
The Network is the Database:
Data Management for Highly Distributed Systems

Julio C. Navas
Siemens Technology-to-Business Center

1995 University Ave, Suite 375
Berkeley, California, 94704

julio@ttb.siemens.com

Michael Wynblatt
Siemens Technology-to-Business Center

1995 University Ave, Suite 375
Berkeley, California, 94704

wynblatt@ttb.siemens.com

ABSTRACT

This paper describes the methodology and implementation of a
data management system for highly distributed systems, which
was built to solve the scalability and reliability problems faced in
a wide area postal logistics application developed at Siemens.
The core of the approach is to borrow from Internet routing
protocols, and their proven scalability and robustness, to build a
network-embedded dynamic database index, and to augment
schema definition to optimize the use of this index. The system
was developed with an eye toward future applications in the area
of sensor networks.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – distributed
databases, query processing. H.4.4 [Information Systems
Applications]: Miscellaneous. C.2.4 [Computer-
Communication Networks]: Distributed Systems – distributed
applications, distributed databases.

General Terms
Algorithms, Performance, Design.

Keywords
Wide-Area Data Management, Sensor Networks, Logistics,
Distributed Data Management.

1. BACKGROUND & MOTIVATION
The rapid decrease in the cost and size of data communications
hardware and various sensor technologies offers to support a
wealth of new businesses, loosely termed "sensor networks" [3,5].
Applications have been proposed in areas including intelligent
highways, power grid management, intelligent battlefields, and
remote product service and maintenance. Although the
applications are varied, they share several common features: (1) a
relatively large number of data sources (typically on the order of
105 or more), (2) relatively volatile data and data organization,

and (3) and the requirement for "thin" data servers, to run on
scaled down hardware.

These applications offer a significant challenge for data
management. Most application-level tools wish to treat such a
collection of data as a traditional database, using well-known
query languages to access the data. In the state-of-the-art of
commercial systems, the solution to similar problems is to use a
centralized database (or small collection of distributed databases),
and collect the data as fast as possible, either through polling or
event-driven reporting. Applications then act on the database in
the traditional way.

However, in applications requiring tens of thousands of data
sources, with rapidly changing data, such systems are insufficient.
The databases themselves, and especially their data
communications channels, become bottlenecks that prevent the
system from achieving these scales. Moreover, such databases
represent critical failure points, and also introduce latency that
may be relevant in real-time applications. A system is needed
which is highly scalable, offers no critical failure points, and lets
data flow from the source to the requestor as rapidly as possible.
One research project addressing this space is COUGAR [1], but
this system assumes a centralized index of all data sources, which
does not address our scalability or critical failure point
requirements.

At Siemens, we see a great future potential in sensor networks
applications, and in developing technology that will satisfy these
very challenging constraints. More immediately, we have a need
to support a related application in the area of postal logistics.
This application has somewhat milder constraints (less than one
hundred thousand data sources, and reasonably fat clients are
acceptable), but offers many of the same challenges as the sensor
networks. Our goal was to produce a solution that solved our
immediate problem and has applicability to the more demanding
problems we foresee in the near-term.

The postal logistics application will serve as a guide for this
paper, as we show examples from this domain to illustrate how
our system operates. Section 2 describes this application.
Section 3 describes a wide area data management system, and
details specific to the implementation are described in Section 4.
Our future work is described in Section 5.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD 2001 May 21-24, Santa Barbara,
California, USA
Copyright 2001 ACM 1-58113-332-4/01/05 5.00.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOD 2001 May 21-24, Santa Barbara, California USA
Copyright 2001 ACM 1-58113-332-4/01/05…$5.00

544

2. DATA MANAGEMENT IN WIDE AREA
POSTAL LOGISTICS
Figure 1. shows an overview of the application that we support.
The idea is to allow a large courier service to treat its distribution
and staging system of hubs, substations, trucks, and airplanes as a
single live database of packages. Any authenticated client, from
any point in the network, can issue a query against this database
and receive the current answer.

