
A State Transition Model for Distributed
Query Processing

STiPHANE LAFORTUNE and EUGENE WONG
University of California. Berkeley

A state transition model for the optimization of query processing in a distributed database system is
presented. The problem is parametrized by means of a state describing the amount of processing that
has been performed at each site where the database is located. A state transition occurs each time a
new join or semijoin is executed. Dynamic programming is used to compute recursively the costs
of the states and the globally optimal solution, taking into account communication and local
processing costs. The state transition model is general enough to account for the possibility of parallel
processing among the various sites, as well as for redundancy in the database. The model also permits
significant reductions of the necessary computations by taking advantage of simple additivity and
site-uniformity properties of a cost model, and of clever strategies that improve on the basic dynamic
programming algorithm.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems-dktributed dotahes; H.2.4 [Database Management]: Systems-distributed systems;
query processing; 1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods and Search-
dynamic programming

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Distributed query processing, query optimization, semijoin, state
transition model, tree queries

1. INTRODUCTION

We consider the problem of optimizing the processing of a query in a distributed
database system. This problem has received a great deal of attention in recent
research, and many algorithms for query optimization have been proposed and
implemented. We refer the interested reader to [S, Chapter 61 and to the recent
survey paper [25] for detailed reviews of the literature on this subject. References
[l, 5,9-13, 15, 18, 23,24,27] are of particular relevance to this paper. Generally

This research was sponsored by U.S. Army Research Office contract DAA29-82-K-0091, National
Science Foundation grant ECS-8300463, and in the case of the first author, a scholarship from the
Natural Sciences and Engineering Research Council of Canada.
Authors’ addresses: S. Lafortune, Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109-1109; E. Wang, Department of Electrical Engineering
and Computer Sciences and Electronics Research Laboratory, University of California, Berkeley,
CA 94720.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0362.5915/86/0900-0294 $00.75

A State Transition Model * 295

speaking, most of the algorithms in these references fall into one of the following
categories:

(i) those that give a local optimum or a “close to optimal” solution for general
join queries, often by using heuristics based on the semijoin operation (cf.
Ll, 5, 13, 15, 231);

(ii) those that give a global optimum for special classes of queries such as chain
and tree queries that can he completely answered by semijoins (cf. [IO, 111);
and

(iii) those that give a global optimum for general join queries, hut for a class of
strategies excluding the semijoin operation (cf. [IS]).

Our objective is to formulate the distributed query processing problem within
a precise state transition framework and then to find global optima among
strategies based on joins and semijoins, using dynamic programming over the
state space. In this sense, we believe that this paper generalizes the above
references, in particular [5, 10, 11, 18,231, which were our main inspiration.

The key element in this work is the introduction of a state to parametrize the
evolution of the processing of a query in a distributed environment. Not only is
this step crucial for modeling the dynamical nature of this problem, it is also
necessary in order to use a dynamic programming algorithm to find the globally
optimal solution. The cost of a state comprises all local processing and commu-
nication costs incurred in reaching the state.

Once the concept of state transition has been properly defined and the state
space constructed, dynamic programming can be used to find the state containing
the answer to the query that has the minimum cost and to find the optimal
trajectory to that state (i.e., the optimal sequence of processing operations). We
note that without a state transition model, the problem is not truly one of
dynamic programming, and inefficient computations would probably result. An
additional benefit of this framework is that clever strategies improving on the
basic algorithm can be employed.

The concept of state can be thought of as a means for parametrizing the
processing of a query in terms of joins and semijoins (which are a special case of
a join followed by a projection). However, in contrast to many strategies that
have been proposed (c% [1,5,15,23,25]), we do not decompose the problem into
a reduction phase, where only semijoins are used to reduce the relations, and an
assembly phase, where all the joins are performed at a single site. Instead we
consider a more general dynamical model allowing for arbitrary interleaving of
join and semijoin operations, as well as for executing the joins in a distributed
fashion (i.e., not all at the same site). The state trajectories in the state space
will then include all the join orderings of (181, all the “correct nonredundant
semijoin programs” of [lo-111, and all the “semijoin reducer programs”
of [5, 231.

Another feature of our model is that the definition of a state transition accounts
for the possibility of parallel processing among the various sites where the
database is located. We also allow a choice among multiple copies of a relation
when the database incorporates redundancy. In the case where the sites are

ACM TlanSaftions on Database systems, Vol. II, No. 3, September ,986.

296 . S. Lafoftune and E. Wong

uniform in terms of local processing and communication costs (as is assumed in
almost all the literature), and where the answer can be located at any site (as in
[5, 2311, we show how some states can be aggregated into equivalence classes,
thus resulting in substantial savings for the computation of the optimal solution.

This paper is organized as follows. The problem is stated in Section 2. In
Section 3, we present the state parametrization that we have formulated, and in
Section 4 discuss the cost of one-step state transitions. The complete algorithm
that we propose is given in Section 5. Section 6 is concerned with equivalence
classes of states. A complete example is given in Section 7. Sections 8 and 9
generalize the results to the cases where semijoins are also allowed as state
transitions, and where the database contains redundancy. Finally, we discuss our
results in Section 10.

2. PROBLEM STATEMENT

Consider a distributed database system. By this we mean a database consisting
of a finite set of original relations distributed among M sites, together with a
collection of M autonomous processors communicating with each other via a
general communication medium. The database may contain multiple copies of
each original relation, but we assume that each copy is entirely located at a
single site.

We are given:

(a) a query q0 which references N distinct original relations not all located at
the same site. We assume that the query can be described by means of the three
relational algebra operations: projection, restriction (selection), and join. (We
need not be more specific about the form of 40 until Section 8.) As in [Z], we call
the query graph of o0 the multigraph with N nodes, where each join clause in o0
is indicated as a link between the corresponding nodes.

(b) an initial materialization (see 1241) of the N original relations of the
database that are referenced by Q. This consists of an M-component vector .x+,
each component I containing those of the N original relations that are located
at site i. In Sections 3 to 8, we assume that G is irredundant (there is only one
copy of each original relation), but this assumption is relaxed in Section 9.

The added dimension in distributed query processing, as compared to query
processing in a centralized database system, is the necessity to transfer data
when joining relations located at different sites. Thus the cost of processing a
query includes both local processing and communication costs. In this paper we
consider both categories and make no assumptions concerning their relative
importance.

Finally, we assume that the site location of the answer to 90 is irrelevant. But,
as we indicate in Section 5, the algorithm that we propose also computes the
optimal solution for all M possible locations of the answer. We use the terminol-
ogy site-uniformity assumption to describe the situation where the processing
costs are independent of the sites, and where the communication costs are the
same between any two sites.

