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ABSTRACT 

This paper describes the methodology and implementation of a 
data management system for highly distributed systems, which 
was built to solve the scalability and reliability problems faced in 
a wide area postal logistics application developed at Siemens.  
The core of the approach is to borrow from Internet routing 
protocols, and their proven scalability and robustness, to build a 
network-embedded dynamic database index, and to augment 
schema definition to optimize the use of this index.  The system 
was developed with an eye toward future applications in the area 
of sensor networks. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – distributed 
databases, query processing. H.4.4 [Information Systems 
Applications]: Miscellaneous.  C.2.4 [Computer-
Communication Networks]: Distributed Systems – distributed 
applications, distributed databases. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Wide-Area Data Management, Sensor Networks, Logistics, 
Distributed Data Management. 

1. BACKGROUND & MOTIVATION 
The rapid decrease in the cost and size of data communications 
hardware and various sensor technologies offers to support a 
wealth of new businesses, loosely termed "sensor networks" [3,5].  
Applications have been proposed in areas including intelligent 
highways, power grid management, intelligent battlefields, and 
remote product service and maintenance. Although the 
applications are varied, they share several common features: (1) a 
relatively large number of data sources (typically on the order of 
105 or more),  (2) relatively volatile data and data organization, 

and (3) and the requirement for "thin" data servers, to run on 
scaled down hardware.   

These applications offer a significant challenge for data 
management.  Most application-level tools wish to treat such a 
collection of data as a traditional database, using well-known 
query languages to access the data.  In the state-of-the-art of 
commercial systems, the solution to similar problems is to use a 
centralized database (or small collection of distributed databases), 
and collect the data as fast as possible, either through polling or 
event-driven reporting.  Applications then act on the database in 
the traditional way.    

However, in applications requiring tens of thousands of data 
sources, with rapidly changing data, such systems are insufficient.  
The databases themselves, and especially their data 
communications channels, become bottlenecks that prevent the 
system from achieving these scales.  Moreover, such databases 
represent critical failure points, and also introduce latency that 
may be relevant in real-time applications.  A system is needed 
which is highly scalable, offers no critical failure points, and lets 
data flow from the source to the requestor as rapidly as possible.  
One research project addressing this space is COUGAR [1], but 
this system assumes a centralized index of all data sources, which 
does not address our scalability or critical failure point 
requirements. 

At Siemens, we see a great future potential in sensor networks 
applications, and in developing technology that will satisfy these 
very challenging constraints.  More immediately, we have a need 
to support a related application in the area of postal logistics.  
This application has somewhat milder constraints (less than one 
hundred thousand data sources, and reasonably fat clients are 
acceptable), but offers many of the same challenges as the sensor 
networks.  Our goal was to produce a solution that solved our 
immediate problem and has applicability to the more demanding 
problems we foresee in the near-term. 

The postal logistics application will serve as a guide for this 
paper, as we show examples from this domain to illustrate how 
our system operates.  Section 2 describes this application.  
Section 3 describes a wide area data management system, and 
details specific to the implementation are described in Section 4.  
Our future work is described in Section 5. 
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2. DATA MANAGEMENT IN WIDE AREA 
POSTAL LOGISTICS 
Figure 1. shows an overview of the application that we support.  
The idea is to allow a large courier service to treat its distribution 
and staging system of hubs, substations, trucks, and airplanes as a 
single live database of packages.  Any authenticated client, from 
any point in the network, can issue a query against this database 
and receive the current answer.   

A typical scenario for this system is the following.  A logistics 
agent (automated or human) located at an airport hub is faced 
with a partially loaded airplane scheduled to depart shortly.  An 
optimization question arises: should the plane embark partially 
loaded, or await the arrival of additional packages?  The agent 
issues a query to ask how many packages bound for the airplane's 
destination, and in what sizes, are expected to arrive at the airport 
within the next hour.  In order to answer this correctly, the system 
must have access to the status and contents of all vehicles 
currently bound for the airport. 

Requirements for this application include: 

On the order of 50,000 data sources which are so-called 
"tertiary containers" (trucks, airplanes, stations, etc.). 

Data sources may autonomously add or remove themselves 
from the system at any time. 

Data currency to within 5 minutes of real-time. 

Queries should be submitted in a SQL-like language familiar 
to application programmers. 

Never have a total system failure, and minimize the impact 
of partial failures. 