A typical scenario for this system is the following. A logistics
agent (automated or human) located at an airport hub is faced
with a partially loaded airplane scheduled to depart shortly. An
optimization question arises: should the plane embark partially
loaded, or await the arrival of additional packages? The agent
issues a query to ask how many packages bound for the airplane's
destination, and in what sizes, are expected to arrive at the airport
within the next hour. In order to answer this correctly, the system
must have access to the status and contents of all vehicles
currently bound for the airport.

Requirements for this application include:

On the order of 50,000 data sources which are so-called
"tertiary containers" (trucks, airplanes, stations, etc.).

Data sources may autonomously add or remove themselves
from the system at any time.

Data currency to within 5 minutes of real-time.

Queries should be submitted in a SQL-like language familiar
to application programmers.

Never have a total system failure, and minimize the impact
of partial failures.

In addition to these constraints, we were also concerned with the
processing capability required at the data sources. Although it is
reasonable for tertiary containers to include a PC-like device, we
have our eye on future sensor network applications, which require
thinner servers.

For the purpose of our work, we assume that tertiary containers
are appropriately updated with the information regarding the
packages they currently hold. Electronic information about a
package moves with the package. This is achieved using RF-ID
tagging and other techniques, and is beyond the scope of this
paper.

Figure 2 shows a simplified data schema that might be used for
this application. Each table is distributed, storing the data along
with its physical manifestation. In this example, Vehicle and
Station records are stored at the location of the vehicle or station.

Internet

Figure 1. A Highly Distributed Postal Logistics System

545

Package records are stored at the site of the package, either
vehicle or station. Customer records are associated with
packages, and are stored with them. ConveyedBy and
StoredAt tables are stored with the corresponding vehicle or
station.

Package(PID, Size, SenderID, ReceiverID,
DestStation, DestZIP, Priority,
SpecHandling)

Vehicle(VID, Dest, ExpectedWait, Status,
VType)

Customer(CID, Name, StreetAddr, City,
ZIP)

ConveyedBy(PID, VID)

Station(SID, Name, State, Country,
Region)

StoredAt(PID, SID)

Figure 2. A simplified schema for the postal logistics
Application

3. THE NETABASE APPROACH
Our approach, called Netabase, is fundamentally based on the
observation that the Internet scales very well. The IP routing
protocol which underlies the Internet supports millions of nodes,
and allows significant dynamism and autonomy for nodes to add
or remove themselves.

We have developed a new network routing technology called
characteristic routing, to support the scalable and efficient
routing of data queries to data sources which have relevant
information. In effect, the computer network becomes a
distributed, dynamic index to the data sources. We define a
methodology to determine appropriate keys for this index, with
the principal goal to minimize network traffic. At a node issuing
a query, a system for query decomposition uses these keys to send
the components of the query to just the right places, and receives
and integrates the replies.

Figure 3 shows an overview of the system. An application issues
a query in our SQL-like language. The query decomposer breaks
the query into components deliverable to different types of data
sources, and chooses appropriate "routing keys". The

characteristic virtual routers route the query fragments to just
these data sources. The thin servers at the data sources evaluate
the query fragments, and reply. The replies are integrated at the
requesting node.

Not shown in the figure are the system's administrative tasks.
First, we have extended the schema definition specification of our
SQL-like language to include optimization specifications.
Second, the characteristic routers continuously communicate with
each other to update their routing tables to reflect changes in the
distribution of characteristics.

3.1 Local Join Specification
An important consideration in reducing data traffic is the
possibility to perform some join operations at the data sources. In
general, if data is provided from several sources, joins cannot be
performed at the sources, due to the possibility of filtering out
records that would correctly join with records from other sources.
However, the semantics of a particular schema may indicate that
certain joins can be performed at the sources without fear of loss
of information.

