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This paper analyzes the problem of joining two horizontally partitioned relations in a distributed 
database system. Two types of semijoin strategies are introduced, local and remote. Local semijoins 
are performed at the site of the restricted relation (or fragment), and remote semijoins can be 
performed at an arbitrary site. A mathenmtical model of a semijoin strategy for the case of remote 
semijoins is developed, and lower bounding and heuristic procedures are proposed. The results of 
computational experiments are reported. The experiments include an analysis of the heuristics’ 
performance relative to the lower bounds, sensitivity analysis, and error analysis. These results reveal 
a good performance of the heuristic procedures, and demonstrate the benefit of using semijoin 
operations to reduce the size of fragments prior to their transmission. The algorithms for the case of 
remote semijoins were found to be superior to the algorithms for the case of local semijoins. In 
addition, we found that the estimation accuracy of the selectivity factors has a significant effect on 
the incurred communication cost. 
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1. INTRODUCTION 

One of the important problems in the design and implementation of distributed 
database management systems (DDBMS) is the efficient processing of queries. 
Models that attempt to characterize and solve this problem have been developed 
by Apers et al. 121, Hevner and Yao [22], Paik and D&be1 [25], Epstein et al. 
[ll], Wong (361, Yu and Chang [37], and others. The results derived by these 
models differ substantially and depend on the assumptions made, such as the 
objective function and parameters used by the model. Most of the models deal 
with static optimization of single queries (i.e., no competition for resources by 
multiple queries is addressed), and assume equal unit transmission cost (or time) 
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for every pair of nodes. We also deal with static optimization of single queries, 
but allow for variable transmission costs. 

The subject of horizontal partitioning (fragmentation) has been discussed in 
several papers. In this type of partitioning, a relation is fragmented into several 
sets of tuples (usually disjoint sets), each stored at a different site. Wong [36] 
asserts that SDD-1 supports horizontal partitioning, but it is external to his 
model (i.e., the input to the model is a specific realization of the relations, 
nonpartitioned and with no duplicates). In a later version of SDD-1 [19], 
fragmentation is allowed in the context of increased parallelism; that is, frag- 
mentation is used as part of the processing strategy to minimize response time. 
This paper assumes that fragmentation is predetermined by some data allocation 
strategy, and the objective function is to minimize the incurred communication 
cost. Distributed INGRES [33] provides for fragmentation, but the query opti- 
mization algorithm limits fragmentation to a single relation; and, as in SDD-1, 
it is also in the context of increased parallelism. System R* [34] supports 
fragmentation, but each fragment is viewed as a separate relation. A rigorous 
treatment of fragmentation is given by Pelagatti and Schreiber [27], but the 
resulting mathematical formulation applies only to the case where fragments of 
one relation have to be assembled at a single site. Yu and Chang [37] propose an 
algorithm for a fragmented database that is based on the premise that there is 
no benefit in reducing a fragment by another fragment. This paper shows that 
such a reduction may be beneficial if remote semijoins (remote semijoins are 
explained in Section 2) are used. Gavish and Segev [15] propose an optimization 
model for queries involving set operations in fragmented database systems, and 
the problem of joining two fragmented relations is analyzed in [30], but only for 
the case of local semijoins, while this paper tackles the more general case of 
remote semijoins. 

Horizontal partitioning of databases is an important case, since it is a natural 
partitioning in many real-world environments. Examples include insurance, 
banking, credit cards, air-line, hotel, and car rental industries, libraries and 
patient medical systems, to name only a few. The aforementioned applications 
have two main attributes that make horizonal partitioning beneficial. The first 
is locality of reference [26]: most of the transactions originating at a particular 
site need only the data associated with that site. For example, most of the queries 
or transactions relating to an individual’s bank account, insurance policy, or 
medical records originate from his local branch, agent, or service. The second 
attribute is the large size of those relations (e.g., millions of books in libraries, 
millions of insurance policies, and millions of credit cards). In these casas, 
horizontal partitioning and a good allocation of fragments to sites provide shorter 
response time and lower processing costs for local queries (queries that refer to 
local data). An additional advantage of fragmentation is a consistency, in many 
cases, with the organizational structure. 

This paper analyzes the problem of optimizing 2.way joins in horizontally 
partitioned DDBMS. Two types of semijoin strategies are analyzed in Section 2. 
In Section 3 the choice of an objective function and basic assumptions are 
discussed, and the 2.way join problem is defined. A mathematical model is 
developed in Section 4, lower bounding procedures are discussed in Section 5, 
and heuristic procedures are proposed in Section 6. An analysis of various 
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Fig. 1. A semijoin operation, 

optimization procedures (including sensitivity and error analysis) is presented in 
Section 7. Section 8 concludes the paper with a summary and future research 
directions. 

2. LOCAL AND REMOTE SEMIJOINS 

It is assumed in this paper that the reader is familiar with the basic relational 
terminology and operators (see [6, lo] for example). 

The semijoin operation has been introduced as a useful mechanism to reduce 
the amount of transmitted data when processing queries in distributed databases 
[l, 2, 3, 361. Theoretical work on the semijoin operation can be found in [4]. A 
semijoin operation between relation RI and relation R2 restricts Rl by values 
that appear in R2’s join attribute. Figure 1 shows two sample relations Rl and 
R2, and the effect of semijoining Rl by R2 over the join attributes Rl.PART# 
and R2.PART#. Note that the semijoin is an asymmetric operator; semijoining 
R2 by Rl has no effect on the size of R2 in the example of Figure 1. If relation 
Rl is semijoined by relation R2, we refer to Rl as the restricted relation and to 
R2 as the restricting relation. 

Given that relation Rl is to he semijoined by relation R2 over join attributes 
R1.a and R2.b, we distinguish between two modes of executing a semijoin 
operation. In the first mode, referred to as a local semijoin (e.g., (2, 3, 36]), R2.b 
is transmitted to Rl’s site and joined with RI. The second mode of executing a 
semijoin operation, referred to as a remote semijoin, allows R1.a to be restricted 
by R2.b at a remote site and then transmitted back to Rl’s site for a restriction 
of Rl. The two execution modes and the possible advantage of a remote semijoin 
are illustrated by the following example. 

Example. Given that 

- Relation Rl is to be semijoined by relation R2. 
- Rl and R2 are stored at sites 1 and 2, respectively. 
- The join attributes are R1.a and R2.b. 
- Size(R1.a) = 5000 hits (duplicates are eliminated). 
- Size(R2.b) = 20,000 bits (duplicates are eliminated). 
- Communication cost rate = lo-‘$/bit. 
- Selectivity factor = 0.1 (i.e., the size of Rl after the semijoin is size(R1) x 0.1, 

and the size of R1.a after a restriction by R2.b is size(R1.a) x 0.1). 
ACM Transactions cm Database Systems. Vol. 11, No. 1, March 1986. 
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(a) Local semijoin case 
The following steps are taken: 
1. Project R2 on the join attribute R2.b (eliminating duplicates). 
2. Transmit R2.b from site 2 to site 1. 
3. Join Rl and R2.h. 
Communication cost = size(R2.b) X cost rate = 20,000 X lo-’ = $2. 

(b) Remote semijoin case 
Selecting sits 2 to be the remote site, a remote semijoin of Rl implies the 
following steps: 
1. Project Rl and R2 on their join attributes (eliminating duplicates). 
2. Transmit R1.a from site 1 to site 2. 
3. Restrict R1.a by R2.b and denote the result as mo. 
4. Transmit R1.a from site 2 to site 1. 
5. Restrict Rl by &I. 
Communication cost = size(R1.a) x cost rate + size(R1.a) x cost rate 

= 5000 x 10-d + 500 x 10-h = $0.55. 

Notes 

(1) Though the remote semijoin operation may incur higher processing cost, it 
can significantly reduce the communication cost. 

(2) If the remote site was chosen to be an arbitrary third site, R1.a and R2.b 
would have to be transmitted to that site. A choice of a third site may be 
beneficial when the communication cost rates differ across sites, or a third 
relation must also he semijoined by one of the two relations. The mathemat- 
ical model developed in Section 4 allows for an arbitrary remote site. 

(3) The local semijoin is a special case of the remote semijoin; that is, the site of 
Rl (assuming that Rl is the relation to be restricted) is chosen to be the 
remote site. 

3. PROBLEM DEFINITION AND BASIC ASSUMPTIONS 

3.1 The Choice of an Objective Function 

Common objective functions adopted by query optimization researchers are 
minimization of total cost, total amount of transmitted data, and response time. 
The total cost of processing a query consists of two main components. The first 
component is processing cost and the second is communication cost. Note that 
if the cost of transmitting a data unit between two sites is a constant for every 
pair of sites, then minimizing total communication costs is equivalent to mini- 
mizing the total amount of transmitted data (for models that use this performance 
measure see [3, 11,361). 