In addition to these constraints, we were also concerned with the 
processing capability required at the data sources.  Although it is 
reasonable for tertiary containers to include a PC-like device, we 
have our eye on future sensor network applications, which require 
thinner servers. 

For the purpose of our work, we assume that tertiary containers 
are appropriately updated with the information regarding the 
packages they currently hold.  Electronic information about a 
package moves with the package.  This is achieved using RF-ID 
tagging and other techniques, and is beyond the scope of this 
paper. 

Figure 2 shows a simplified data schema that might be used for 
this application.  Each table is distributed, storing the data along 
with its physical manifestation.  In this example, Vehicle and 
Station records are stored at the location of the vehicle or station.  

Internet

Figure 1.  A Highly Distributed Postal Logistics System 
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Package records are stored at the site of the package, either 
vehicle or station.  Customer records are associated with 
packages, and are stored with them. ConveyedBy and 
StoredAt tables are stored with the corresponding vehicle or 
station. 

Package(PID, Size, SenderID, ReceiverID, 
DestStation, DestZIP, Priority, 
SpecHandling) 

Vehicle(VID, Dest, ExpectedWait, Status, 
VType) 

Customer(CID, Name, StreetAddr, City, 
ZIP) 

ConveyedBy(PID, VID) 

Station(SID, Name, State, Country, 
Region) 

StoredAt(PID, SID) 

Figure 2.  A simplified schema for the postal logistics 
Application 

3. THE NETABASE APPROACH 
Our approach, called Netabase, is fundamentally based on the 
observation that the Internet scales very well.  The IP routing 
protocol which underlies the Internet supports millions of nodes, 
and allows significant dynamism and autonomy for nodes to add 
or remove themselves.  

We have developed a new network routing technology called 
characteristic routing, to support the scalable and efficient 
routing of data queries to data sources which have relevant 
information.  In effect, the computer network becomes a 
distributed, dynamic index to the data sources.  We define a 
methodology to determine appropriate keys for this index, with 
the principal goal to minimize network traffic.  At a node issuing 
a query, a system for query decomposition uses these keys to send 
the components of the query to just the right places, and receives 
and integrates the replies. 

Figure 3 shows an overview of the system.  An application issues 
a query in our SQL-like language.  The query decomposer breaks 
the query into components deliverable to different types of data 
sources, and chooses appropriate "routing keys".  The 

characteristic virtual routers route the query fragments to just 
these data sources. The thin servers at the data sources evaluate 
the query fragments, and reply.  The replies are integrated at the 
requesting node. 

Not shown in the figure are the system's administrative tasks.  
First, we have extended the schema definition specification of our 
SQL-like language to include optimization specifications.  
Second, the characteristic routers continuously communicate with 
each other to update their routing tables to reflect changes in the 
distribution of characteristics. 

3.1 Local Join Specification 
An important consideration in reducing data traffic is the 
possibility to perform some join operations at the data sources.  In 
general, if data is provided from several sources, joins cannot be 
performed at the sources, due to the possibility of filtering out 
records that would correctly join with records from other sources.  
However, the semantics of a particular schema may indicate that 
certain joins can be performed at the sources without fear of loss 
of information.  

In our example schema, the Vehicle and ConveyedBy tables 
are an example of a pair of locally joinable tables.  The semantics 
of the system dictate that all records of a ConveyedBy table that 
correspond to a particular Vehicle.VID are located at the same 
data source (the vehicle) as the Vehicle record for that 
Vehicle.VID.  If a join is requested on these two tables, the 
join can be performed at the vehicle data source, without fear that 
records will be lost which might be joinable elsewhere.   

It is further possible that certain attributes of a pair of tables will 
be locally joinable, even if not all attributes of those tables are 
locally joinable.  In our postal schema, for example, 
Package.ReceiverID is locally joinable with 
Customer.CID, because a Customer record describing the 
receiver of a package travels with each package.  However, 
Package.DestZIP is not locally joinable with 
Customer.ZIP.  To see this, consider a query that tries to find 
the names of all customers who live in the same ZIP that a 
package is destined for.  This query would typically involve a join 
on the ZIP attributes.  There may be many customers who live in 
this ZIP code, and they will not all be recorded in a given truck.  
Thus a join on the ZIP attribute cannot be conducted locally, or 
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many potential matches would be overlooked. 