In our example schema, the Vehicle and ConveyedBy tables
are an example of a pair of locally joinable tables. The semantics
of the system dictate that all records of a ConveyedBy table that
correspond to a particular Vehicle.VID are located at the same
data source (the vehicle) as the Vehicle record for that
Vehicle.VID. If a join is requested on these two tables, the
join can be performed at the vehicle data source, without fear that
records will be lost which might be joinable elsewhere.

It is further possible that certain attributes of a pair of tables will
be locally joinable, even if not all attributes of those tables are
locally joinable. In our postal schema, for example,
Package.ReceiverID is locally joinable with
Customer.CID, because a Customer record describing the
receiver of a package travels with each package. However,
Package.DestZIP is not locally joinable with
Customer.ZIP. To see this, consider a query that tries to find
the names of all customers who live in the same ZIP that a
package is destined for. This query would typically involve a join
on the ZIP attributes. There may be many customers who live in
this ZIP code, and they will not all be recorded in a given truck.
Thus a join on the ZIP attribute cannot be conducted locally, or

Application
Level

Program

S
Q

L
 In

terface

Q
u

ery D
eco

m
p

o
ser

&
 P

ro
cesso

r

Virtual Characteristic Routers

T
h

in
 S

erver

Data
Source

Figure 3. The Architecture of the Netabase System.

546

many potential matches would be overlooked.

In order to allow optimization of a query based on local joins, we
have extended the specification of the schema to include local
join relationships. All joins are assumed not to be locally joinable
unless identified through the use of this extension. The syntax
allows either pairs of complete tables, or specific pairs of table
attributes to be designated as locally joinable.

join_locally_statement-> join_locally table, table

 | join_locally table.attribute, table.attribute;

3.2 Query Decomposition
The goal of the query decomposition stage is to divide the query
into pieces so that data sources receive only the parts of the query
which are relevant to them, and which are independently
processable by them. For example, a data source should not
receive a request for information about a table in which it does
not take part. Moreover, if one or more operations in a query,
such as a join, are not processable locally at a data source, then
some pieces of the same query may need to be satisfied
separately. Each resulting piece can be considered as a message,
to be sent to the appropriate data sources as a request for
information.

Additionally, the messages into which the query is divided should
be satisfied in an order which is consistent with the goal of
minimizing network traffic.

To achieve these goals, the query decomposer's task can be
roughly divided into three sub-tasks: (1) division of the query
into predicate groups based on query structure, (2) further
division of the predicate groups based on relevant tables and
possibilities for local joins, and (3) ordering of the resulting
groups.

The first step is to divide the query into predicate groups. The
general approach is illuminated by the consideration that AND
operations in a WHERE clause act as filters reducing the number
of satisfying records, while OR operations indicate independent
clauses. For that reason it is useful to group ANDed predicates
into the same message where possible, to reduce the number of
replies, and ORed clauses are separated and handled
independently. The WHERE clause of each sub-query is converted
to disjunctive normal form to facilitate this division, and
subqueries are treated independently.

After predicate groups have been established based on separating
the OR clauses in each subquery, they are refined by further
dividing them into local-join groups. Local-join groups are
groups of predicates in which all of the predicates can be resolved
locally at the same data source. Local join groups are computed
by first clustering all non-join predicates by the table they
reference, and then unifying groups through local joins which are
specified. Non-local join predicates are then included in any
local-join group which they reference, which means they will
appear in multiple groups. Figure 4 shows a query and the
resulting predicate groups, assuming that the Package and
ConveyedBy, and Vehicle and ConveyedBy tables have been
specified as locally joinable.