The performance measure adopted in this paper is the minimization of the 
communication costs incurred by processing a query. Minimization of commu- 
nication costs is a valid objective for systems that use the services of a value- 
added network (e.g., Tymnet and T&net). The usage of value-added networks 
has increased significantly after the divestiture of AT&T [24], their users are 
paying “real” money for the transmitted data, and the tariffs need not be the 
same for all pairs of sites. Minimizing communication costs is also a valid 
objective for systems with a highly congested or slow communication network. 
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Fig. 2. A fragmented database. 

In this case, one may choose either a constant unit transmission cost rate, or 
vary it across different pairs of sites, thus reflecting different load levels on the 
communication links. The choice of an objective function may also depend on 
the time of day or the type of query. 

The query optimization algorithms introduced in this paper (and in general 
any algorithm to minimize communication costs) consist of determining a trans- 
mission plan and of selecting sites for executing the relational operations. The 
resulting local processing still has to be optimized by any of the centralized query 
optimization algorithms (e.g., [35]). The result of local optimization does not 
necessarily imply a global optimization of processing costs, but rather the 
optimum subject to a given transmission plan and assignment of operations to 
sites. 

3.2 The 2-Way Join Problem 

The 2-way join optimization problem is defined as the problem of joining two 
fragmented relations such that the resulting communication costs will he mini- 
mized. The procedures to perform a 2-way join on nonfragmented relations are 
described in [8]. 

The general problem of joining fragmented relations is discussed in [27], and 
a condition on the availability of the join operands is introduced. The condition 
states that at least one relation must be completely duplicated with respect to the 
other relation; that is, at least one relation must be assembled at each of the join 
sites (there might be multiple join sites if one or more of the relations is 
fragmented). The reason for requiring complete duplication when joining two 
relations follows directly from the join definition that implies that no tuple of a 
relation can be discarded before it is compared with euery tuple of the second 
relation. This condition, which is adopted by query optimization algorithms (e.g., 
[ll]) might require excessive data transmissions and is unnecessary, as will be 
shown later in this section. 

To illustrate the concept of complete duplication, consider Figure 2. The figure 
contains the same relations as Figure 1, but relation R2 has been partitioned 
into two fragments, R2, and R2*, which are stored at site 2 and site 3, respectively. 
Suppose that as part of a strategy to join Rl and R2 over PART#, Rl is to be 
semijoined by R2. By the definition of the semijoin operation (the arguments are 
similar for a join operation), a semijoin between Rl and R2, is useless unless 
accompanied by a semijoin between Rl and R2%. 
ACM Trsnsactions on Database Systems, Vol. 11. No. 1, March ,986. 
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The complete duplication requirement of [27] implies that Rl, R21.PART#, 
and R$.PART# must be assembled at the same site prior to the semijoin 
operation. It is argued here that this condition is a restrictive one and that logical 
duplication is sufficient. Logical duplication implies that in order to perform a 
semijoin operation, each tuple of the restricted fragment (or relation) must be 
compared with every tuple of the restricting relation and the results of those 
comparisons unioned. In the example of Figure 2, if Rl is to be semijoined by 
R2, it can be done by performing two semijoins, one between Rl and R21 and the 
other between Rl and R22. Note, however, that the resulting tuples of the two 
semijoin operations have to be unioned. Moreover, eoery fragment of the restrict- 
ing relation must participate in a semijoin of the restricted relation (or fragment); 
otherwise no tuple of the restricted relation (or fragment) can be eliminated. 

The concept of logical duplication has been introduced in order to enable 
remote semijoin operations between fragments. A remote semijoin on PART# to 
restrict relation Rl of Figure 2 may involve the following steps: 

(1) Project Rl on PART#, resulting in Rl.PART# = (100, 200,300, 400). 
(2) Send copies of Rl.PART# to sites 2 and 3. 
(3) Restrict Rl.PART# at site 2, resulting in zPART# = IlOO). 
(4) Restrict Rl.PART# at&e 3, resulting in Rl.PART# = (300). 
(5) Send Rl.PART# and mPART# back to site 1 and union the two sets, 

resulting in RI.PART# = [loo, 300). 
(6) Restrict Rl by &.PART#, resulting in 

-1 

Note that Rl in this example might have been a fragment of some relation (other 
than R2), and the example would have looked exactly the same. 

3.3 Basic Assumptions 

This paper analyzes the problem of joining two fragmented relations using remote 
semijoins, such that the resulting communication cost will be minimized. A 
mathematical analysis of the case of local semijoins and a proof that the problem 
is NP-complete can be found in [30]. The following assumptions underlie the 
models developed in this paper. These assumptions are made in order to simplify 
the model, and the implications of their removal are discussed in Section 8. 

Assumption 1. There is no duplication of relations and/or fragments. 
Assumption 2. The join operation that follows the execution of the selected 

semijoins is performed at the query site (this assumption is not restrictive for 
the case of equal transmission cost rates for every pair of sites). 

Assumption 3. The join attribute of a fragment can be projected only at the 
original site of the fragment (the other option is to send the fragment to another 
node before restriction, but the benefits of such a strategy are doubtful, and it 
would complicate the model significantly). 

Assumption 4. The sets of tuples resulting from distinct semijoins on fragment 
i are disjoint. This assumption is not essential to the model, but it simplifies its 
exposition. We discuss in Section 8 how this assumption can be removed. 
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4. A MODEL OF REMOTE SEMIJOINS 

4.1 Notation 

Let the two relations of the 2-way join problem be Rl and R2. The following 
notation will be used henceforth: 

Sl =: The set of site numbers among which relation Rl is fragmented. 
S2 =: The set of site numbers among which relation R2 is fragmented. 
T =: Sl U S2 

lS2’ 

if i E Sl 
ri = Sl, if i E S2 

undefined, otherwise 

(We use this notation to conveniently refer to the following: “if i is a fragment 
of one relation, then T; is the set of fragments of the other relation.“) 

q =: The query site number. 
C, =: The transmission cost rate between site i and site j. 
Ri =: The fragment of relation R, stored at site i. 
F, =: Size of the fragment stored at site i. 
Di =: Size of the projection of fragment ion the join attribute. 

Rl; t R2, =: A semijoin between fragments Rli and R2,, where Rl; is the fragment 
to be restricted. 

a, =: The selectivity factor for Rli + R2, (i.e., the size of the result of 
Rli t R2, is Fxq). 

The plus and minus signs in a notation of the type “k E Sl f i” is used to 
represent an element k of the union of set Sl and the singleton i, and the removal 
of element i from the set Sl, respectively. If S is a set, 1 S 1 is its cardinality. 

Note. For notational convenience, we use the same number for a site, the 
fragment stored at that site, and the join attribute of that fragment. For example, 
a fragment that is stored at site 5 will be assigned the number 5; so will its 
join attribute. (Additional notation and definitions will be introduced as 
IWXSSFlQC) 

4.2 Transmissions Associated with Local and Remote Semijoins 

In the model developed in this paper, we consider the transmission of two forms 
of join attributes. Unrestricted join attributes are transmitted to other nodes, 
either to restrict another join attribute or to be restricted themselves. Restricted 
join attributes are sent back to their originating site. Figure 3 represents an 
example of semijoin transmissions. Only the transmissions of unrestricted join 
attributes are shown, since the transmissions of restricted join attributes are 
implied. 

We distinguish between three possible transfer types of unrestricted join 
attributes; they are illustrated in Figure 3. It is assumed that fragments 1 and 2 
belong to Rl; fragments 3,4, and 5 belong to R2; and that both Rl and R2 have 
to be restricted by semijoin operations. The assumption that Rl and R2 have to 
be restricted, and the transmissions shown in Figure 3, are not necessarily 
optimal, and are only made to illustrate the various transfer types. 
ACM Transactions on Database Systems, Vol. 11, No. 1, March 1986. 
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R2 

Fig. 3. Transfers of join attributes. 

The transfer types can be classified as follows: 

(1) Join attribute k is transmitted from site i to site j for a local semijoin 
(0 5 0 in Figure 3), that is, join attribute k is used to restrict fragment j. 
Note that k is not necessarily equal to i(i is equal to k in Figure 3); this would be 
the case if join attribute k were transmitted from site k for a semijoin at site i 
and then further transmitted from site i to site j. 

(2) Join attribute k is transmitted from site i to site j for one or more remote 
semijoins (0 .!!+ 0 in the figure). In this case join attribute k is restricted at 
site j by one or more join attributes (possibly different than j). For each remote 
semijoin, the restricted join attribute k is transmitted back to site k. 

(3) Join attribute k is transmitted from site i to site j for a local semijoin and 
one or more remote semijoins (0 2 0) in the figure). This case is the combi- 
nation of the first two cases. 