A State Transition Model * 297

3. STATE PARAMETRIZATION OF THE PROBLEM

3.1 Notions of State and State Transition

We define a state I as follows: x is an M-component vector such that r(i) contains
the list of relations (including original relations and intermediate results) located
at sits i. The materialization x0 is the initial state of the system. A final state is
a state that contains the answer to q0 at one of the M sites. We denote this
answer by qo(Q), and X, denotes the set of all final states. In order to construct
the set of reachable states, or state space, we need to specify the rules for state
transitions. We do this by means of two definitions.

Definition. An intermediate relation derived from state x @ X,is a new relation,
that is, it is not already present in I, that can be obtained by (i) joining any two
relations (original or intermediate) in state x, and then (ii) possibly making some
projections and restrictions on this new result.

Therefore, all the relations in a state are either original relations or interme-
diate ones. Since any relation is always entirely located at a single site, all
projection and restriction operations correspond to local processing (we adopt
this terminology in the rest of the paper). Next, let I = {I, , MJ.

Definition. We say that there exists a one-step tran.&on from state x1 to
state xg if the following conditions are satisfied:

(i) XI 4 Xt;
(ii) x2 # xl;
(iii) for all i E I, x2(i) is equal to x,(i), except for possibly one new intermediate

relation derivable from x1, and except for the deletion of some relations in
xl(i) (deletion rules are specified later).

From the above definition, the new intermediate relation at site i is the result
of a join between any two relations in x1 (not necessarily located at site i),
possibly followed by some local processing. In particular, the first definition
allows for this new relation to be the semijoin of two relations in II, since a
semijoin can be viewed as a join followed by a projection. (The operations need
not be actually performed in that order; see Section 4.) We assume in this paper
that all the semijoins are on the same attributes as the corresponding joins in
the query graph of qO.

Even though they are not natural relational algebra operations, semijoins are
at the core of many distributed query processing algorithms (cf. [l, 5, 10, 11, 15,
23, 271). For this reason, we have allowed for their explicit consideration in the
state-transition framework. We emphasize that the above definitions permit
arbitrary interleaving of join state trandions and semijoin state transitions, that
is, semijoins need not be part of semijoin reducer programs only, as is the case
in the above references.

Another feature of the model is that by allowing for one new intermediate
relation at each of the M sites, and not only for one new intermediate relation
from x, to x2, we account for the possibility of parallel processing, in the sense

ACM Trmsactions on Database systems, “0,. 11, No. 3, September 1986.

298 * S. Lafortune and E. Wang

that we allow for simultaneously joining (and semijoining) distinct relations at
different sites.

The modeling of the processing of a query hy a state-transition model is
influenced by the trade-off between state and one-step state transition. Finer
definitions for state transitions, considering separately data movement and local
processing, for example, result in a much bigger state space, and this may be
computationally inefficient. On the other hand, coarser definitions, like allowing
more than one join per site, may render the optimization of one-step transitions
too complex and may cancel the advantages of using a state-transition model
(dynamic programming is less advantageous when the number of steps is small).
Moreover, in addition to being relatively simple to carry out, each suboptimal
problem for the optimization of a one-step transition must he separable, meaning
that it can be isolated from the rest of the problem, in order to be able to use
dynamic programming. These considerations have led us to choose join as the
unit step in state transitions, with the possibility of also allowing semijoin if a
finer model is desired. If the cost function satisfies the site-uniformity assump-
tion, the equivalence classes presented in Section 6 result in a coarser model.

We now divide the problem into two cases to simplify the presentation of our
results. From this point on and until Section 8, we restrict ourselves to the case
where the state transitions are joins only (i.e., semijoins are not allowed as one-
step transitions). Observe that there is no restriction on how each such join is to
he performed. Let A and B be two relations in x1 and suppose that the transition
from x1 to x2 is due to the operation A w B. Then A w B could be the result of
the elementary semijoin program (A K B) W B, hut the intermediate step A K B
will not correspond to a state.

Our purpose is to exclude, for the moment, multistep semijoin programs which
use sequences of semijoins on a relation to reduce it as much as possible in order
to minimize the amount of data that has to be moved when the joins are actually
performed. The general case including such sequences of semijoins for original
and intermediate relations is more complex, and will he treated separately in
Section 8.

The following deletion rule is adopted: when a relation is joined in a state
transition, it is deleted from the new state. In the above example, this means
that x2 differs from x1 hy the addition of A w B and the deletion of A and B.

A total of N - 1 joins (each possibly followed hy some local processing) need
to he performed to obtain q&J, since we can assume, without loss of generality,
that the query graph of q. is connected. (If disconnected, each connected part
can be optimized separately.) Therefore, the above restrictions mean that a
maximum of N - 1 state transitions are necessary to obtain a state in X,
from .x0. Observe that card(X,) = M, namely one state for the answer at each of
the M sites.’

In general, not all two original relations are joined in the query graph of qo,
and some transitions may correspond to joins that are in fact Cartesian products.
Thus they may be expensive to perform. If one wishes to exclude these, as done
in [l&3], for example, it is necessary to keep track of the new form of the query

’ cord(Z) denotes the eardinality of set Z.

ACM Transactions on Database Systems. Vol. 11. No. 3, September 1sss

A State Transition Model * 299

after each state transition to determine which joins are admissible. We do this
by defining the complete state (x, q) where q is the updated form of q,, when in
state x, and of course q(x) = qo(xo). In the following exposition of our solution
method, for the sake of generality, we do not exclude joins that are Cartesian
products. (We do so in the examples however.)

Example 3.1. Let q. be described by the query graph

A- B- c- D

which we simply write as q,, = A w B w C w D, and let z0 = (A; B; C, D). Then,
if x1 = (A w B; -; C, D), the new form of qo is q1 = (A w B) W C w D. In other
words, only two joins are admissible from x,: (A w B) w C or C w D.

3.2 Construction of the State Space

We use the notation y E T:(z), if state y can be reached from state x in exactly
j steps, for j 2 1.’ The fact that parallel processing is possible implies that for
each state n # Q, there exists integers k(x) and I(x) such that

W
x E f-l Tyx,) 1 5 k(x) 5 l(z) 5 N - 1, (3.la)

j=kW

x B Tfh) for 1 c j < k(r) and l(x) <j 5 N - 1. (3.lh)

l(x) is easy to determine: add the number of joins that have been performed in
the intermediate relations present in x. k(x) depends on the amount of parallel
processing that can be done in reaching 1: from x0.

The state space, denoted X, is then

X := (11:x E 7’&) for some integer j, 1 5 j 5 N - 1) U {x0{. (3.2)

Clearly, X, = 7’&-;(xo). ‘Z-(.x) will denote the set of states that can reach x in a
one-step transition:

T‘(Z) := (y E x:x E T’(y)]. (3.3)

Our objective is to use dynamic programming to determine the minimum-cost
trajectory from x0 to any state in X,. For this purpose, we have to divide the state
space X into N disjoint subsets. (This is necessary to solve recursively the
dynamic programming equation; see Section 5.) We subdivide X as follows:

N-L
x = u X(i), (3.4a)

,=o

where

X(O) := lxol (3.4b)

X(i) := (x E X:l(z) = i), 1 c i _c N - 1, (3.4c)

with l(x) as defined in (3.1). The fact that I is a function on X implies that (3.4~2)
is true with the X(i)s mutually disjoint. Observe also that X(N - 1) = XP

‘When j = 1, it will be omitted as a subscript.