In order to allow optimization of a query based on local joins, we 
have extended the specification of the schema to include local 
join relationships.  All joins are assumed not to be locally joinable 
unless identified through the use of this extension.  The syntax 
allows either pairs of complete tables, or specific pairs of table 
attributes to be designated as locally joinable.   

join_locally_statement-> join_locally table, table 

  | join_locally table.attribute, table.attribute; 

3.2 Query Decomposition 
The goal of the query decomposition stage is to divide the query 
into pieces so that data sources receive only the parts of the query 
which are relevant to them, and which are independently 
processable by them.  For example, a data source should not 
receive a request for information about a table in which it does 
not take part.  Moreover, if one or more operations in a query, 
such as a join, are not processable locally at a data source, then 
some pieces of the same query may need to be satisfied 
separately.  Each resulting piece can be considered as a message, 
to be sent to the appropriate data sources as a request for 
information. 

Additionally, the messages into which the query is divided should 
be satisfied in an order which is consistent with the goal of 
minimizing network traffic. 

To achieve these goals, the query decomposer's task can be 
roughly divided into three sub-tasks:  (1) division of the query 
into predicate groups based on query structure, (2) further 
division of the predicate groups based on relevant tables and 
possibilities for local joins, and (3) ordering of the resulting 
groups. 

The first step is to divide the query into predicate groups.  The 
general approach is illuminated by the consideration that AND 
operations in a WHERE clause act as filters reducing the number 
of satisfying records, while OR operations indicate independent 
clauses.  For that reason it is useful to group ANDed predicates 
into the same message where possible, to reduce the number of 
replies, and ORed clauses are separated and handled 
independently.  The WHERE clause of each sub-query is converted 
to disjunctive normal form to facilitate this division, and 
subqueries are treated independently. 

After predicate groups have been established based on separating 
the OR clauses in each subquery, they are refined by further 
dividing them into local-join groups.  Local-join groups are 
groups of predicates in which all of the predicates can be resolved 
locally at the same data source.  Local join groups are computed 
by first clustering all non-join predicates by the table they 
reference, and then unifying groups through local joins which are 
specified.  Non-local join predicates are then included in any 
local-join group which they reference, which means they will 
appear in multiple groups.  Figure 4 shows a query and the 
resulting predicate groups, assuming that the Package and 
ConveyedBy, and Vehicle and ConveyedBy tables have been 
specified as locally joinable. 

 

 

 

SELECT P.Size 

FROM   Vehicle V, Package P,   

       ConveyedBy CB 

WHERE  V.VID = CB.VID    

  AND  P.PID = CB.PID 

  AND  P.DestHub = "Chicago" 

  AND  V.Dest = "LA Airport" 

  AND  V.ExpectedWait < 60 

Non-joins Grouped By Table: 

Group 1: P.DestHub = "Chicago" 

Group 2:  V.Dest = "LA Airport" 

 V.ExpectedWait < 60 

Unified through Local Joins 

Group 1:  All 5 predicates 

Figure 4. An example query and predicate groups 

Next, the predicate groups within each subquery or OR clause are 
ordered.  The discussion of how the ordering is done is deferred 
to section 3.4 on query evaluation, in order to give the proper 
context.  Predicate groups in different subqueries or OR clauses 
can be resolved independently, and thus are issued in parallel.  
When a predicate group includes an IN predicate (indicating a 
subquery), that group must wait for the subquery (possibly several 
predicate groups) to be resolved before it can be resolved itself. 

Additional optimization is possible based on elimination of 
common sub-expressions, but we did not implement this. 

3.3 Characteristic Routing 
Messages are sent to data sources over the Internet using a new 
message routing protocol called characteristic routing.  In our 
prototype Netabase system, characteristic routing is implemented 
as a virtual routing protocol on top of IP, but it can also be 
implemented in place of IP.   

Using the characteristic routing protocol, internal nodes in the 
network route messages to data sources which have particular 
characteristics.  A single message can be sent to multiple 
destinations, as characteristic routing uses techniques derived 
from IP-multicast [2] and related to geographic routing [6].  
Although characteristic routing allows arbitrary strings to be used 
as characteristics, we choose special strings which serve as an 
index to the database.  Since the routing tables are constantly 
updated, the database index is highly dynamic. 

The networking aspects of characteristic routing will be addressed 
in another paper.  In this paper we focus on the manner in which 
characteristic routing supports the wide area database. 