Figure 3 is a graphical representation of the following semijoin operations: 

Semiioin Site ‘be 

Rl, t R23 3 
R23 t Rl, 3 
R23 + Rla 3 
Rlz c R23 3 
R2, t RI, 4 
RI, +- R2r 4 
R2a c RI2 4 
Rip t R2, 4 
R25 t Rl, 4 
Rl, - R25 4 
R25 + RI, 4 
RI, c R2s 2 

remote 
local 
local 
remote 
local 
remote 
local 
remote 
remote 
remote 
remote 
local 

Several points should be noted: 

(1) Only transfers of unrestricted join attributes are shown in Figure 3. Other 
types of data flow include the transmission of restricted join attributes back to 
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their original sites and transfers of restricted fragments to the query site. These 
data flows are taken into account by the objective function. 

(2) A remote semijoin may take place at site k even though it does not involve 
fragment k at that site. An example of that is the restriction of join attribute 5 
by join attributes 1 and 2 at site 4 (see Figure 3). 

(3) The transfers of an unrestricted join attribute constitute a directed span- 
ning tree rooted at the original site of the join attribute (i.e., all arcs labeled by 
the same join attribute number constitute a spanning tree). 

4.3 A Mathematical Formulation 

A mathematical programming formulation of the model is given as problem PJ 
(Problem Join) below. The decision variables used in the formulation are defined 
as follows: 

xi= ; 
1, 

if fragment i is restricted by a semijoin 
otherwise; 

if a semijoin Rli t R2,, i E 81 and j E S2, 
Yjjh = I” takes place at site k 

0, otherwise; 

wjj, = 
1:: 

if join attribute i is transmitted from site j to site k 
otherwise; 

gija = amount of flow on the arc represented by W;jh = 1. 

The g;+ variables are used to prevent cycles (by using flow constraints) in the 
directed graph representing the transmissions of an unrestricted join attribute. 
Intuitively, the variable Y+ represents a node k where fragment i is to be 
semijoined by fragment j, while the variable W+ represents an arc into node k 
from node j for the join attribute originating at node i. 

Problem PJ. 

Subject to 

C Yijh = xi, iET, jEri. 
ST 

Yijk 5 C With i E T, j E r;, k E T, k # i. 
*ET 
t#* 

Yijk 5 C Wjtk, iET, jEri, kET, k#j. 
*ET 
1%-h 

Wiik 5 C Wij*p i, k, t E T, k # t, k # i, i # t. 
jET 
/+* 

(1) 

(2) 

(3) 

(4) 

(5) 
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wi 

gia, 5 I T I WAC, i, k, t E T. (7) 

xi, Yi,,, Wikl E IO, 11, a* 2 0, i, k, t E T. (8) 

The first summation in (1) is the cost of transmitting fragments to the query 
site. The cost of transmitting fragment i to the query site is FiC, if it is not 
restricted by semijoin operations, and F;C, CjErj crij if it is restricted. The 
selectivity factors are added because the restricting fragments belong to the same 
relation and the assumption that the fragments are disjoint. The first triple 
summation accounts for the cost of transmitting unrestricted join attributes to 
semijoin sites, and the second accounts for the cost of transmitting restricted 
join attributes back to their original sites. 

The constraints in (2) state that if a fragment is to be semijoined, it has to be 
restricted by every fragment of the other relation. Constraints (3) and (4) say 
that in order for a semijoin to take place at a site, both of the join attributes 
must be available at that site. The constraints in (5) ensure that a join attribute 
can be transmitted from site t to site k only if it is available at site t. Constraints 
(6) and (‘7) are the flow constraints that guarantee the tree structure of the 
transfers of each unrestricted join attribute (see [14] for an analysis of cycle 
prevention constraints). 

5. A LOWER BOUNDING PROCEDURE 

An important part of the analytical analysis of the 2.way join problem is the 
provision of tight lower bounds on the value of an optimal solution to the model. 
Due to the inherent difficulty of the problem (a special case was proven to be 
NP-complete in [30]), it is expected that heuristic rather than optimal solutions 
will be used for a real-world application. The lower bounds, when compared to 
the value of heuristic solutions, provide information about the quality of the 
solutions generated by the heuristic procedures. For example, if in most cases 
the heuristic’s value is only 1 percent greater than the optimal value, then there 
is no sense in devoting years of research to devise better algorithms. In the 
absence of lower bounds for the 2-way join problem, the only way to compare the 
heuristics’ solutions to the optimal solution is by complete enumeration of the 
solution space. Conducting a significant empirical analysis using complete enu- 
meration for sizable problems is likely to be too costly for most researchers. 

Lower bounds are also needed if one wants to compute the optimal solution 
using a branch-and-bound algorithm [23]. Optimal solutions were not computed 
in the empirical analysis reported in this paper, due to the prohibitive amount of 
computation time required. Hence, if the heuristic’s solution and the lower bound 
are 5 percent apart, we know that the heuristic’s value is at most 5 percent away 
from the optimum. 

The lower bounds derived in this paper are based on a Lagrangian relaxation 
coupled with a subgradient procedure (a description of the procedure is given 
below). Lagrangian relaxation [E] has been applied successfully in many 
combinatorial optimization problems such as location problems [7, 12, 181, 

ACM Transactions cm Database Systems. “0,. I,, No. 1, March ,986. 



58 * Ark Segev 

distribution systems design [17], the traveling salesman and related problems 
(13, 201, and the design of computer networks [14]. 

A summarized description of the Lagrangian relaxation follows. Interested 
readers can consult [16] for more details. 

The general integer linear programming problem can be written as 

(P) Min cx. 
x20 

Subject to 

AXzb 
BX>d 
x, integer, i E I. 

Where X, b, c, and d are vectors, A and B ere matrices of conformable 
dimensions, and the index set I denotes the variables required to he integer. It is 
assumed that the constraints BX >_ d have a special structure that enables an 
efficient solution once the constraints AX > b are eliminated. We define the 
Lagrangian relaxation of problem (P) relative to AX 2 b and a conformable 
nonnegative vector X to be 

(PR,) Min cX + h(b - AX). 
x20 

Subject to 

BXzd 
x; integer, i E I. 

Denoting the value of an optimal solution to problem (P) by Z(P), we have the 
following relation: 

Z(PR*) 5 Z(P). 

Consequently, the Lagrangian relaxation of(P) constitutes a lower bound on the 
optimal value of (P). For the relaxation to he useful, problem (PRJ has to be 
significantly easier to solve than problem (P). For a given Lagrangian relaxation, 
the tightest lower bound which can be achieved is maxr{Z(PR~)j. The vector X 
which achieves that maximization is the best set of Lagrangian multipliers. 

The subgradient procedure is used to approximate the best Lagrangian multi- 
pliers. It is an iterative procedure that updates the vector A at each iteration 
based on the value Z(PRk). The main steps of the subgradient procedure are 
described next. For a detailed description of the procedure and its theory, see 
[20, 291. The procedure starts with an initial vector A” and the optimal solution 
X0 to problem (PRho). For each iteration t, the subgradient direction vector is 
calculated as 

W = b - AX’. 

Using a step size S’, the new vector A’+’ is given by 

A’+’ = A’ + ,q*t. 

ACM nanssctions on Database Systems, Vol. 11, No. 1, March ,986. 
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A commonly used step size is 

s’ = c’ Z(P) - Z(PRr) 

II *tl12 ’ 

where Z(P) is an upper bound (feasible solution) on the value of(P), II II denotes 
the norm function, and C’ is a scalar that is initially equal to 2 and is updated 
every k iterations. 

The lower bound on the value of an optimal solution to the model of remote 
semijoins is derived through a Lagrangian relaxation of problem PJ presented in 
the previous section. The main idea in that relaxation is to reduce problem PJ to 
a set of uncapacitated plant location problems by relaxing constraints (4), (5), 
and (6). The plant location problem is concerned with a set of candidate plant 
sites and a set of customers each with a demand for a commodity that can be 
supplied from any site at which there is an open plant. The objective function is 
to satisfy the customers’ demand and minimize the total cost, which consists of 
fixed costs of opening plants and variable costs of supplying the customers. 
Though NP-complete [7], the plant location problem is considered to be “easy.” 
An optimization algorithm developed by [12] has exhibited excellent performance 
in many applications of the plant location problem. This procedure has been 
used in the solution of the Lagrangian relaxation of problem PJ. The mathemat- 
ical details of the relaxation of this problem can be found in [31]. The lower 
bounds are used in Section 7 to evaluate the heuristic procedures presented next. 

6. HEURISTIC PROCEDURES 

Three heuristic procedures for solving problem PJ are developed in this section. 
The first heuristic is an iterative set selection heuristic, where the selected set 
consists of fragments to be restricted by semijoin operations. The second heuristic 
is a simpler (and faster) version of the first heuristic, and the third heuristic is a 
set selection procedure combined with an algorithm to optimize the transmissions 
associated with the selected semijoin operations. 