ACM Transactions on Database Systems. Vol. 11, No. 3, September 1986.

300 * S. Lafortune and E. Wong

The motivation behind the above subdivision is to put a state in the indexed
subset corresponding to the maximum number of steps in which this state can
be reached from x0. As a consequence, the following simple lemma is true.

LEMMA 3.1. If I E X(i), 0 < i 5 N - 1, and y E T-(x), then y E X(j)
with j < i.

PROOF. Since y E T-(x), l(z) 2 l(y) + 1, proving the result. 0

4. ANALYSIS OF ONE-STEP STATE TRANSITIONS

4.1 Minimum Cost of One-Step Transitions

We now define the partial function c: X x X + R’ U 10) as follows. For z E X
and y E T+(x), c(x, y) is defined to be the minimum cost of doing the one-step
transition 1: toy. This transition involves doing one or more parallel joins between
relations in x. (By parallel joins, we mean joins involving distinct relations with
answers located at different sites.) This minimization problem has received much
attention in the literature, and various methods have been proposed for joining
two relations located at different sites. This point is discussed in the next section.

In this paper we do not study specifically how to compute c(x, y), except for
discussing what information is needed for its computation. We impose no
assumptions on the function c, apart from requiring that it be nonnegative.
Therefore, we allow for complete generality of the cost model.

Let ys(x, y) denote a sequence of operations, comprising data movements and
local processing, that performs the join and possibly subsequent local processing,
in the transition from z toy. (In the case of parallel joins, assume ys is a vector
whose components describe how each new intermediate relation in y is to be
obtained from x.)

The important observation is that c(z, y) is only a function of x, y and
ys(r, y), and does not depend on how the state x was reached from x0. We refer
to this fact as the separation assumption.

Remark 4.1. We use the terminology separation assumption, because, as men-
tioned in [181, the ordering of the tuples in the relations that are being joined
can influence the cost of performing that join, depending on the way the data is
accessed in the join method employed. We neglect such a dependency and assume
throughout this paper that the separation assumption is valid. However, our
model could also account for this further degree of refinement by including in
the stats information about the ordering of the tuples in each relation.

Letting rs be the (finite) set of all admissible ys, we can write

c(x, y) = min c(x, y; 7.9) (4.1)
?s”rs

Y *(x, y) := a;prF 4x, Y; rd, (4.2)

where c(x, y; 7s) represents the total cost (including communication and local
processing) to go from state x to state y by doing the operations described
by YS(G Y).
M?,, ~ransaetions an Database Systems, Vol. 11. No. 3, September 1986.

A State Transition Model * 301

We now separate in ys the information concerning the relations that are joined
from the specifc site locations of these relations and the new intermediate one,
in the following way:

y&r, y) = g[y(I(x, y)), s(x, 41 (4.3a)

where, if we denote by RI and R2 the two relations that are being joined, and by
Rlt2 the resulting new intermediate one,

I&, y) := I&; Rz; d; 01 (4.3b)

with d = 0 if R, and Re are located at the same site in .z, or d = 1 if not, and with
n = 1, 2, or 3, according to whether R ,+s is located in y, at the site of RI in x, at
the site of RP in x, or at some third site, respectively; and where

s(x, y) := (site of R, in x; site of Rz in I; site of RI+, in ~1. (4.3c)

y is to be seen as the restricted form of ys, depending only on I(x, y). whereas
the function g combines it with s(x, y) to completely describe y.&, y)?

This notation is employed because under the site-uniformity assumption, a
strategy for performing a join only depends on the information contained in
1(x, y), and not on the supplementary information in s(z, y). We denote by I’ the
set of all these strategies. Knowledge of I(n, y) suffices to completely determine
their costs. Typically, a strategy in T specifies which data is to be moved, for
example, R, to the site of R,, vice-versa, or both R, and R2 to a third site, and
how the join is to be performed, for example, merge join, nested-loop join, or by
an elementary semijoin program. More details are given in the next section.

Therefore, we can write in this case

c(x, Y) = ‘t$ ck y; 7) = 7% cU(x, y); Y), (4.4)

the last equality emphasizing the information required for the computation of
the cost. This result will be used in Section 6 to reduce the amount of computa-
tions under the site-uniformity assumption.

Finally, we mention that the evaluation of the function c requires information
such as the size of the intermediate relations and the amount of processing time
needed to perform some operation. In practice, these values are not known
beforehand and estimates have to be found. This problem is not considered in
this paper (see [25] for a review of some estimation algorithms). In any case, it
is common to all distributed query processing algorithms, and we believe that
the estimation task is no greater in our framework than in most other algorithms.

4.2 On Distributed Join Strategies

In this section we mention some strategies that can be included in the strategy
space f of (4.4). At the outset, we point out that the stats model presented in
this paper is general enough to permit any distributed join strategy.

’ In the case of parallel joins, think of all the above as vectors, each component associated with a
different join.

ACM Transactions 0” Database Systems, vo,. I,, No. 3, September 1986.

302 * S. Lafortune and E. Wang

Assume, as in (1, 5, 9-13, 15, 18, 20, 23-25, 271, that the &z-uniformity
assumption holds. 1(x, Y) = [RI; RP; d; a) is given, and an appropriate set of
strategies over which to carry the minimization in (4.4) must be determined. The
decision on which strategies to include in I’ is a design problem that will be
influenced by the specific cost model under consideration.

If d = 0, that is, if R, and R2 are located at the same site, the work done in [6]
suggests that one of the two join methods, nested-loop or merge-scan, will give
good results. If also a = 3, the two relations may be moved and the join performed
at the third site, or, instead, R ,+2 may be moved to the third site.

In the case where d = 1, more options are available. In system R* for example
([18, ZO]), eight strategies y are considered. These strategies are obtained by
selecting interesting choices among all possible combinations of the following
parameters: (i) join methods: nested-loop or merge-scan, and (ii) transfer strategy
when moving relations: ship whole, ship whole and store, or fetch as needed.
Also, the join is performed at the site specified by a, that is, the join site is that
where RI+* is located after the state transition. This requirement can be ignored
to allow for more strategies.

When semijoin state transitions are not explicitly considered, as is assumed
for the moment, elementary semijoin programs (Section 3.1) can also be included
as strategies for the join state transition. These simple semijoin programs are
often a useful tactic in query optimization, especially when communication costs
are much more important than processing costs. (See [7] for recent simulation
results on this issue.) Moreover, if multiprocessing at each site is available,
suitable multiprocessor join algorithms can be included in r (see [22] for examples
of such algorithms).