3.3.1 Routing Keys 
Our approach is based on the observation that different data 
sources participate in different database tables.  As was described 
in section 2, our postal application maintains data stored at 

547



vehicles and stations, with the former participating in vehicle 
relevant tables, the latter participating in station relevant tables, 
and both participating in package tables.  In sensor networks, 
different sensor types typically represent different tables. For 
example in a chemical processing plant, temperature, pressure, 
current volume and valve status are tables participated in by the 
sensors which measure these variables. 

As a first pass, each data source advertises as characteristics the 
names of the tables in which it participates in.  Whenever a 
message is issued, the tables involved in that message are 
specified as the "routing keys" for the message, and the message 
will be routed only to those data sources which advertise those 
characteristics. 

More accurate routing can be achieved by using a combination of 
attribute names and values as a routing key.  For example, if the 
predicate group from figure 4 is issued as a message, instead of 
using ("Vehicle", "Package", "ConveyedBy")as the routing 
key, one could more accurately route the message by using 
"Vehicle.Dest=LA_Airport". Using the first set of 
characteristics, all vehicles would receive that message, but only a 
small subset of vehicles, topologically clustered, would receive 
the message using the second characteristic. 

The trade-off for the accuracy gained through value-based routing 
keys is larger routing tables and additional administrative traffic.  
Since there are many more possible attribute values than there are 
table names in a database, allowing values to be used as routing 
keys increases the size of the routing table dramatically.  This can 
be offset by only maintaining routing information for attributes 
with high ranks.  Another approach to managing the size of the 
routing tables is to abstract the information in the routing table 
hierarchically.  This approach is described in section 3.3.3.  In 
addition, since attribute values change more frequently than table 
names, more administrative overhead is needed to maintain the 
routing tables.  Therefore, the use of values as routing keys is not 
useful for attributes where the value typically changes at a 
frequency comparable to the latency of the system.  The use of 
hierarchical abstraction limits the proliferation of updates through 
the network, and is thus doubly valuable. 

3.3.2 Building the Routing Tables 
Data sources advertise their characteristics to their local 
characteristic router.  In our initial implementation, data sources 
also advertise deletion of characteristics that had been previously 
advertised.  We believe a significant reduction in traffic can be 
achieved with a soft-state approach, in which characteristics that 
are not re-advertised grow stale after a timeout period and are 
discarded. This approach would also directly support data sources 
which remove themselves from the system. 

Within the network, characteristic routers continuously exchange 
routing instructions for the characteristics they are aware of.  This 
provides the wide area index for Netabase. 

3.3.3 Routing Key Abstraction 
In order to maintain the characteristic routing tables at a 
reasonable size, abstraction techniques are used in order to 
"throw-away" most of the information.  Whereas a characteristic 
can be any arbitrary string of arbitrary size, a characteristic router 
only needs to know that a particular characteristic exists and that 

a particular destination in the network is associated with that 
characteristic.  This observation allows us to ignore the actual 
contents of the characteristic itself and simply record its presence 
(or not) for a particular destination using bit vector techniques 
that were pioneered in Information Retrieval [4].    In this manner, 
each destination in the network will have a bit vector associated 
with it in which each of the bits corresponding to the 
characteristics belonging to that destination will be "on." 

In order to achieve even greater savings in routing table size, the 
bit vectors themselves are further abstracted.  This abstraction 
takes the form of associating a single bit with a range of 
characteristics.  The range of characteristics corresponding to 
each bit can be varied with a corresponding smaller decrease in 
the routing accuracy.  This allows the routing table size and the 
control message overhead to be potentially greatly reduced and, 
thereby, making the system more amenable for use in lower-
bandwidth networks such as wireless networks.  However, this 
raises the possibility that some data sources will receive messages 
not intended for them.  Where bandwidth is more plentiful, the 
range of characteristics corresponding to each bit can be 
decreased leading to greater routing accuracy with a 
corresponding increase in memory and control overhead 
requirements.  This trade-off introduced is similar to the 
bandwidth/memory trade-off described in [9]. 