We propose three procedures since they have different computational com- 
plexities, and therefore the trade-off between the computing time and the quality 
of the solutions can be explored. The behavior of these procedures is analyzed in 
Section 7. 

6.1 An Add Procedure 

In this section an “add” procedure is developed to derive a solution to problem 
P,. The add procedure is a greedy set selection heuristic [23], which has been 
applied successfully to many applications. Many of the algorithms for distributed 
query optimization can be classified as add procedures (e.g., [3, 51). These 
algorithms start with an empty set of semijoin operations and at each step add 
the most beneficial semijoin to the set. Add procedures differ from each other in 
the set to be selected and in the criteria for adding an element to the set. For 
some problems the selected set constitutes a solution, while for others additional 
decision variables have to be determined. Consider the distributed query opti- 
mization problem. After a set of semijoin operations is selected, one might still 
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have to allocate the operations to sites and to optimize the required transmissions 
(it would not be necessary if these decisions were made by the set selection 
procedure). The advantage of an add procedure is that, for a given selected set, 
it is often easy to find an optimal or good solution for the rest of the decision 
variables. The add procedure used in this paper selects the set of fragments to 
he restricted by semijoin operations. Initially this set is the empty set, and at 
each iteration it is augmented by the fragment that contributes most to the 
reduction in cost. If no such fragment exists, the procedure terminates. The 
procedure is stated as Algorithm 1, below. (A detailed formulation of Algorithm 
1 is given in Appendix 1.) The following sets are used by Algorithms 1 and 2: 

M is the set of fragments to he restricted by semijoin operations. 
N is the set of fragments yet to he considered for restriction. 
L, is the set of sites at which join attribute i is available. 

Algorithm 1 works as follows. When fragment i is considered for a restriction 
by fragment k, the following alternatives are considered: 

(1) A local semijoin at site i is chosen and the join attribute of fragment k is 
transmitted to the site of fragment i. Join attribute k is available at the set 
of sites Lk, and the site that minimizes the communication cost of transmit- 
ting join attribute k to site i is chosen to he the sending site. The set 4 is 
augmented by Ii). 

(2) A remote semijoin is chosen and join attribute i is transmitted to site j 
belonging to the set La. The site j is chosen such that the cost of transmitting 
join attribute i to site j and back (the restricted attribute) to site i is 
minimized. The set L; is augmented by (jl. 

For both alternatives, the semijoin cost is the cost of transmission as described 
above, and the semijoin benefit is the cost savings that results from sending only 
the restricted fragment to the query site. If neither alternative is beneficial and 
the algorithm terminated, the unrestricted fragment is transmitted to the query 
site. 
Algorithm 1 
1. (Initialization). Initialize M to the empty set, N to the set of all fragments, and total 

communication cost to the cost of transmitting the unrestricted fragments to the query 
site. Li = {il, Vi E T. 

2. For every fragment in N calculate: 
Net cost = cost of semijoin - benefit of semijoin. 

3. Let ibe the fragment with minimum net cost in step 2. If the net cost of iis nonnegative 
stop. Otherwise continue. 

4. Add the net co.st of fragment i to the total communication cost. 
5. Update the sets 4. 
6. Remove i from N and add it to M. 
I. If the set N is empty stop; Otherwise goto step 2. 

6.2 A Single Path Heuristic 

In this section, a fast “single path” (i.e., each fragment is considered only once) 
algorithm is proposed. The underlying idea is to examine each fragment only 
once, and, if beneficial, to restrict it by semijoin operations. The procedure is 
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stated as Algorithm 2 below. (A detailed formulation of Algorithm 2 is given in 
Appendix 1.) 

Algorithm 2 
1. (Initialization). Initialize M to the empty set, N to the set of all fragments, and total 

communication cost to the cost of transmitting the unrestricted fragments to the query 
site. Li = (il, Vi E T. 

2. For every fragment in N perform steps 3 and 4. 
3. Net cost = cost of semijoin - benefit of semijoin. 
4. If net Cost is negative then do: 

1. Add net cost to total communication cost. 
2. Update the sets L;. 
3. Remove the fragment from N and add it to M. 

The logic of Algorithm 2 is basically the same as that of Algorithm 1, except 
that each fragment is considered for a restriction only once. If that restriction is 
beneficial, the fragment is added to the set M (step 4.3 of the algorithm); if the 
restriction is not beneficial, the fragment remains in the set N without any 
further consideration (i.e., it is transmitted unrestricted to the query site). 
Calculating net cost and updating the sets L; in step 4 are done as explained for 
Algorithm 1. 

6.3 A Set Query Based Heuristic 

The 2.way join problem involves two types of decisions. Decisions of the first 
type determine the restriction of fragments by semijoin operations, and decisions 
of the second type determine the transmission plan of join attributes. In Algo- 
rithms 1 and 2 the transmission plan is determined during the process of selecting 
the set of fragments to be restricted. The algorithm proposed in this section 
consists of two stages. In the first stage the set of fragments to be restricted by 
semijoin operations is selected. The second stage optimizes the transmissions 
associated with semijoins selected in the first stage. 

A mathematical model of set queries developed in [15] can he applied to the 
stage of optimizing the transmissions associated with remote semijoin operations. 
Set queries involve set operations (such as set difference and set intersection) 
between a single set of tuples (referred to as the condition set) and a group of 
other geographically dispersed sets of tuples (each one of these sets is referred to 
as a target set). The idea is to use the optimization procedure developed for set 
queries by using the intersection operator for semijoin operations as the set 
operation of the set queries model. 

Optimizing the transmissions associated with the restriction of a single frag- 
ment can be represented as a set query problem in the following way. Assume 
that the single fragment to he restricted’is some i E T. Considering only the join 
attribute of the tuples, the condition set consists of the values of the join attribute 
i, and each target set j consists of the values of join attributes j E ri (i.e., the join 
attributes of fragments of the other relation). The set operation in this case is 
set intersection (associated with the semijoins), and it has to be performed 
between join attribute i and each join attribute j E r;. The result of each set 
operation is a restricted version of join attribute i, and it has to be transmitted 
back to site i. 
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A generalized two-stage heuristic procedure, based on the set query model, to 
solve the Z-way join problem is stated as Algorithm 3 below. The details of the 
algorithm are dependent on the actual set selection procedure and the heuristic 
used to solve the set query problem, and is described below. 

Algorithm 3 

1. Apply a set selection procedure whose output is the set M = {i 1 i E T, and fragment i 
is to be restricted by a semijoin). 

2. For every i E M solve the set query problem with the set of nodes (ri + iI, where i is 
both the query site (of the set query problem) and the condition set site, and Ti are the 
set sites. 

3. Eliminate duplicate transmissions. 

Algorithm 3 consists of two conceptual parts. The first part determines the set 
of required semijoins (step l), and the second part optimizes the data transmis- 
sions required to perform these semijoins (steps 2 and 3). Step 3 is required 
because the set query algorithm is applied to each selected semijoin operation at 
a time, and each join attribute might be involved in several semijoin operations. 

The version of Algorithm 3 that was tested in this study used Algorithm 1 
(without step 4) as step 1, and Algorithm AH from [VI] as step 2. A statement 
of Algorithm AH in the context of the 2.way join problem is given as Algorithm 
3.2 below. (A detailed statement of the algorithm is given in Appendix 1.) For 
further details about the set query model, see [15]. 

The following definitions are used in Algorithm 3.2: 

M =: the set of sites at which join attribute i (the condition set) is available. 
N =: the set of sites yet to be considered for a transmission of join attribute i. 

CM =: total transmission cost of the semijoin execution, given that join attribute 
i is transmitted to the set of sites M. 

Cj =: total transmission cost of the semijoin execution, given that join attribute 
is transmitted to the set of sites M + {j), where j E N. 

Algorithm 3.2 (used as step 2 of Algorithm 3) 

1. Initialize M to the site of fragment i, N to ri, and CM to the cost of transmitting join 
attributes j E ri to site i. 

2. For every j E N calculate Cj as the sum of the cost of transmitting join attribute i to 
sites M + {j 1, the cost of sending join attributes k E N, k # j, to sites M + { jl, and the 
cost of transmitting the remote semijoin results to site i. 