4.3 Additivity Properties of the Function c

Due to the possibility of parallel processing, two states that are connected by a
one-step transition can also be connected by other j-step transitions, j > 1. In
general, the total cost of each of these paths between the two states will not be
the same. For example, if the two states differ by two new intermediate relations,
it may be cheaper to do parallel processing and perform the two joins and required
local processing in one step, if this is possible, than to do a 2-step transition.
(This will be the case if c is the total elapsed time.) We are concerned with the
following set of additivity properties for c.

Definition. Given a state space X, the function c defined in Section 4.1 is said
to be
(i) additive if

n-1
da, 4 = c Cbi, &+I) (4.5)

I-1

for all integers n 5 N and for all [x,, . . , x”,) in X such that all the above
terms are well defined. That is, we must have z, E T*(x,) n T+(x”-I) and
3cj+, E T’(x,), i = 1, , n - 2.

A State Transition Model * 303

(ii) subadditive (superadditive) if
n-1

ch, L”) C(l) lx CCG, xi+,) (4.6)
2=1

for all integers n c N and for all (xl, , x.) in X such that all the above
terms are well defined.

A subadditive c means that parallel processing is always cost-advantageous. In
this case, among all paths between any two states, one with only one step always
has a nonsuperior cost to one with more than one step, as the above definition
says.

It is reasonable to assume that c will either be additive or subadditive. For
example, total processing time is additive, whereas total elapsed (or response)
time is subadditive. Nevertheless, it may happen in some cases that c is neither.
For the sake of generality we also take this case into account in the following
sections. (Most of the work in the literature assumes an additive (cf. [5, 10, 11,
IS]) or subadditive (cf. [l, 151) cost function.)

5. ALGORITHM FOR THE COMPlJTATlON OF THE OPTlMAL SOLUTION

5.1 Dynamic Programming Equation

The algorithm that we propose is based on the separation assumption discussed
in Section 4.1. The key fact about the solution to this problem is that it can be
separated into two steps: (i) computation of the function c for all admissible pairs
of states, and (ii) computation of the cost to reach each state by an application
of dynamic programming.

The advantage of using dynamic programming is that we need not compute
the costs of state trajectories, but only that of states. This results in substantial
savings, since there is a maximum of Cci’ card(X(i)) states whose costs must be
computed, whereas there can be as many as n $,I cord(X(i)) trajectories between
~0 and X,. (Each trajectory corresponds to a distinct sequence of processing
operations yielding q&) at some site.)

We now wish to describe step (ii) in detail. For this purpose, we must introduce
new notation. For x E X, we define C(x) to be the minimum cost to go from state
.Q to state x, the number of steps being arbitrary. We also define V(x) to be the
minimum cost to go from state x to a state in X, in an arbitrary number of steps.
The boundary conditions are: C(z,) = 0 and V(x) = 0 for all 1: E X,.

The objective is to determine

C(Xf) := min C(x)
‘EX,

along with the optimal state trajectory between x0 and the state:
* XI := argminzE+ C(x). We also use the notation Cj(.) to denote the restriction of

C(.) to X(j).
The dynamic programming equation for this problem is

C(x) = ,py, [C(Y) + C(Y, %)I. I

304 - S. Lafortune and E. Wang

This is a consequence of the separation assumption. We want to specify an
efficient recursive procedure for finding C(r) for all states x. Such a procedure
will depend on the additivity properties of c. In the case of additivity or super-
additivity, the following lemma shows that we need only consider the set of
trajectories with maximum number of steps between x0 and x, since this set
always contains an optimal solution.

LEMMA 5.1. Suppose that c is additiue or superadditive. Consider a state
x E X(i). Then there is an i-step trajectmy between z, and II that achieves C(x).

PROOF. Straightforward, using (4.5) and (4.6). 0

When c is subadditive, that is, parallel processing is always advantageous, we
can eliminate all the trajectories that contain a multistep path between two
states whenever these two states can be connected by a one-step transition. In
such cases the subadditivity property of c implies that the one-step path is more
economical, and these trajectories will therefore never be optimal. However, this
simplification in terms of trajectories is not immediately applicable to (5.2). To
achieve it, we use T;(x), a subset of T-(x), constructed as follows.

Construction of T;(r)

Step 1. Given an x E X(i), that is, l(x) = i, let j be the lowest integer such that

X(j) n T-(x) # 0.

Set S(j) = T-(x).

Step 2. If j = i - 1, then go to step 4. Otherwise, let Z(j) be the set

Z(j) := X(j) n S(j) (5.3)

and proceed to step 3.

Step 3. Determine the set P(j), which is defined as follows:

P(j):=(yES(j):yET+k(z)forsomel~kr?i-j-land
some z E Z(j) such that there is some optimal (5.4)
trajectory between x0 and y that goes through this al.

(Observe that the optimal trajectories to each such y are determined
at the same time as C(y), hence before the computation of C(x) (from
Lemma 3.1))

Set S(j + 1) = S(j) - P(j), and then increment j and return to
step 2.

Step 4. Set T;(r) = S(j).

For a motivation of the above construction procedure, refer to Figure 1. There,
for the computation of C(x), we can only remove y from T-(x) if we are sure that
there exists a trajectory that reaches y by going throuch t and that achieves C(y).
If this is not the case, then

a4 + C(.GY) > C(Y) (5.5a)
ACM Transactions on Database Systems, Vol. 11. No. 3, September 1986.

A State Transition Model 305

\ ,
\ /
I dtep i-2

/
/

step i-l Figure 1
bJ

step i

2

and we cannot conclude that

CM + dz, 4 < C(Y) + C(Y, x), (5.5b)

even though

dz, +) < ck, Y) + C(Y, x). (5.5c)

Consequently, y cannot be deleted from T-(I).
The following theorem gives a procedure for computing C over all the state

space.

THEOREM 5.2. Given the initial condition C(x,) = 0, the function C can be
recursively computed over all of X as follows. According to the properties of the
function c, solve the following corresponding recursion for i = 1, , N - 1.

Case 1. c is additive or superadditive:

C;(x) = min L,(Y) + C(Y, x)1. (5.6) yET-,x~“wi-l~

Case 2. c is subadditive:

G(x) = ,yq, [C(Y) + 4Y, 4.

Case 3. c ha.5 none of the properties of cases 1 and 2:

G(x) = $gz, [C(Y) + dY, dl. I

(5.7)

(5.6)

PROOF. First observe that the three recursions are well defined because, by
Lemma 3.1, T-(x) C U$b X(j), and so all C(y)s on the right-band sides have
been computed before step i. By (3.4), C(x) will be computed for all x E X. What
must he shown is that, in cases 1 and 2, the restriction on the domain of
the optimizer y is of no consequence, that is, (5.6) or (5.7) return the same
results as (5.2).