SELECT P.Size

FROM Vehicle V, Package P,

 ConveyedBy CB

WHERE V.VID = CB.VID

 AND P.PID = CB.PID

 AND P.DestHub = "Chicago"

 AND V.Dest = "LA Airport"

 AND V.ExpectedWait < 60

Non-joins Grouped By Table:

Group 1: P.DestHub = "Chicago"

Group 2: V.Dest = "LA Airport"

 V.ExpectedWait < 60

Unified through Local Joins

Group 1: All 5 predicates

Figure 4. An example query and predicate groups

Next, the predicate groups within each subquery or OR clause are
ordered. The discussion of how the ordering is done is deferred
to section 3.4 on query evaluation, in order to give the proper
context. Predicate groups in different subqueries or OR clauses
can be resolved independently, and thus are issued in parallel.
When a predicate group includes an IN predicate (indicating a
subquery), that group must wait for the subquery (possibly several
predicate groups) to be resolved before it can be resolved itself.

Additional optimization is possible based on elimination of
common sub-expressions, but we did not implement this.

3.3 Characteristic Routing
Messages are sent to data sources over the Internet using a new
message routing protocol called characteristic routing. In our
prototype Netabase system, characteristic routing is implemented
as a virtual routing protocol on top of IP, but it can also be
implemented in place of IP.

Using the characteristic routing protocol, internal nodes in the
network route messages to data sources which have particular
characteristics. A single message can be sent to multiple
destinations, as characteristic routing uses techniques derived
from IP-multicast [2] and related to geographic routing [6].
Although characteristic routing allows arbitrary strings to be used
as characteristics, we choose special strings which serve as an
index to the database. Since the routing tables are constantly
updated, the database index is highly dynamic.

The networking aspects of characteristic routing will be addressed
in another paper. In this paper we focus on the manner in which
characteristic routing supports the wide area database.

3.3.1 Routing Keys
Our approach is based on the observation that different data
sources participate in different database tables. As was described
in section 2, our postal application maintains data stored at

547

vehicles and stations, with the former participating in vehicle
relevant tables, the latter participating in station relevant tables,
and both participating in package tables. In sensor networks,
different sensor types typically represent different tables. For
example in a chemical processing plant, temperature, pressure,
current volume and valve status are tables participated in by the
sensors which measure these variables.

As a first pass, each data source advertises as characteristics the
names of the tables in which it participates in. Whenever a
message is issued, the tables involved in that message are
specified as the "routing keys" for the message, and the message
will be routed only to those data sources which advertise those
characteristics.

More accurate routing can be achieved by using a combination of
attribute names and values as a routing key. For example, if the
predicate group from figure 4 is issued as a message, instead of
using ("Vehicle", "Package", "ConveyedBy")as the routing
key, one could more accurately route the message by using
"Vehicle.Dest=LA_Airport". Using the first set of
characteristics, all vehicles would receive that message, but only a
small subset of vehicles, topologically clustered, would receive
the message using the second characteristic.

The trade-off for the accuracy gained through value-based routing
keys is larger routing tables and additional administrative traffic.
Since there are many more possible attribute values than there are
table names in a database, allowing values to be used as routing
keys increases the size of the routing table dramatically. This can
be offset by only maintaining routing information for attributes
with high ranks. Another approach to managing the size of the
routing tables is to abstract the information in the routing table
hierarchically. This approach is described in section 3.3.3. In
addition, since attribute values change more frequently than table
names, more administrative overhead is needed to maintain the
routing tables. Therefore, the use of values as routing keys is not
useful for attributes where the value typically changes at a
frequency comparable to the latency of the system. The use of
hierarchical abstraction limits the proliferation of updates through
the network, and is thus doubly valuable.

3.3.2 Building the Routing Tables
Data sources advertise their characteristics to their local
characteristic router. In our initial implementation, data sources
also advertise deletion of characteristics that had been previously
advertised. We believe a significant reduction in traffic can be
achieved with a soft-state approach, in which characteristics that
are not re-advertised grow stale after a timeout period and are
discarded. This approach would also directly support data sources
which remove themselves from the system.

Within the network, characteristic routers continuously exchange
routing instructions for the characteristics they are aware of. This
provides the wide area index for Netabase.