3. Find a 7 for which C, (as calculated in step 2) is minimal. If C,- > CM stop. Otherwise 
continue. 

4. Replace the value of CM by the value of C;; remove 7 from the set N and add it to the 
set M. 

5. If the set N is empty stop. Otherwise go to step 2. 

6.4 A Numerical Example 

In this section a numerical example of Algorithm 1 is presented. Examples of 
Algorithms 2 and 3 are not presented here since Algorithm 2 is a simplified 
version of Algorithm 1, and detailed examples of the set query algorithms can be 
found in [15]. The example is based on the data given in Table I. Relation Rl 
consists of two fragments numbered 1 and 2, which are stored at sites 1 and 2 
respectively. Relation R2 consists of two fragments numbered 3 and 4, which are 
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Table 1. Data for an Examole of Aleorithm 1 

i\j 4 1 234 i\jl 2 3 4~&~’ 

9 0 1 2 2 3 1 1 1 0.2 0.1 0.3 
1 1 0 3 4 2 2 1 1 0.1 0.3 0.4 
2 2 3 0 1 3 3 0.4 0.1 1 1 0.5 
3 2 4 1 0 4 4 0.2 0.1 1 1 0.3 
4 3 2 3 4 0 

stored at sites 3 and 4 respectively. The query site is represented by q in Table I 
(q is different from the fragment sites in this example, but can be one of those 
sites in general). ( Sl I = IS2 ) = 2. T; = (3, 4) if i E (1, 21, and r: = 11, 2) if i E 
{3,4). The execution of Algorithm 1 is illustrated step by step. 

Step 1. (Initialization) 

M = IZI, N = {l, 2, 3, 4); total communication cost = c F& = 119. 
i-1,. .1 

Iteration 1 

Step 2. Costs, benefits, and net costs of semijoining fragments in N: 

Fragment Cost Benefit Net cost 
1 10.0 11.9 -1.9 
2 5.0 14.4 -3.4 
3 13.4 16.0 -4.6 
4 5.7 29.4 -23.7 

The net cost of fragment 1 is calculated as follows (the calculations for 
the other fragments are similar): the benefit of semijoining fragment 1 
is (1 - aI - a,,)FICI, = 11.9. The cost of the semijoin by fragment 3 is 
the minimum between the cost of a local semijoin (D3& = 8) and the 
cost of a remote semijoin (D1C13 + D la13C31 = 24). Similarly, the cost of 
the semijoin by fragment 4 is the minimum between D,C,, = 2 and 
DICll + DlalrC41 = 12. It follows that the total cost of the semijoins is 
10, and the net cost is 10 - 11.9 = -1.9. 

Step 3. Fragment 4 has minimum net cost, which is negative. The cost is incurred 
by two semijoins, one by fragment 1 and the other by fragment 2 (since 
all fragments of Rl must participate in the restriction of fragment 4). 

Step 4. Total communication cost = 119 - 23.7 = 95.3. 



64 . Ark Segev 

Step 5. The semijoin of fragment 4 by fragment 1 is remote. Consequently, join 
attribute 4 is sent to site 1, and 
Lb = L4 + 11) = (1, 4). 
The semijoin of fragment 4 by fragment 2 is remote. Hence 
L4 = L, + (2) = (1, 2,41. 

Step 6. M = M + (4) = (41; N = N - 14) = (1, 2, 31. 
Step 7. N is not empty implies continuation with step 2. 

Iteration 2 

Step 2. Costs, benefits, and net costs of se&joining fragments in N: 

Fragment Cost Benefit Net cost 
1 8.0 11.9 -3.9 
2 2.0 14.4 -12.4 
3 13.4 18.0 -4.6 

Step 3. Fragment 2 has minimum net cost, which is negative. The cost is incurred 
due to two semijoins, one by fragment 3 and the other by fragment 4. 

Step 4. Total communication cost = 95.3 - 12.4 = 82.9. 
Step 5. The semijoin of fragment 2 by fragment 3 is local, hence 

L3 = Ls + 12) = (2,3). 
The semijoin of fragment 2 by fragment 4 is local. Site 2 is already 
included in L,, however. 

Step 6. M = M + (2) = (2,4); N = N - 12) = (1,3). 
Step 7. N is not empty. 

zteration 3 

Step 2. Costs, benefits, and net costs of semijoining fragments in N: 

Fragment Cost Benefit Net cost 
1 6.0 11.9 -5.9 
3 13.4 18.0 -4.6 

Step 3. Fragment 1 has minimum net cost, which is negative. The cost is incurred 
due to two semijoins, one by fragment 3 and the other by fragment 4. 

Step 4. Total communication cost = 82.9 - 5.9 = 77.0. 
Step 5. The semijoin of fragment 1 by fragment 3 is local, hence 

Lq = La + 11) = (1,2,3). 
The semijoin of fragment 1 by fragment 4 is local. Site 1 is already 
included in LI, however. 

Step6. M=M+{lJ={1,2,4);N=N-(1)={3). 
Step 7. N is not empty. 

Iteration 4 

Step 2. Costs, benefits, and net costs of semijoining fragments in N: 

Fragment Cost Benefit Net cost 
3 13.4 18.0 -4.6 

Step 3. Fragment 1 has negative net cost, and is to be semijoined by fragments 
1 and 2. 

Step 4. Total communication cost = 77.0 - 4.6 = 72.4. 
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Step 5. Both semijoins of fragment 3 are local. Sites 1 and 2 are included in Ls, 
however. 

Step 6. M = M + 13) = (1,2,3,4]; N = N - ]3} = 0. 
Step 7. N is empty, so stop. 

The plan generated by Algorithm 1 is to restrict all the fragments by semijoin 
operations. The total cost of this plan is 72.4, compared to 119, which is the cost 
of transmitting the fragments, unrestricted, to the query site. It is interesting to 
note that for this example the algorithm that allows only local semijoins (de- 
scribed in [30]) generates a plan of restricting fragments 1.2, and 4 by semijoins, 
and a total cost of 97.3. The difference in the costs is due to the fact that the 
solution, generated by Algorithm 1 includes a restriction of fragment 3 by semijoin 
operations. This restriction is beneficial only when remote semijoin operations 
are included. The example illustrates that significant savings in cost (35 percent 
in the case of the example) can be realized by incorporating remote semijoin 
operations. 

7. ANALYSIS OF 2-WAY JOIN ALGORITHMS 

In this section we report the results of extensive computational experiments 
designed to evaluate the performance of 2-way join algorithms. Section 7.1 
compares the heuristic procedures proposed in this paper to the lower hound of 
Section 5. Section 7.2 presents the results of a sensitivity analysis, which provides 
information both about the performance of each algorithm as a function of the 
system’s parameters and about its performance relative to the other algorithms. 
Section 7.3 describes the set of experiments and their results regarding the effect 
of errors in estimating the size of intermediate results on the actual cost of 
processing the query. 

The algorithms that have been developed in this paper and in [30] were 
intended to solve the same problem, namely the 2-way join problem. The major 
difference between the algorithms is the set of permissible transmissions of join 
attributes. Consequently, it is desirable to compare the relative performance of 
all those procedures in order to provide information about the applicability of 
each algorithm to a particular environment. This global analysis of the Z-way 
join algorithms enables a system designer to choose the most appropriate algo- 
rithm for the system being designed. In Sections 7.2 and 7.3, Algorithms 1, 2, 
and 3 of this paper are compared with two local semijoin algorithms from [30], 
referred to as Algorithms A and B. Algorithm A is a set selection procedure for 
local semijoins, and Algorithm B generates optimal solutions for the special case 
of direct transfers (i.e., a semijoin 2% c R2j takes place either at site i or site j, 
and join attribute j is either transferred from site j to site i or fragment i is 
transferred from site i to site j).’ 

Query optimization algorithms can be classified into two broad categories; 
those for fragmented databases and those for nonfragmented databases. A com- 
parison of the algorithms proposed in this paper with algorithms for the non- 
fragmented environment is inappropriate because in such a case we have to 

’ In 1301, Algorithm A is Algorithm 3 and Algorithm B is Algorithm 4. Note that Algorithm B is 
optimal for the special case of direct transfers, but is B heuristic in the general case. 
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Table II. Performance of Heuristics Relative to the Plant Location Lower Bound 

Relative cost’ Relative cost Relative ox* 
Algorithm 1 Algorithm 2 Algorithm 3 

) T) , Sl , , , S2) AVG. MIN. MAX. CPUb AVG. MIN. MAX. CPU AVG. MIN. MAX, CPU 

5 223 1.06 1.02 1.10 0.01 1.08 1.02 1.12 0.00 1.04 1.00 1.06 0.01 
IO 2.8 1.03 1.01 1.06 0.02 1.07 1.03 1.10 0.01 1.03 1.w 1.07 0.07 

5,5 1.07 1.02 1.10 0.03 1.09 1.04 1.13 0.02 1.04 1.00 1.09 0.06 
15 2, 13 1.02 1.00 1.05 0.06 1.05 1.03 1.08 0.02 1.02 1.00 1.04 0.12 

7, 8 1.06 1.01 1.09 0.11 1.07 1.03 1.12 0.04 1.03 1.01 1.05 0.30 
20 5, 15 1.03 1.00 1.09 0.21 1.05 1.01 1.06 0.07 1.03 1.01 1.06 0.62 

10. 10 1.08 1.03 1.11 0.24 1.09 1.02 1.14 0.06 1.05 1.01 1.08 0.75 
30 5, 25 1.02 1.00 1.04 0.62 1.02 1.00 1.06 0.14 1.01 1.00 1.03 2.41 

15, 15 1.05 1.02 1.08 0.97 1.05 1.03 1.09 0.18 1.03 1.01 1.05 2.62 
40 5, 35 1.06 1.03 1.11 I.11 1.02 1.00 1.04 0.24 1.02 1.00 1.04 3.72 

*0,20 1.08 1.03 1.12 1.36 1.06 1.04 1.09 0.26 1.04 1.01 1.09 4.93 

‘Relative cost of an algorithm = value of heuristic solution/lower bound. 
b Average CPU time, measured in IBM4341 seconds. 
Note. An early version of this paper had erroneous numbers in this table. 

assume the assembly of the fragments of the relations before the algorithms can 
be applied, which contradicts the premise of our model. Consequently, any 
comparison is limited to the fragmented environment. 