Case 1. c is additive or superadditive. By way of contradiction, suppose that
there exists L E T-(x) fl X(j), with j c: i - 1, such that

C,(Z) + C(Z9 *) < Ci-l(Y) + c(Y, X) for all y E T-(x) n X(i - 1). (5.9)

The left-hand side of (5.9) describes a (j + l)-step trajectory between ~0 and I
whose cost is strictly smaller than all i-step ones, i = l(x) > j + 1. This is because

ACM TlanaactionS 0” Database Systems, “0,. 11, No. 3, September 1986.

306 * S. Lafortune and E. Wong

the right-hand side of (5.9) contains all i-step trajectories from x0 to x, and only
those ones. But, by Lemma 5.1, this means that c cannot he additive nor
superadditive. We get the desired contradiction.

Case 2. c is subadditive. Again, suppose that there exist w E T-(x) - T;(x)
such that

C(w) + c(w, x) < C(y) + c(y, x) for all y E T;(x). (5.10)

But, from (5.4) in the construction of T;(r), there exists z E T;(z) such that
w E T:(s), for some integer k, with a necessarily on an optimal trajectory between
xo and w. That is, we can write

C(w) = C(z) + 42, x,) + . + c(z,-1, w) (5.11a)

where we denoted by {z, xi, . , x”,_,, wJ this optimal path between z and w, or
more simply:

C(w) = C(z) + c(z, w) (5.11b)

if this path is only composed of one step. Combining (5.11a) and (5.11b) with
(5.10) (setting y = z there), we get, respectively,

c(z, Xl) + “’ + c(x,-,, w) + c(w, x) < c(z, x), (5.12a)

c(z, w) + c(w, x) ‘c 42, w). (5.12b)

But (5.12) means that there is a multistep path between z and .z going through
w, whose cost is strictly smaller than c(z, x). This contradicts the suhadditivity
property (4.6) of c and demonstrates that no such w can exist. 0

This theorem shows that when c possesses some additivity property, significant
savings can be achieved for the computation of C:(n) by a restriction on the
domain of the optimizer y. The minimization in (5.6) is over a considerably
smaller set than the one in (5.2). (This is why we have chosen to put additive cs
in case 1. They could also be considered as part of case 2.) In the suhadditive
case, if one does not wish to construct T;(x), then using (5.8) would of course
yield the correct answer.

5.2 Statement of the Algorithm

We now have all the elements to state the algorithm that we propose.

Algorithm for Distributed Quev Processing. Given a query 40 referencing N
original relations and an initial materialization ~0 for these relations in the
distributed database, proceed as follows to determine the optimal sequence of
processing operations for qO, according to a given cost model.

Part 1. Construct the state space X by constructing the sets T;(x,), j = 1, ,
N - 1. At the same time, identify the sets T-(x) for all x in X. Subdivide
X into disjoint subsets X(i), i = 0, , N - 1 as described in (3.4).

Part 11. Compute c(x, y) for ally E X and for all x E T-(y). y $ (x, y) of (4.2) gives the
optimal sequence of operations for the state transition x to y. Determine if
the function c possesses some additivity property.

ACM Transe&ons on Database systems, Vol. 11, No. 3. September Exe.

A State Transition Model - 307

Part III. Compute C(x) for all x E X by using Theorem 5.2. For each x, let y*(x) be the
argument (or the set of arguments) minimizing the appropriate form of the
dynamic programming equation: (5.6), (5.71, or (5.6).

Part IV. The globally optimal cost is C(X,) = inin,+ C(r), achieved at x,!, say.
The globally optimal trajectory(ies) is (are)

x0, , Y*(Y*(x;)L Y*(q), x;, (5.13)

that is, each one of them is constructed backwards from x;until it reaches x0.

The fact that the trajectory(ies) of part IV is (are) globally optimal is a
consequence of the verification theorem for dynamic programming. If it is desired
that the answer to q0 be located at a specific site, then we eliminate the last
minimization done in part IV: XT is the final state in X, that contains qO(r,,) at
the given site. In addition, heuristics such as “defer to as late as possible joins
requiring a Cartesian product” could be taken into account in the construction
of the state space in part I.

Finally, the state model permits expression of the computational complexity
of this problem algebraically in terms of the states. Because of the use of dynamic
programming, the total number of additions and comparisons required in part
III is at most quadratic in the cardinality of the state space. On the other hand,
in the worst case where N = A4 and where no heuristics are used to prune
the state space, we have not been able to obtain a polynomial bound on the
total number of states, and this number is probably exponential in N. (Observe
that the equivalence class technique of Section 6 can signiticantly reduce that
number.)

5.3 A “Best-First” Strategy

The algorithm of the preceding section gives a systematic way of computing
CCX,). It is however possible to compute the optimal solution without necessarily
having to compute all e(. , .) pairs and all C(.). For example, suppose that we
know an upper bound for the optimal cost, that is, suppose that we have
determined that C(X,) 5 R. Then, if we compute a C(x) > R for some state x, we
know that this state will never be on an optimal trajectory and need not be
considered in the remaining calculations. This will result in smaller T-(.) sets
for all states in T+(x). In particular, the one-step optimal transitions c(x, .) need
not be computed.

We now wish to propose a “best-first” strategy which takes advantage of this
fact to improve on the efficiency of the basic dynamic programming algorithm of
the last section. More precisely, we want to replace parts II and III of that
algorithm by a better procedure. For this purpose, we need new terminology.
We say that a state z is an ancestor of state r if there exists k,
1 5 k c N - 1, such that I E Tt(z). The set of all the ancestors of x is denoted
by Ant(x). Observe that our definition of a one-step transition implies that each
state in X, has exactly X(N - 2) as the set of its ancestors. This observation
justifies step 4 in the following procedure.

“Best-First” Strategy for Parts II and III of the algorithm. Given a state
space X and X, C X, we want to determine C(X,) and the optimal trajectory to
the optimal state in X,.

ACM Transactions 0” Database Systems. Vol. 11, No. 3. September 1986.

308 * S. Lafottune and E. Wong

Step 1. Determine a good upper bound R, such that C(X,) 5 R,, and denote the trajectory
that achieves this value R, by ‘Z’raj(1). Traj(1) = {xa, _, x~-~(l), .x,1, where
x~-~(l) := Traj(l) n X(N - Z), and where z, E X, is chosen together with R,
and Traj(l), or is the state containing qo(xo) at the desired site, if a given sits
is specified for the location of the answer. Set i = 1 and X’ = X.