3.3.3 Routing Key Abstraction
In order to maintain the characteristic routing tables at a
reasonable size, abstraction techniques are used in order to
"throw-away" most of the information. Whereas a characteristic
can be any arbitrary string of arbitrary size, a characteristic router
only needs to know that a particular characteristic exists and that

a particular destination in the network is associated with that
characteristic. This observation allows us to ignore the actual
contents of the characteristic itself and simply record its presence
(or not) for a particular destination using bit vector techniques
that were pioneered in Information Retrieval [4]. In this manner,
each destination in the network will have a bit vector associated
with it in which each of the bits corresponding to the
characteristics belonging to that destination will be "on."

In order to achieve even greater savings in routing table size, the
bit vectors themselves are further abstracted. This abstraction
takes the form of associating a single bit with a range of
characteristics. The range of characteristics corresponding to
each bit can be varied with a corresponding smaller decrease in
the routing accuracy. This allows the routing table size and the
control message overhead to be potentially greatly reduced and,
thereby, making the system more amenable for use in lower-
bandwidth networks such as wireless networks. However, this
raises the possibility that some data sources will receive messages
not intended for them. Where bandwidth is more plentiful, the
range of characteristics corresponding to each bit can be
decreased leading to greater routing accuracy with a
corresponding increase in memory and control overhead
requirements. This trade-off introduced is similar to the
bandwidth/memory trade-off described in [9].

The amount of information accuracy that is kept per destination is
also varied with the network distance to that destination. More
accurate information is kept about destinations that are "nearby"
versus destinations that are farther away. Essentially, the amount
of bit-vector abstraction is increased for distant destinations. The
intuition underlying this can be illustrated with the following
example: A characteristic router in California receives a packet
bound for a set of characteristics that belong to a destination in
New Jersey. The California router, however, does not need to
have detailed knowledge about the network structure within New
Jersey or even detailed knowledge about the exact characteristics
found in New Jersey. All it needs to know is that a destination
with characteristics "similar" to the packet's destination
characteristics can be found to the "east." Therefore, the router
will forward the packet eastward. As the packet nears its eventual
destination, the information accuracy increases so that the packet
finds its way correctly to the proper final destinations.

3.3.4 Choosing a Routing Key
For any given message, a routing key is derived from its predicate
group. Using the ranks of the predicates described in section
3.4.2, the highest ranked non-join predicate is selected, and the
routing key is created of the form TABLE_ATTRIBUTE_VALUE,
although we use truncation to reduce string lengths. In the case
that either there are no non-join predicates, or that there are no
non-join predicates which include routable attributes, the set of
table names referenced in the predicate group is used as routing
characteristics.

3.4 Query Evaluation
3.4.1 Unfolding Non-Local Joins
Non-local joins are any joins which have not been specified to be
resolved locally. This means that the records to be joined must
come from multiple data sources. Rather than gathering all of the
data and then joining it, we choose to "unfold" the joins, that is to

548

gather the records from one table, and use that to filter the data
coming back from the other table. This approach is similar to the
traditional semi-join algorithm for distributed joins [8], with the
addition of a selection in the first step which reduces the number
of records transmitted.

SELECT V.VID, S.Name

FROM Vehicle V, Station S

WHERE V.Dest = S.Name

 AND S.State = "California"

 AND V.ExpectedWait < 60

__

Group 1: S.State = "California"

 V.Dest = S.Name

Group 2: V.ExpectedWait < 60

 V.Dest = S.Name

Figure 5. An example query and predicate groups

Figure 5 shows an example of a query with a non-local join, and
the predicate groups generated. Note that the join predicate
appears in both groups, since it involves both tables. When this
query is resolved, the join is unfolded in the following way.
When message 1 is sent, the join predicate is removed, and
S.Name is requested as a return value. The S.Name data is
collected, and is included in message 2. Data sources only reply
to message 2 if they have data which will satisfy the join
predicate given the included data. Unfolding the joins in this
manner acts as a very coarse filter on replies, and significantly
reduces the network traffic generated as a result of the query.