7.1 Heuristic Performance Relative to Lower Bound 

Lower bounding and several heuristic procedures have been developed in this 
paper. These procedures were programmed in Fortran, and comparative compu- 
tational experiments have been carried out. The objectives of the experiments 
reported in this section were to compare the heuristics to the lower bound and 
to evaluate the required computing time as a function of the problem size. The 
results of those experiments are summarized in Table II. The experiments were 
based on the following data: the fragment size was drawn from a uniform 
distribution with a range of [lo, 201, the size of the join attribute ranged from 2 
percent to 25 percent of the fragment size, the unit transmission costs were 
drawn from a uniform distribution with a range [0,5], and the selectivity factors 
were drawn from a uniform distribution with a range of [0, 0.11. Note that no 
specific units were assigned to the size and cost data, because the solution to the 
problem is effected by the relative and not absolute magnitudes. Hence the range 
[IO, 201 can be interpreted as 10K to 20K, 10M to 20M, and so on. 

The results presented in Table II are the average values of nine problems, and 
the values of the lower bounds were derived by a subgradient procedure applied 
to the Lagrangian relaxation of Section 5. 

Based on the data presented in Table II, it seems that Algorithm 3 generates 
solutions with minimum communication costs among the three heuristic proce- 
dures, though at the expense of increased computation times. However, it is 
expected that the running time of Algorithm 3 can be reduced significantly by 
reprogramming the set query algorithms as an integral part of the algorithm. 
The reduction in running time is expected to be due to the elimination of 
duplicate transmissions during the solution of a set query problem, instead of a 
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separate step after the applications of the set query algorithms. In general all 
three heuristic procedures exhibited a good performance, and could be used in an 
actual application. 

7.2 Sensitivity Analysis 

The sensitivity analysis experiments were designed to analyze the sensitivity of 
solutions, generated by the heuristic procedures, to various parameters of the 
models (except the number of fragments, which was varied in Section 7.1). The 
model’s parameters chosen to be varied and the rationale for their selection are 
as follows: 

(1) The selectivity factors. The values of the selectivity factors are likely to 
have a significant effect on the solutions generated by the five algorithms 
considered here. Large selectivity factors may imply that semijoin operations will 
not significantly reduce the size of fragments, leading to solutions with similar 
costs generated by all five algorithms. For small values of the selectivity factors 
and join attributes that are not very large (a very large join attribute may render 
a semijoin useless, regardless of the size of the selectivity factor), it is expected 
that costs of solutions generated by the algorithms will significantly differ from 
each other. 

(2) The ratio of the join attribute’s size to its fragment’s size. The communi- 
cation cost of semijoin operations is incurred by transferring join attributes. 
Hence it is likely that join attributes whose size is small relative to their fragment 
will cause the algorithms to generate solutions that include more semijoin 
operations than solutions for the case of large join attributes. One would expect 
larger differences among the algorithms when the number of semijoin operations 
is large. 

(3) The uarimce of the size of fragments and join attributes. The basic differ- 
ence between the group of algorithms for the case of local semijoins and the 
group of algorithms for the case of remote semijoins is that the latter type of 
algorithms permit the restriction of a fragment at a remote site as well as at the 
local site. Consequently, it is likely that if an algorithm for the case of local 
semijoins chooses to restrict a fragment, the same decision will be made by an 
algorithm for the case of remote semijoins. However, a decision may be made by 
a local semijoin algorithm not to restrict a fragment i, i E T, due to the large size 
of some join attribute j. j E r: (which would have to be transmitted to site i), 
though the size of join attribute i is very small. This decision could be reversed 
by an algorithm that incorporates remote semijoins, since fragment i can be 
restricted by transmitting join attribute i instead. This leads to an intuitive 
prediction that the costs of solutions generated by the two types of algorithms 
will differ from each other when the variance of the size of join attributes is 
large. 

(4) The uariance of the trmsmi.ssion cost rates. The variance of the unit 
transmission costs was found to have a significant impact on one of the algorithms 
for set query optimization [15], whose performance deteriorated when the vari- 
ance was large. This led us to investigate the effect of this parameter in the case 
of the 2-way join problem. However, we found that the variance of the unit 
transmission costs did not have any noticeable impact on the relative performance 
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Range 

Fig. 4. Effect of selectivity factors 

of the five heuristic procedures. Therefore, the analysis will deal only with the 
effect of changes in the values of the other parameters. 

The purpose of the sensitivity analysis is to validate the above conjectures and 
to determine what is “small” and what is “large.” The input data that was fixed 
for all the sensitivity analysis experiments consisted of the number of fragments 
of the first relation ( ) Sl 1 = 15). the number of fragments of the second relation 
( 1 S2 1 = 10). and the unit transmission costs (C, - U(0, 5)).’ 

The effect of changes in the values of the selectivity factors n:j is shown in 
Figure 4. Every point of the graphs in Figure 4 represents the average cost of 
nine sample problems. All costs were normalized by dividing them by the value 
of the minimum average cost. The selectivity factors were derived by first 
generating a:I - U(0, b), where b is the range’s upper limit, as specified in Figure 
4, and then setting q = a:?/ ( I’i I. Dividing a,$ by ( ri I ensures that & = &r, a;j 
5 b. & may be viewed as the total selectivity factor of fragment i. The fragment 
size F, was drawn from a uniform distribution with a range of [lo, 201, and the 
size of the join attribute Di was derived by generating d; - U(O.02, 0.20) and 
multiplying it by F,. 

The results of the experiments validated the intuitive conjecture: for large 
values of the selectivity factors (ai, - U(0, b), b 2 0.3), the values of all solutions 
generated by the five heuristic procedures converged to the value of no semijoin 
solution (i.e., performing a direct join at the assembly site). In general, the smaller 
the selectivity factors, the larger the gap between the values of solutions generated 
by algorithms for the case of only local semijoins and those generated by 
algorithms that incorporate both local and remote semijoins. Figure 4 demon- 
strates the effectiveness of semijoin operations when the selectivity factors are 
small (up to 50 percent reduction in cost occurred in the experiments). 

’ Whenever convenient, we use the notation p - U(a, b) to mean that the values of a parameter p 
were drawn randomly from a uniform distribution with B range [a, b]. 
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1.6 

Fig. 5. Effect of relative size. 

The effect of the size of the join attribute relative to its fragment’s size is 
shown in Figure 5. The input data to the experiments were the same as for the 
case of Figure 4, except that the selectivity factors were drawn from a fixed range 
(a:, - U(O,O.O5)). The size of join attributes (as a fraction of the fragments’ size) 
was drawn from a uniform distribution with a range of [a, b]. The costs of the 
generated solutions as a function of the range [a, b] are shown in Figure 5. The 
behavior of the algorithms, as exhibited by the graphs in Figure 5, is very similar 
to the case where the selectivity factors were varied. When the join attributes 
are large, semijoin operations are not beneficial, even for the small selectivity 
factors selected, and the values of solutions generated by all five heuristic 
procedures converge to the value of no semijoin solution. 

Figure 6 illustrates the effect of variance of the size of fragments and their join 
attributes. The fragment size Fi was drawn from a uniform distribution with a 
range of [5, b], where b is as specified in the figure, and the size of the join 
attribute D; was derived by generating d; - U(O.02, 0.20) and multiplying it by 
F,. The variance of the size of fragments, and consequently the variance of the 
absolute size of the join attributes, was controlled by changing the value of b. All 
the cost values for a particular range were divided by the value of the solution, 
generated by Algorithm 3 for that range, and the relevant information in Figure 
6 is the change in the relative difference among the algorithms as a function of 
the range [5, b]. Figure 6 demonstrates a general increase in the gap between the 
performance of algorithms that utilize only local semijoins and algorithms that 
incorporate remote semijoins, as a function of the variance of the size of fragments 
(the smaller the variance, the smaller the gap). 