Step2 Set XI = (An&&i)) n X’) U {x.+,(i)l. Use Theorem 5.2 to compute
C&,-,(i)), considering XI as the stats space, and computing each c(. , .) only
when needed. If a state has cost greater than R,, then it can be deleted whenever
it appears in a subsequent T-(.) set. Update the current bound R, if there exists
x, E X, such that C(x,-Ai)) + c(x,&i), x,) < R,. or if this is true for the
specified +

Step 3. Delete all unnecessary states from the current stats space:

X’ = X’ - Ix: C(x) > R,l.

Step4. If not all the remaining states in X’(N - 2) have been used as sn x,+2(j) for
smne j 5 i, set i = i + 1 and choose a new xNm2(i), under the constraint that the
selected state has the smallest number of ancestors whose costs have not yet
been computed, and then return to step 2. Otherwise, compute C(X,) and
determine the optimal trajectory(ies).

This strategy can be used recursively (i.e., step 2 can be carried out by invoking
the same best-first procedure with zNm2(i) in place of X,, and with Xl in place of
X. However, in step 3, X’ and Rf must always remain those corresponding to the
original application of the procedure. This is due to the following observation.
Let the upper hound for the first subproblem be denoted by RN-~(~). Then states
with cost greater than R,+*(i) can temporarily he deleted from Xl for the purposes
of the calculation of C(x,+,(i)), but they should not be deleted from X’ unless
their cost also exceeds R,. This is because even though such states never lie on
an optimal trajectory from x0 to x.&i), they may lie on one from xo to X,.

The determination of a good first upper bound in step 1 is normally based on
heuristics. For example, it could be the result of another (fast) suboptimal
algorithm, or it could correspond to any “initially feasible solution” (as defined
in 1241). (Observe that it is required that the sequence of processing operations
corresponding to this upper bound be a trajectory in the state space.) Clearly,
the smaller this upper bound is, the higher the savings yielded by the best-first
strategy are. Finally, we mention that the choice of the new z~-~(i) in step 4
could be made on different considerations than simply the number of ancestors
whose costs remain to be computed.

(The A* algorithm (see, e.g., [19]) has been suggested as a way of finding the
optimal solution without necessarily having to compute the costs of all the states
(or even having to construct them). However, an important consideration is that
a conservative estimate of the cost-to-go V(x) must always be available to
guarantee that this algorithm will generate an optimal solution.)

6. EQUIVALENCE CLASSES OF STATES

We assume throughout this section that the site-uniformity assumption holds
and that the site location of the answer is irrelevant. In this case, it is possible
to aggregate states into equivalence classes and considerably reduce the compu-
tations required to optimally solve the problem.
ACM Transactions on Database systems, Vol. 11, No. 3. September ,986.

A State Transition Model * 309

Definition. Two states xl and x2 are said to be equiuaknt, denoted x1 = .x2, if
the two following conditions are satisfied.

(i) For all i E I such that x,(i) or x,(i) contains original relations, z,(i) = x,(i).
(ii) Letting all other sites be denoted by the set of indices J C I (in other words,

for all j E J, neither 11~ (j) nor xp(j) contain original relations), .zl (J) is equal
to x2(J) up to a permutation of its components.’

LEMMA 6.1. If.q = x2, then

(i) T+(xl) z T+(xp), where = for sets means that each element on the left has
a corresponding element on the right that is equiuaknt to it;

(ii) V(x,) = V(x,);
(iii) l(x,) = L(Q) ad /2(x,) = k(x,).

PROOF. (i) I, and x2 differ by a permutation of components containing only
intermediate relations. Do the same permutation on each state in T+(x,). Since
the characterization of a one-step transition is preserved under site permutations,
the resulting set is T+(Q). (ii) Follows from the definition of V in Section 5.1
and from the site-uniformity assumption. (iii) Immediate, since x1 and xp contain
the same relations. 0

The proper interpretation to (ii) above is that the site permutation in going
from x1 to xz can be propagated along an optimal trajectory from .z, to X, to
yield an optimal trajectory from xp to X,. Observe, however, that in general
C(x,) # C(x2) even if 11~ = xp.

We define an equivalence class of states, denoted x, to be a set of states that
are mutually equivalent. From now on we regard the state space X as the
collection of all equivalence classes, each containing at least one state, and all of
them being necessarily mutually disjoint. We wish to work with these equivalence
classes directly. For this purpose, we define

T-(x) := u T-(x), (6.1)
XE'I

and we say that x E T+(y) iff y E Z’-(x).’ Because of Lemma 6.1 (i), this
definition is sufficient for T+(.), that is, we need not do as in (6.1). In particular,
the following result is true.

COROLLARY 6.2. Let y E X, and consider any y E y. Then, for each x E T+(y),
there exists 1: E x such that 1: E T+(y).

The purpose of the above is to extend the domain of definition of c(. , x) from
T-(x) to T-(x). Whenever a state y E T-(x) - T-(x), we set c(y, x) := m. This
has two consequences. First, it implies that

yp*x) [C(Y) + 4Y, x)1 = yp$yx) MY) + C(Y, x)1, (6.2)

‘x(J) denotea x restricted to its components in the index set J.
‘In the following, we regard T-(y) BS B collection of equivalence classes.

310 * S. Lafortune and E. Wang

when 31 E x. Second, it makes the following definition consistent. For y E X and
x E T-(y), we define

c(x, y) := min c(x, y). (6.3)
IEX.YEY

Now, letting

C(x) := “In.” C(z), (6.4)

we can prove the following lemma.

LEMMA 6.3. C(x) = $nx, [C(y) + c(y, x)],

PROOF. From (6.4), (5.2), and (6.2), we have that

C(x) = min (min [C(y) + c(y, x)]]. (6.5)
XEI ym-w

But the two minimizations can be interchanged in (6.5), yielding successively

C(x) = min min [C(y) + c(y, x)] (6.6)
yET-,xl IEX

C(x) = yp$x:.) “&if yg V(Y) + C(Y, x)1 (6.7)

CM = yp&x) [C(Y) + C(Y, x)1, (6.8)

where (6.7) is obtained by breaking the first minimization into two steps (define
the ys by partitioning T-(x) into disjoint equivalence classes), and where (6.8)
is obtained by bringing the last two minimizations inside the brackets and by
using definitions (6.3) and (6.4). 0

This lemma shows that C(x) does not have to be computed from its definition
(6.4), but instead can be computed recursively by means of (6.8) and (6.1),
starting from the initial condition C(Q) = 0 (with xg := (xoj). In other words,
once e has been computed for all admissible pairs of equivalence classes, we only
have to consider these equivalence classes, not the individual states they are
composed of, for the computation of C. The desired answer is C(X,), since X, is
itself an equivalence class.

