the following two

transformations, for each new node u e R.

Case 1. The old node U, which neighbors u, belongs to R. Then drop u

from R. The read cost of every processor, except u, remains the same, and

the read cost of u increases by one. On the other hand, the write cost of every

node of G, except u, decreases by one, and the write cost of u remains the

same. Since a < I V I – 1, the cost of the new residence set is lower than

Cost(l?).

Case 2. The old node U, which neighbors u, does not belong to R. Then

drop u from R and add v to R. The read cost of every node, except u and v,

obviously does not increase due to the transformation. The read cost of u

increases by one, and the read cost of u decreases by one. Overall, the total

read cost does not increase. The total write cost also does not increase due to

the transformation, because every path from a node to u goes through U. •l

Therefore, to simplify notation, we shall assume without loss of generality

that R does not contain any new nodes.
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LEMMA 3.1. If R does not contain

set, R’, for which cost(R’) s cost(R),

any new nodes.

X, then there exists another residence

and X s R’, and R’ does not contain

PRooF. Denote the nodes in X – R by {1,2,. . . . k}. To obtain R’, first we

choose for every node h e X – R a shortest path, p~, from h to a member of

R. Then we add to R all the nodes of all p~’s, and denote this new residence

set by R’. Obviously, X q R’ and R’ does not contain any new nodes, We

denote by dk the length (in arcs) of p~ for h = 1,2,...,k. Let d = dl +

dz+””. +dh. The total-read-cost for R’ decreases by at least B times

lV13. dl+l V’13. d,+... +1131 d,=\ V1313 .d(costofreadsby

new nodes which are neighbors of X – R), compared to the total-read-cost for

R. We add no more than d nodes to R to create R’. Note that for each node i,

w, increases by at most d. Since there are I V’ I + I V’ 13 “ I X I nodes in the

graph, the total write cost of all the nodes increases by at most d . ( I V I +

I V’ 13. I X l). Totaling, cost(ll’) s cost(R) + (IV’I + IV’13 “ 1X1)

d-B” IV’ I’d = cost(R)+ V’\3
!

“d”(l~– B)+l V’l”d <cost(R)

+Ivl’” d“(lXl -B+l)s” cost(R) ;(l) holds, since B>l X1. El

For the next lemma we need the following definition. Given an undirected

graph, G, and a subset of the nodes, X, the Steiner Tree is a subgraph of G

which satisfies the following three conditions: (1) it is a tree, and (2) it

contains the nodes in X, and (3) it has a minimal number of edges among all

subgraphs which satisfy the first two conditions.

LEMMA 3.2. Let G be a communication network graph, and X a subset of

its nodes. The weight of a minimal spanning tree (rest) of the distance graph

on X is not smaller than the weight of the Steiner tree for X.

PROOF. Obvious. ❑

Assume that there is no Steiner tree with B or less edges. Lemma 3.2

implies that the total weight of mst( D~( X)) is at least B + 1. Thus, the cost

of a write of a new node for R’ (of Lemma 3.1), is at least B + 2 (one hop to

the closest node in X, and then at least B + 1 hops to all the nodes of X
through the rest). Therefore the total write cost for R’ is at least (B + 2) “

I X I . I V 13. The total read cost for R’ is at least the read cost of the new

nodes, i.e., I X I . I V 13. Totaling,

cost(R) > cost(R’) = ~ w, + a “ ~ r,
LE V E v

2( B+2). lxl. lv’13+B. lxl”lv’]3

=2.1 V’13” IX I.(B+l)=C.

But this contradicts the fact that R is a solution to the RS problem. ❑
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residence set problem for completely connected networks, in the unbalanced-

load case. This prompted our extension of all the results to handle the
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