Though Figures 4 through 6 have shown that the difference in performance 
between local and remote semijoin algorithms may vary as a function of the 
parameters’ values, the difference in performance among the three algorithms 
that incorporate remote semijoin operations was found to he less sensitive to 
changes in the values of the model’s parameters. The experiments have 
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Fig. 6. Effect of variance in fragment size. 

demonstrated again that incorporating semijoin operations in general and remote 
semijoin operations in particular can significantly reduce the communication 
costs incurred by processing a query. 

Two parameters of the model were found to have a substantial impact on the 
relative performance of the heuristic procedures: the selectivity factors and the 
size of join attributes. Both parameters have had a similar effect on the relative 
performance. Large values of the selectivity factors and/or the size of join 
attributes reduced the differences among the values of solutions generated by the 
five heuristic procedures, due to increased number of fragments being transmit- 
ted, unrestricted, to the query site. Though tbe computational experiments were 
carried out under the assumptions of the 2.way join problem, it is predicted that 
the effect of the size of selectivity factors and join attributes will be similar for 
other problem instances. If that conjecture is validated, it may lead to 
the identification of those cases where semijoin algorithms will perform 
unsatisfactorily. 

7.3 Error Analysis 

The objective of this section is to analyze the effect of errors in estimating the 
values of the selectivity factors a~. Three aspects of that effect are investigated. 
The effect of errors on the actual cost of processing the query, using a particular 
optimization algorithm, is examined in Section 7.3.1. The effect of errors on the 
actual cost of processing a query as a function of the model’s parameters is 
discussed in Section 7.3.2, and a comparison of the heuristic procedures, based 
on the actual cost of processing the query, is made in Section 7.3.3. 

The purpose of analyzing the sensitivity of the algorithms to errors in esti- 
mating result sizes is to provide information about the benefits of dedicating 
resources to obtain more accurate estimates. These benefits are estimated as 
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follows (it is assumed that perfect information is available on all parameters but 
the selectivity factors): Let 

a denote the actual selectivity factors; 

P: 
denote the estimated selectivity factors; 
denote the transmission plan generated by an algorithm, using the actual 
selectivity factors (perfect information); and 

p, denote the transmission plan generated by an algorithm, using the esti- 
mated selectivity factors. 

We define the actual cost of a transmission plan to be the cost of that plan as 
calculated from the objective function of the optimization model using the actual 
(true) values of the selectivity factors. The estimated cost of a plan is similarly 
calculated, but by using the estimated selectivity factors. This section deals with 
three types of costs as defined next. Let 

WPe) 

CAPe) 

C,(P.d 

denote the estimated cost of executing a query according to plan Pe. 
The cost is calculated by using the estimated selectivity factors. This 
cost is the usual criterion used to evaluate the cost of transmission 
plans generated by query optimization algorithms. 
denote the actual cost (calculated by using the actual selectivity 
factors) of a transmission plan generated by an algorithm that uses 
the estimated selectivity factors. This cost can he calculated if the 
estimation errors are known. 
denote the actual cost of a transmission plan generated by an algo- 
rithm using the actual selectivity factors. This cost can be calculated 
if the estimated selectivity factors and the estimation errors are given, 
and is used to evaluate the benefit of getting more accurate estimates. 
An estimation error of +r percent implies that 

o=e 1+’ 
( 1 100 . 

The difference C,,(P,) - C.(P.) is the value of replacing the estimates by 
perfect information. If the ratio C,,(P.)/C.(P,,) is close to 1 for a given estimate, 
there is probably no benefit in improving the accuracy of the estimate. 

7.3.1 Effect of Estimation Errors on the Actual Costs. The experiments re- 
ported in this section were carried out with the same input data that was used 
for the experiments in Section 7.1 (except for the parameters being varied). Every 
point on the graphs in Figures 7 through 12 is the average value of nine sample 
problems. 

Figure 7 shows the effect of underestimating the selectivity factors on the ratio 
C.(P,)/C.(P.). The cost of not having perfect information is quite significant, 
though moderate for errors smaller than 30 percent. It seems that the ratio 
C,,(P.)/C.(P.) is larger for the iterative procedures (Algorithms A, 1, and 3) than 
for the single path procedures (Algorithms B and 2). Figure 8 illustrates the 
effect of overestimating the selectivity factors on the ratio of actual costs. The 
relative difference among the five heuristic procedures is similar to the case of 
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Fig. 7. C.(P.)/C.(PJ as a function of underestimation. 

Error (+%) 

Fig. 8. C.(P,)IC.(Pa) as a function of overestimation. 

underestimation, but there is a sharp reduction in the absolute value of the ratio 
G(~.)/G(~.). 

The difference between the case of underestimation and the case of overesti- 
mation is likely to be dependent on the values of the actual selectivity factors. 
If, under perfect information, a “no semijoin” decision is made for many of the 
fragments, then underestimation of the selectivity factors is likely to have 
stronger effect on the actual cost than an overestimation. To see that consider 
the extreme case where the solution generated by a particular algorithm, under 
perfect information, is to transfer all fragments, unrestricted, to the query site 
(“no semijoins” policy). Clearly, if the selectivity factors are overestimated, the 
ACM Tmnsactions on Database Systems, Vol. 11, No. 1, March 19% 



Optimization of Join Operations - 73 

1.4 

1.35 - 

1.3 

2 1.25 

g 1.2. 

a" -ym 1.15 
0 

1.1 

0.95’T I 
O-10 lo-20 20-30 30-40 40-5050-60 M-70 70-9090-9090-102 

Error R’ange (“Yo) 

algorithm will generate the same “no semijoins” policy. However, it is quite 
possible that for underestimated selectivity factors, a completely different policy 
will be generated. 

The effect of random errors in estimating the selectivity factors on the ratio 
C.(P,)/C,,(P,,) is shown in Figure 9. The estimation errors were drawn from a 
uniform distribution with error ranges as specified in the figure. This was done 
independently for each fragment, coupled with a random generation of the error 
sign. As can he seen from the graphs in Figure 9, the relative difference among 
the five heuristic procedures is smaller for the case of random errors than for the 
cases of consistent underestimates and overestimates. The random generation of 
the error sign seems to have a moderating effect on the ratio C.(P.)/C!.(P.) 
compared to the case of underestimates. However, the ratio still remains large 
for large error values. 

7.3.2 Sensitivity of Errors’ Effect to Model’s Parrmeters. The experiments 
reported in this section were designed to test the effect of errors in estimating 
the selectivity factors on the ratio C.(P,)/C.(P,,) as a function of the model’s 
parameters, to help a system designer to choose the most appropriate optimization 
algorithm for a particular environment. Note that the analysis in this section is 
different than that in Section 7.2 because only estimated costs were considered 
in Section 7.2. The results reported in this section provide the methodological 
basis for investigating an actual system. The input data that was used for the 
experiments was the same as for the sensitivity analysis experiments (see Section 
7.2). The estimation error was fixed at 50 percent underestimate. 

Figure 10 shows the effect of 50 percent underestimation of the selectivity 
factors as a function of their values. The estimated selectivity factors were drawn 
from the ranges specified in Figure 10 as described in Section 7.2 (since the lower 
limits were set to zero, only the upper limits appear in the figure). As can be seen 
from the figure, the ratio C.(P,)/C.,(P.) is decreasing as the values of the 
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Fig. 11. Effect of estimation errors 8s B function of join attribute size. 

selectivity factors are increasing. This behavior was expected because the larger 
the values of the selectivity factors, the larger is the number of fragments being 
transferred, unrestricted, to the query site. Eventually, the solutions generated 
by the heuristic procedures converge to the no semijoin solution, both for the 
actual values and for the estimated values of the selectivity factors, and the ratio 
C,,(P,)/C.(P.) becomes 1. 

Figure 11 shows the effect of 50 percent underestimation of the selectivity 
factors as a function of the size of the join attributes. The size of the join attribute 
as a fraction of the fragment size was drawn from a uniform distribution with a 
range of [u, b], where a and b are as specified in the figure. The effect on the 
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ratio C.(P,)/C,,(P,,) is similar to Figure IO: it is decreasing as the size of the join 
attributes is increasing. 

The variance of the size of fragments was found to have no significant impact 
on the ratio C.(P.)/C.(P.) for a fixed 50 percent underestimation. 

7.3.3 Comparison of Heuristic Procedures Based on Actual Cost. It is custom- 
ary to use C.(P.) as a criterion for selecting an optimization algorithm. A better 
choice would be to compare the algorithms based on C.(P.), because in an actual 
environment the transmission plan is determined with estimated selectivity 
factors, and the cost that matters is the actual cost of that plan. This can be 
achieved by examining C.(P.) over the expected range of errors, and then 
averaging the cost differences between the algorithms over that range. In this 
section we distinguish between two cases of errors in estimating the selectivity 
factors. In the first case the magnitude of an estimation error is identical for 
every fragment (constant error), and in the second case the errors are introduced 
randomly (variable error). We evaluate the first case analytically and the second 
case empirically. 