With (6.8) now established, it is clear that the generalization of Theorem 5.2
to equivalence classes is also true. It suffices to replace states by equivalence
classes everywhere in the statement of that theorem. (The proof makes use of
Lemmas 6.1 (iii) and 6.3, and of the following observation: the definitions of
additivity and sub(super)additivity in Section 4.3 guarantee that (4.5) and (4.6)
(and hence Lemma 5.1 as well) still hold when individual states are replaced by
equivalence classes in these equations.)

Observe that so far we have not invoked the site-uniformity assumption.
Solving (6.8) recursively yields C(X,) and one or more optimal trajectories going
through equivalence classes and represented by

x0, . . , Y*(Y*w/)), Y*w/), 5, (6.9)

where y*(x) denotes the argument minimizing the given dynamic programming
equation for C(x). However, the definition of c(x, y) in (6.3) shows that it will
ACM Transactions on Database sy.tem, Vol. 11, NO. 3. September 1986.

A State Transition Model - 311

depend on specific states inside x and y. Consequently, we must show that we
can match the various paths between the equivalence classes in (6.9) to produce
a continuous optimal state trajectory. For this, we must invoke the site-uniformity
assumption.

Let x* and y* be two arguments minimizing (6.3). Since the site-uniformity
assumption holds, we can make use of (4.4). Therefore, the minimum cost of the
transition between x* and y* depends only on Z(x*, y*), and not on s(x*, y’),
and is achieved by the strategy y* E P, say. Suppose now that the previous path
in the optimal trajectory reaches state x’ E x, but that I’ # x*. We know from
Lemma 6.1 (ii) that these two states have the same minimum cost-to-go. Never-
theless, we want to be more precise concerning the continuity of the trajectory
inside the equivalence class x. The following lemma shows how to connect the
two portions.

LEMMA 6.4. IA x*, y*, and y* be arguments minimizing (6.3) and (4.4). Then,
given x’ = I*, there exists y’ = y* such that

4x’, Y’) = c(x’, Y’), (6.10)

c(x’, y’) = c(x’, y’; 7’). (6.11)

PROOF. Recall the definition of Z(r, y) in (4.3b). Clearly, from the definition
of equivalence, the elements RI, Rx, d depend only on the class x. We can
perform on y* the same permutation that transforms x* into x’ to get y’, with
y’ E T+(x’), since one-step transitions are preserved under site permutations.
But, clearly, Z(x’, y’) = Z(x*, y*), that is, by propagating the permutation we
obtain in I(+‘, y’) the same a as in Z(x*, y’). (6.10) and (6.11) are then immediate
from (4.4) 0

Observe that this lemma states that not only the pair (x’, y’) has the same
minimum transition cost as (x*,y*), but, moreover, that this minimum is achieved
by the same strategy -y*.

A consequence of this lemma is that the first time an optimal trajectory enters
an x with card(x) > 1 from some state z, c(z, x) determines a specific state
x(z) E x. Then, by way of the propagation of permutations of the above proof,
specific states in all the subsequent equivalence classes in the trajectory are being
determined. The resulting complete state trajectory achieves C(X,). This appli-
cation of Lemma 6.4 is the only addition to the algorithm of Section 5.2 in the
site-uniformity case considered in this section.

7. AN EXAMPLE

Let q0 be described by the query graph of Figure 2, where each link represents a
join.

Let .x0 = (P, C; I; E), that is, the original relations P and C are located at site
1, Z at site 2, and C at site 3. We want to find the optimal sequence of operations
to obtain qo(xo) from q, assuming the sizes of the original and intermediate
relations are as in Figure 3, and for the following simple site-uniform cost model:

c(xl, x2; y) = total size of data moved between sites in the transition y (x1, xs).
ACM Transactions on Database Systems. Vol. 11. No. 3. September 1986.

312 . S. Lafortune and E. Wang

Fig. 2. Query graph.

Fig. 3. Size of relations

(This cost model does not consider local processing costs.) We solve this problem
using equivalence classes, considering the following strategies in P

(i) d = 0 and o = 3: move RI and R2 to s(R1+d, or move RI+% to s(R~+%);~
(ii) d = 1 and o = 1: move RP to s(R1), or move RI to s(Rd and then RI+* to

(iii) d = 1 and a = 3: move RI to s(R2) and then RI+% to the third site, or move
R2 to s (R,) and then RI+, to the third site, or move RI and R) to the third

The complete state space is give in Figure 4 (only one state per equivalence
class is indicated), and the diagram of all state trajectories in Figure 5. From the
data in Figure 3 and the above list of admissible strategies y for a one-step state
transition, it is straightforward to obtain from (4.4) the values of c lahelling the
one-step paths in Figure 5. Then, by an application of the dynamic programming
equation (6.8) (or (5.6) with equivalence classes, since the above c is clearly
additive), we obtain the C(x) listed in Figure 4. We conclude that the optimal
cost is 110, and that it is achieved by the four following trajectories, all giving
the answer at site 1:

x,, + .x,0 -+ .r,e --a (P w I w E w C; -; -)
xa + x,, + x,6 + (I-’ w I w E w C; -; -)
x,, + x,0 + (P; C w E w I, -) + (P w I w E w C; -; -)
.q, + xc,, + (P; C w E w I; -) -+ (P w I w E w C; -; -).

We now comment on the use of the “best-first” strategy of Section 5.3 for this
example. Since there are only three steps in this problem, it is not necessary to

‘s(R) denotes the site where relation R is located.

ACM Transactions on Database Systems, Vol. 11, No. 3. September 1986.

A State Transition Model * 313

; ., _ _.
c PWI E 1

3 C E,PwI 1
1 C,PwE I 1
5 C I, PwE 1
6 C I PwE 1
7 P,C,IwE 1
8 P* c IWE 1
0 P, CwE I 1

x 41) 42) z(3) W cord(x) w

6 e c I E 0 1 6
1 c. Pbd, E 1 1 100

1 200
1 2oa
1 500
L 1000
1 looI
I 130
2 100
1 loo

10 P I, CWE 1 1 103
11 P I CWE L 1 54
12 c PwIwE 2 2 160
13 C,PMIME 2 1 130
14 PwEwC I 2 2 100
15 I,PwEwC - 2 1 150
16 P, IwEwC 2 1 110
17 P IWEWC 2 2 100
1s PmI,CwE 2 3 204
10 PWI CWE 2 6 150
I PwIwEwC 3 3 110

Fig. 4. State apace.

invoke this procedure recursively. A simple initial choice for step 1 would be:
Troj(1) = ix,,, x1, .x13,X,), whose cost is RI = 100 + 130 + 0 = 230 (refer to Figure
5). This corresponds to having each new intermediate relation always located at
site 1, the site where there is the largest number of tuples at the beginning. Then,
x4, XS, and ~6 can be deleted from the state space immediately after their costs
have been computed. This alone saves the calculation of 12 one-step optimal
costs. Once C(x13) has been computed, x2 and xQ can also be deleted because the
updated R, is now 130 + 0 = 130. So if xl2 is the choice for x,+,(Z), then 7’~(.Q)
now contains only three states instead of the original seven. Further savings will
occur at the subsequent steps.