Figure 6 shows the possible text of message 2, where %1 indicates
a placeholder for which the data listed is to be substituted. Data
sources interpret this locally like a logical OR of four predicates.

Vehicle.ExpectedWait < 60

Vehicle.Dest = %1;

(%1,String)"LosAngeles", "Oakland", "Hayward",
"Santa Barbara";

Vehicle.VID

Vehicle.Dest;

Figure 6: A Message from an Unfolded Join.

3.4.2 Ordering Predicate Groups
After predicate groups have been determined, it remains to be
decided in what order they will be sent as messages. Choosing
the right order can have a significant impact on the network
traffic produced by the query. Consider the query and predicate
groups shown in Figure 5. As is described in section 3.4.1, non-
local joins are unfolded, so the join predicate is listed in both
groups. If group 2 were issued first, all vehicles worldwide
within 60 minutes of their destination would respond, probably
generating a significant amount of traffic and mostly unnecessary.

If group 1 were issued first, only stations in California would
respond (indeed, only stations in California will receive the
query); using the S.Names which are retrieved from this first
message, the join predicate can be used as a filter for the second
message, and a much smaller number of vehicles will respond.

In order for the query processor to choose a preferred ordering for
the messages, and also to choose an appropriate routing key (as
described in the section 3.3), we extend the schema definition
specification to include a "rank" for each table attribute. The
database designer chooses ranks for each attribute based on the
semantics of schema, based on the following guidelines:

1. Attributes which partition the records along network topology
get highest rank;

2. attributes which have a large number of different values are
ranked higher than

3. attributes which have a small number of different values.

There is some art in choosing the best rankings, but it is
reasonably straight forward. In our example schema, attributes
Station.State and Vehicle.Dest would have high ranks,
and attributes Package.SpecHandling and
Vehicle.Status would have low ranks.

To order the predicate groups within a clause, the non-join
predicate with the highest rank is selected, and its group is chosen
to be issued first. Joins are then unfolded to determine the order
of the rest of the groups. In the case that two predicate groups in
the same clause are unjoined, which in SQL indicates a cross-
product, the groups can be resolved in parallel. An IN predicate
(indicating a subquery) is treated as a non-join predicate for
purposes of ranking.

3.4.3 Processing the Query
Predicate groups are converted to messages and issued in the
order determined by the query decomposer. The presence of sub-
queries, OR clauses, and/or cross-products allow for a significant
amount of parallelism. As described in section 3.4.1, non-local
joins are unfolded and intermediate results are issued along with
later messages to filter the number of replies. A predicate group
containing an IN predicate waits for the sub-query to be resolved
before being issued.

In the case that the first part of a join, or one part of a cross-
product, generates no results, the other messages in the clause are
not sent; there is no result from that clause. In the case that a sub-
query returns no result, the clause containing the IN predicate is
not resolved; there is no result from that clause.

4. IMPLEMENTATION
Figure 7 outlines the implementation of our Netabase
demonstrator system. The purpose of the demonstrator was to
prototype our query decomposer and characteristic routing
protocol. The data sources were implemented to conform to the
characteristic routing and Netabase protocols, but not much effort
was made to make them thin in this version.

549

The data sources in our system were laptops running Microsoft
Windows connected to Siemens Moby RF-ID tag readers. We
made a collection of small packages, each with an RF-ID tag
encoding a Package record and the Customer records for the
sender and receiver. Laptops served the role of vehicles or
stations, and the vehicle or station parameters were set through a
graphical user interface.

Since scalability was an important concern for us, we simulated a
wide area network connecting our data sources. We used the NS
network simulator from the University of California at Berkeley
[7], which has the capability to simulate part of a network in real-
time, while connecting to nodes on live network. Each of our
data source laptops was networked to the simulator computer, and
traffic between them apparently traveled over a complex network
before arriving at its destination. Our characteristic routing
software was implemented within the simulator.