The amount of information accuracy that is kept per destination is 
also varied with the network distance to that destination.  More 
accurate information is kept about destinations that are "nearby" 
versus destinations that are farther away.  Essentially, the amount 
of bit-vector abstraction is increased for distant destinations.  The 
intuition underlying this can be illustrated with the following 
example: A characteristic router in California receives a packet 
bound for a set of characteristics that belong to a destination in 
New Jersey.  The California router, however, does not need to 
have detailed knowledge about the network structure within New 
Jersey or even detailed knowledge about the exact characteristics 
found in New Jersey.  All it needs to know is that a destination 
with characteristics "similar" to the packet's destination 
characteristics can be found to the "east."  Therefore, the router 
will forward the packet eastward.  As the packet nears its eventual 
destination, the information accuracy increases so that the packet 
finds its way correctly to the proper final destinations. 

3.3.4 Choosing a Routing Key 
For any given message, a routing key is derived from its predicate 
group.  Using the ranks of the predicates described in section 
3.4.2, the highest ranked non-join predicate is selected, and the 
routing key is created of the form TABLE_ATTRIBUTE_VALUE, 
although we use truncation to reduce string lengths.  In the case 
that either there are no non-join predicates, or that there are no 
non-join predicates which include routable attributes, the set of 
table names referenced in the predicate group is used as routing 
characteristics. 

3.4 Query Evaluation 
3.4.1 Unfolding Non-Local Joins 
Non-local joins are any joins which have not been specified to be 
resolved locally. This means that the records to be joined must 
come from multiple data sources.  Rather than gathering all of the 
data and then joining it, we choose to "unfold" the joins, that is to 
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gather the records from one table, and use that to filter the data 
coming back from the other table.  This approach is similar to the 
traditional semi-join algorithm for distributed joins [8], with the 
addition of a selection in the first step which reduces the number 
of records transmitted. 

SELECT V.VID, S.Name 

FROM   Vehicle V, Station S 

WHERE  V.Dest = S.Name    

  AND  S.State = "California" 

  AND  V.ExpectedWait < 60 

____________________________________________________ 

Group 1:  S.State = "California" 

       V.Dest = S.Name 

Group 2:  V.ExpectedWait < 60 

 V.Dest = S.Name  

Figure 5. An example query and predicate groups 

Figure 5 shows an example of a query with a non-local join, and 
the predicate groups generated.  Note that the join predicate 
appears in both groups, since it involves both tables.  When this 
query is resolved, the join is unfolded in the following way.  
When message 1 is sent, the join predicate is removed, and 
S.Name is requested as a return value.  The S.Name data is 
collected, and is included in message 2. Data sources only reply 
to message 2 if they have data which will satisfy the join 
predicate given the included data.  Unfolding the joins in this 
manner acts as a very coarse filter on replies, and significantly 
reduces the network traffic generated as a result of the query. 

Figure 6 shows the possible text of message 2, where %1 indicates 
a placeholder for which the data listed is to be substituted.  Data 
sources interpret this locally like a logical OR of four predicates. 

Vehicle.ExpectedWait < 60 

Vehicle.Dest = %1; 

(%1,String)"LosAngeles", "Oakland", "Hayward", 
"Santa Barbara"; 

Vehicle.VID 

Vehicle.Dest; 

Figure 6: A Message from an Unfolded Join. 

3.4.2 Ordering Predicate Groups 
After predicate groups have been determined, it remains to be 
decided in what order they will be sent as messages.  Choosing 
the right order can have a significant impact on the network 
traffic produced by the query.  Consider the query and predicate 
groups shown in Figure 5.  As is described in section 3.4.1, non-
local joins are unfolded, so the join predicate is listed in both 
groups.  If group 2 were issued first, all vehicles worldwide 
within 60 minutes of their destination would respond, probably 
generating a significant amount of traffic and mostly unnecessary.  

If group 1 were issued first, only stations in California would 
respond (indeed, only stations in California will receive the 
query); using the S.Names which are retrieved from this first 
message, the join predicate can be used as a filter for the second 
message, and a much smaller number of vehicles will respond. 

In order for the query processor to choose a preferred ordering for 
the messages, and also to choose an appropriate routing key (as 
described in the section 3.3), we extend the schema definition 
specification to include a "rank" for each table attribute.  The 
database designer chooses ranks for each attribute based on the 
semantics of schema, based on the following guidelines: 

1. Attributes which partition the records along network topology 
get highest rank; 

2. attributes which have a large number of different values are 
ranked higher than 

3. attributes which have a small number of different values. 