The case of con.stant error. Let P’ denote the transmission plan generated 
by Algorithm i. Then, for a constant error size r, C.(Pb) - C.(Pf) is shown to be 
linear in r for all the 2-way join algorithms presented in this paper. Let X, Y, 
and W be the values of the decision variables in problem P., as determined by an 
arbitrary Algorithm i. Also define the following sets, where n can assume either 
the value 1 or the value 0. 

S”, = [ilX; = n) 

SY, = {i, j, kl Yijk = n] 

SE = {i, j, k 1 Wijk = n). 

It follows from (1) that 

(9) 

(10) 

aijC,i + C DiCjb. 
ij,hay 

Subtracting (9) from (lo), we get 

CJP:) - C.(P;) = 
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Fig. 12. A comparison of heuristic procedures based on actual costs. 

Equation (11) implies that the ratio 

is a constant for any two Algorithms i and k, and a constant underestimate or 
overestimate of r percent. The value of the first summation in (11) is a function 
of the number of fragments restricted by semijoin operations ( ) S; I), and the 
value of the second summation is a function of the number of remote semijoin 
operations (k = i implies a local semijoin operation, and k # i implies a remote 
semijoin operation). Hence a comparison of the five heuristic procedures based 
on C,(P,) is likely to differ from a comparison based on C.(P.), if the magnitude 
and sign of errors vary among different semijoin operations and the sets of 
semijoin operations differ among the policies generated by the heuristic 
procedures. 

The case of uariable error. The case of random estimation errors was analyzed 
empirically, and the results are presented in Figure 12. The input data (other 
than the errors) for this experiment were the same as for the case of Figure 9. 
The point of zero-error in Figure 12 can be viewed as C,(Z’.) because at this point 
C.(P,) = C.(P,). As can be seen from the figure, the relative performance of the 
heuristic procedures differs in the case of C.(P.) (zero-error point) from that in 
the cases of C,,(P,) (for the other error points). A conclusion of the experiments 
is that no trend is evident, but there are significant differences between the 
performance of the algorithms at different error points. Consequently, it is 
possible that a complex algorithm that outperforms a simple algorithm according 
to the estimated cost will show equivalent performance according to the actual 
cost. Therefore, it is worth checking C,,(P,) on the error range in a real system. 
It seems, however, that the results of such comparisons are data and algorithm 
dependent. Another difficulty in applying such an analysis stems from the fact 
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that estimating the error range might he as imprecise as estimating the selectivity 
factors themselves. 

8. SUMMARY 

This paper has introduced two types of semijoin strategies, local and remote. 
Using the semijoin operation as a size reduction operation, a mathematical model 
has been developed for the case of remote semijoins. Lower bounding and heuristic 
procedures have been proposed and the results of computational experiments 
presented. These experiments have revealed good performance of the heuristic 
procedures, and demonstrated the benefit of using semijoin operations to reduce 
the size of fragments. The computational experiments have revealed a significant 
difference between algorithms developed for the case of local semijoins and those 
developed for the case of remote semijoins. The latter type of algorithms (Algo- 
rithms 1,2, and 3) were found to be generally superior to the first type (Algorithms 
A and B). 

The importance of horizontal partitioning has been stressed in Section 1. Given 
that type of data topology, Z-way joins are important operations, since it is 
reasonable to assume that many of the queries will refer to two relations. The 
number of fragments in a horizontally partitioned database system might be large 
for a geographically dispersed organization. In such a case the problem’s com- 
plexity will render the use of optimal procedures too costly, and good heuristic 
procedures will have to be employed. The results presented in. this paper have 
important practical implications. When a system designer is confronted with an 
actual system and a need to choose an optimization procedure, he or she can 
base the decision on the results of computational experiments, similar to the 
ones reported in this paper. For example, it has been demonstrated that for large 
values of the selectivity factor and/or the size of joining attributes, many of the 
fragments will be transferred directly to the query site. Hence, based on simula- 
tions of a particular system, it may be appropriate to establish cut-off points for 
the values of the parameters, above which there is no benefit in using a semijoin 
algorithm. The lower hounds developed in this paper can also provide a system 
designer with valuable help in evaluating the performance of a particular 
algorithm. 

The model developed for the case of 2-way joins was based on a set of 
assumptions, one of which was the assumption that the results of all semijoin 
operations, which are applied to the same fragment, are disjoint. This assumption 
has been introduced to simplify the introduction of the mathematical model. Its 
practical implication is that the policies generated by optimal procedures could 
be conservative (i.e., decisions could he made not to restrict fragments, though 
their restriction by semijoin operations is beneficial). However, it is possible to 
overcome this drawback in the following way. In the case of local semijoin 
operations [30], the models are concerned with only the sum of the selectivity 
factors for a fragment. Hence Cj a;j could he replaced with an estimate & that 
takes into account the fact that the sets of tuples, resulting from the restriction 
of a fragment by semijoin operations, are not disjoint. Note that & 5 & a;j 
because the results of the semijoins may overlap. In the case of remote semijoin 
operations both 0,‘s and @i’s should be used by the heuristic procedures. 8, will 
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be used to evaluate the cost of transferring the restricted fragments to the query 
site, and a;j will be used to evaluate the cost of semijoin operations. 

Some of the assumptions made in this paper are more restrictive, and their 
elimination changes the nature of the optimization model. Dealing with the 
removal of these assumptions is the subject of future research. One of the 
restrictive assumptions was about nonreplicated data. This assumption, however, 
is more of a restriction on the underlying data allocation than a restriction on 
the optimality of the model. 

The other restrictive assumption which has an implication on the optimality 
of the model is the selection of the query site as the join site. It is interesting to 
note that this assumption became more restrictive after another restriction- 
constant communication cost rates-bad been removed. If the communication 
cost rates are identical for every pair of sites, then the mathematical expression 
of the net benefit of a semijoin is independent of the assembly site chosen 
(assuming, of course, that the fragment stored at the assembly site need not be 
semijoined). If the model developed in this paper is augmented such that the 
selection of the join site is regarded as a decision variable, then the algorithms 
that do not use semijoins become a special case of semijoin algorithms because 
the latter algorithms also consider non-semijoin strategies. 

Additional future-research topics include the problem of multiple join attri- 
butes and relations, and other objective functions. 

APPENDIX 1. A Detailed Description of the Heuristic Procedures 
Algorithm 1 

1. (Initialization). M = Ca, N = T - M; La = (k), Vk E T; c = 0. 
2. For every i E N evaluate B,: 

a. = F;(l - y&< a,)C,, 

b; = LEri (MinlMin~,~,lDL~~l, Min;eL,{DdC;j + m&Jll), 
Bib= b; - a;. 

3. Let i be the index i which achieves Minis&). If B: 2 0, go to step 8. 
4. C=C+Br. 
5. For every k E r;, 

if Min,,L,{D,C;;j < MinjeL,ID;(C;; + n&)l, 
then La = Lb + ( i). 
Otherwise, L; = Lr + (kl. 

6. M = M + Ii); N = N - $1. 
7. If N z 0, go to step 2. 
8. Total cost = CiET F;C, + C. 

Algorithm 2 

1. (Initialization). M = Ca; N = T; LI = (kJ, Vk E T, c = 0. 
2. For every i E T do steps 3 and 4. 
3. Calculate: q = FJl - zjeFi a,)C,. 

b. = L9 (MinlMin~GL,lD&J, Minj,L,IDi(C:j + a&Oll) 
4. If oi > bi, then do: 

C = C + (bi - a,), 
M = M + (iI; N = N - {il. 

For every k E ri, 
if MinjeL,(D~C+) < MiqELk,(Di(C, + a&;)), 
then LI = La + Ii]. 
Otherwise, L; = L; + (kJ. 

5. Total cost = &TF& + C. 

ACM Transsetians cm Database systems. Vol. 11, No. 1. March 1986. 



Optimization of Join Operations - 79 

Algorithm 3.2 (used as step 2 of Algorithm 3) 

1. (Znittilization). Let i be a fragment to be semijoined, M = lit, N = D, C, = &,, D,C,. 
2. For every j E N calculate C, as follows: 

a The coat of transmitting join attribute i (the condition set) is the cost of a minimum 
spanning tree on the complete graph G = (D, A), where the node set is D = M + (jl, 
the arc set is A = {ajjl. and arc costs are C(a,) = C,D;. 

b. The transmission cost of join attributes k E N, k #j (the sets), and of the restricted 
versions of join attribute i is 

C; is the sum of costs a. and b. 
3. Let >be the index j that achieves MinjGNICjl. If CT> C,, stop. 
4. C,=C,-;M=M+(J);N=N-(jJ. 
5. If N = 0, stop. Otherwise go to step 2. 
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