Each laptop continuously polled the RF-ID tag reader to keep
track of the local inventory. When changes occurred in the
inventory, the laptop notified its (simulated) local router of new
characteristics, or of characteristics no longer valid. We could
move packages from node to node to demonstrate deliveries and
pickups.

Several nodes were outfitted with a query module. The query
module was implemented as an ActiveX component, taking SQL
strings or files as input, and handling all network and query
evaluation tasks needed to answer the query. This is an important
point for us, because it means that our application only had to

understand SQL, and our wide area data management system
appeared to the application exactly as a local database would.
One application allowed hand entry of SQL queries through a
web interface. A second application acted as an airport dispatch
optimizer, selecting the best mix of planes and trucks depending
on live status of packages discovered through SQL queries on the
system.

We tested have our implementation with as many as seven real
data sources, and up to 100 simulated data sources, and it
performs well. This work is ongoing, and we have good
preliminary results with 103 data sources.

5. FUTURE WORK AND CONCLUSIONS
We are currently in the process of building a larger simulation to
test scales of 105 nodes or more. Due to the computational
overhead of such a simulation, we are required to distribute the
simulation over several computers and develop some new tools
for evaluating the results.

We are also in the process of building a deployable prototype of
our software, for use by our customer, a large postal logistics
solution provider.

Significant work can still be done to improve the efficiency of the
system, reduce its footprint. We have, however, implemented a
system that has the following interesting properties:

1. Data is entirely distributed to its sources. No central database
is used. There is no service bottleneck or central failure point.

Simulation WorkstationData Source

Data Source

Data Source
Data Source

Data Source

Figure 7. Implementation Architecture.

550

2. Anyone connecting to the network (with the proper
authentication) can issue an SQL query and receive the results.

3. The basic architecture scales in a manner similar to IP
networks.

We believe this method of wide area data management may be
quite valuable for sensor networks and other wide area distributed
systems in the future.

6. ACKNOWLEDGEMENTS
The authors have benefited from many discussions in the
development of Netabase, and we particularly thank Karl-Heinz
Maier, Arding Hsu, and Georg Diller for their contributions. Bich
Nguyen was instrumental in the development of our first
prototype, and Stefan Bindel and Matthias Heiler have made
significant contributions in more recent versions.

7. REFERENCES
[1] Bonnet, P., J.Gehrke, and P.Seshadri. "Towards Sensor

Database Systems". 2nd International Conference on
Mobile Data Management. Hong Kong, January 2001.

[2] Deering, S., "Multicast Routing in a Datagram
Internetwork", Stanford Technical Report, STAN-CS-
92-1415, Department of Computer Science, Stanford
University, December 1991.

[3] Estrin, D., R. Govindan, J. Heidemann and S. Kumar.
"Next Century Challenges: Scalable Coordination in
Sensor Networks" , ACM MobiCom 99, August 99,
Seattle, USA.

[4] Hirsh H., C. Basu, and B. Davison. "Learning to
Personalize". Communications of the ACM, August
2000, Vol. 43, No. 8, pp. 102-106.

[5] Kahn, J., R. Katz and K. Pister, "Mobile Networking
for Smart Dust", ACM/IEEE Intl. Conf. on Mobile
Computing and Networking, ACM MobiCom 99,
Seattle, WA, August 17-19, 1999.

[6] Navas, J. and T. Imielinski. "Geographic Addressing
and Routing". ACM MobiCom'97, Budapest, Hungary.
September 26-30 1997.

[7] "The Network Simulator - ns2."
http://www.isi.edu/nsnam/ns.

[8] Ozsu, M. and Valuriez, P. "Principles of Distributed
Database Systems", Prentice Hall, 1999.

[9] Radoslavov, P., D. Estrin, and R. Govindan.
"Exploiting the Bandwidth-Memory Tradeoff in
Multicast State Aggregation". Technical report 99-
697. Computer Science Department, USC. July 1999.

551