There is some art in choosing the best rankings, but it is 
reasonably straight forward.  In our example schema, attributes 
Station.State and Vehicle.Dest would have high ranks, 
and attributes Package.SpecHandling and 
Vehicle.Status would have low ranks.  

To order the predicate groups within a clause, the non-join 
predicate with the highest rank is selected, and its group is chosen 
to be issued first.  Joins are then unfolded to determine the order 
of the rest of the groups.  In the case that two predicate groups in 
the same clause are unjoined, which in SQL indicates a cross-
product, the groups can be resolved in parallel. An IN predicate 
(indicating a subquery) is treated as a non-join predicate for 
purposes of ranking. 

3.4.3 Processing the Query   
Predicate groups are converted to messages and issued in the 
order determined by the query decomposer.  The presence of sub-
queries, OR clauses, and/or cross-products allow for a significant 
amount of parallelism.  As described in section 3.4.1, non-local 
joins are unfolded and intermediate results are issued along with 
later messages to filter the number of replies.  A predicate group 
containing an IN predicate waits for the sub-query to be resolved 
before being issued. 

In the case that the first part of a join, or one part of a cross-
product, generates no results, the other messages in the clause are 
not sent; there is no result from that clause.  In the case that a sub-
query returns no result, the clause containing the IN predicate is 
not resolved; there is no result from that clause. 

4. IMPLEMENTATION 
Figure 7 outlines the implementation of our Netabase 
demonstrator system.  The purpose of the demonstrator was to 
prototype our query decomposer and characteristic routing 
protocol. The data sources were implemented to conform to the 
characteristic routing and Netabase protocols, but not much effort 
was made to make them thin in this version.   
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The data sources in our system were laptops running Microsoft 
Windows connected to Siemens Moby RF-ID tag readers.  We 
made a collection of small packages, each with an RF-ID tag 
encoding a Package record and the Customer records for the 
sender and receiver.  Laptops served the role of vehicles or 
stations, and the vehicle or station parameters were set through a 
graphical user interface.   

Since scalability was an important concern for us, we simulated a 
wide area network connecting our data sources.  We used the NS 
network simulator from the University of California at Berkeley 
[7], which has the capability to simulate part of a network in real-
time, while connecting to nodes on live network.  Each of our 
data source laptops was networked to the simulator computer, and 
traffic between them apparently traveled over a complex network 
before arriving at its destination.  Our characteristic routing 
software was implemented within the simulator. 

Each laptop continuously polled the RF-ID tag reader to keep 
track of the local inventory.  When changes occurred in the 
inventory, the laptop notified its (simulated) local router of new 
characteristics, or of characteristics no longer valid.  We could 
move packages from node to node to demonstrate deliveries and 
pickups. 

Several nodes were outfitted with a query module.  The query 
module was implemented as an ActiveX component, taking SQL 
strings or files as input, and handling all network and query 
evaluation tasks needed to answer the query.  This is an important 
point for us, because it means that our application only had to 

understand SQL, and our wide area data management system 
appeared to the application exactly as a local database would.  
One application allowed hand entry of SQL queries through a 
web interface. A second application acted as an airport dispatch 
optimizer, selecting the best mix of planes and trucks depending 
on live status of packages discovered through SQL queries on the 
system. 

We tested have our implementation with as many as seven real 
data sources, and up to 100 simulated data sources, and it 
performs well. This work is ongoing, and we have good 
preliminary results with 103 data sources. 

5. FUTURE WORK AND CONCLUSIONS 
We are currently in the process of building a larger simulation to 
test scales of 105 nodes or more.  Due to the computational 
overhead of such a simulation, we are required to distribute the 
simulation over several computers and develop some new tools 
for evaluating the results.    

We are also in the process of building a deployable prototype of 
our software, for use by our customer, a large postal logistics 
solution provider. 

Significant work can still be done to improve the efficiency of the 
system, reduce its footprint.  We have, however, implemented a 
system that has the following interesting properties: 

1. Data is entirely distributed to its sources.  No central database 
is used.  There is no service bottleneck or central failure point. 

Simulation WorkstationData Source

Data Source

Data Source
Data Source

Data Source

Figure 7. Implementation Architecture. 
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2. Anyone connecting to the network (with the proper 
authentication) can issue an SQL query and receive the results. 

3. The basic architecture scales in a manner similar to IP 
networks. 

We believe this method of wide area data management may be 
quite valuable for sensor networks and other wide area distributed 
systems in the future. 
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