8. INCLUDING SEMIJOIN STATE TRANSITIONS

8.1 Admissible Semijoin Transitions

We now remove the restriction imposed in Section 3.1 that only joins be
admissible state transitions, and also include transitions consisting of semijoins.
This time, since another join with B is required after A K B has been done, B
has to be kept in the new state. In other words, we now make the following
deletions in the new state after a transition: (i) after A w B, remove both A and
E from the new state, and (ii) after A K B, only remove A from the new state.

The p part in the complete state (x, q) must keep track of the new properties
of the query to avoid idempotent transitions. Let q0 = A w B w C, corresponding
to the query graph: A - B - C, and let ~0 = (A; B; C). Then, for
x1 = (A ‘; B; C) with A ’ = A M B, the corresponding q1 = A ’ w B w C with the
constraint that A ’ K B = A ‘. Observe also that the strategy sets l’s and r of

ACM Transactiona on “aabase System, Vol. 11, No. 3, September 1986.

314 * S. Lafortune and E. Wang

I

Fig. 5. State trajectories.

Section 4 (for step II of the algorithm) are not the eame for semijoin and join
state transitions. (They are clearly simpler for a semijoin.) In particular, join
strategies based on elementary semijoin programs need not be included any
longer hecause the intermediate semijoin states now appear explicitly in X.

We say that a relation has been folly sem@n-reduced when any further
admissible semijoin on it is idempotent or brings no further deletions of tuples
(cf. [14]). A state is fully semijoin-reduced when all the relations in it are folly
semijoin-reduced.

Remark 8.1. In this paper we do not consider the reductive power of semijoins,
as in [2-4, 141, but rather their efficiency, in terms of cost, as operations
(state transitions) in distributed query processing. We need the concept of full
ACM Transaetians on Dstabsse System, Vol. 11, No. 3, September 1986.

A State Transition Model * 315

semijoin-reduction to determine a bound on the maximum number of state
transitions before reaching X,. For this purpose we invoke results from [2,3].

In addition to the conditions in the definition of one-step transitions in Section
3.1, a one-step transition from state (x, q) involving A K B with A and B relations
in x is admissible iffi

(i) A is not fully semijoin-reduced;
(ii) A and B are linked in the query graph of q (observe that if there is more

than one link between them, the semijoin is on all the attributes involved
in these join clauses); and

(iii) A and B are located at different sites in x.

Furthermore, we require that (site of (A K B) in the new state) = (site A in x).
(These requirements are common in the literature; cf. [5,6, 10, 11,23, 251.)

Despite these restrictions, the number of semijoins that can be made in the
process of solving q. is very high. The reason for this is that for general queries
involving the three operations: projection, restriction, and (equality or inequality)
join, the semijoin operation possesses no nice properties; in particular, it is not
associative and rarely idempotent. Very long semijoin programs can be con-
structed to reduce a relation (see [S, pp. 141-51).

Our interest is two-fold: (i) how to recognize folly semijoin-reduced states, and
(ii) how to determine the maximum number of state transitions possible before
such a stats is reached, denoted NUM,. Once in such a state, a maximum of
N - 1 additional transitions (corresponding to the N - 1 joins that must be
done) necessarily yields a state in X,. The answer to these questions depends on
the form of q,,. For our purposes, we distinguish two categories of queries:

(1) those for which full semijoin-reduction can be identified syntactically, and
for which NU& is expressible in terms of N only;

(2) those for which full semijoin-reduction cannot be identified syntactically,
and for which NUM, is of O(m), where m is the number of tuples in soma
original relation referenced by the query.

The work in [2,3] demonstrates that for equijoin queries,’ the characterization
between (1) and (2) is simple: (1) consists of the tree queries (roughly speaking,
of the queries whose query graph has no cycles), whereas (2) regroups all other
equijoin queries, denoted cyclic queries. (We refer the reader to [Z, 3,141 for the
precise definition of tree query.) Queries with inequality joins have also been
studied (see [4,26]), but the results are quite different. In particular, full semijoin-
reduction is possible for queries with “good cycles” 141. For the sake of simplicity,
we restrict our attention to equijoin queries and treat separately tree queries and
cyclic queries in the next two sections.

Observe, however, that there is no other conceptual difference between the
case we study in this section and the simpler case of the preceeding sections, as

‘An equijain query is a query that is a conjunction of join clauses, all the joins being on equality
conditions (i.e., equijoins). They can be augmented by target lists and clauses involving constants,
but these latter clauses should nat be treated as links in the query graph, but instead separately by
the restriction operation. They BE the type of queries considered in [I. 10, 11, El, for example.

316 - S. Lafortune and E. Wang

far as the solution framework that we have proposed is concerned. Once the state
space X has been constructed according to the above restrictions for admissible
semijoins, the rest of the solution is exactly as described in Sections 3 to 6, and
all the results there still hold. The only difference is that the maximum number
of steps to reach X, is no longer N - 1.

Now, the important fact is that the state-transition model is general enough
to encompass and generalize many algorithms based on semijoin programs, in
particular [5, 10, 11, 231. All the strategies that the SDD-1 algorithm [5, 231 can
reach and all the “correct nonredundant semijoin programs” for chain and tree
queries of [lo, 111 correspond to state trajectories in OUT framework, since all
their intermediate steps are states in X. (The same cannot be said about the
main algorithm of [l], because it can yield strategies containing more than one
semijoin with the same relation, each one on a different attribute.)

8.2 Case of Tree Queries

Tree queries are simpler to analyze than cyclic ones due to the following lemma.
(Without loss of generality, we assume a cycle-free query graph.)

LEMMA 8.1. Let qO be a tree query referencing N original relations in a distributed
database. Then the maximum number of state transition to reach a state in X,
from x., is bounded above by (N + l)(N - 1).

PROOF. The worst case occurs when each of the N original relations is located
at a different site. Each such relation will be fully semijoin-reduced after N - 1
semijoins (121, Theorem 1; [3], Theorem 1). Hence, with only one new semijoin
at each transition (and this is always possible), after N(N - 1) transitions, all
the relations will have been fully semijoin-reduced, and any further admissible
semijoin will be idempotent (cf. [ll], Theorem 2). After that stage, oO(xO) can be
obtained after N - 1 joins. Clearly, interleaving join and semijoin transitions
cannot result in more steps before go(%) will be reached 0

The crucial fact here is that the above upper bound only depends on the
number of relations in the query, and not on the particular relations themselves.
Hence, the results in Sections 3 to 5 can be directly applied to tree queries.
Another interpretation to this fact is that in the case of tree queries, the semijoin
operation can be viewed as possessing syntactic properties that make it simple
to determine when a new semijoin is idempotent.8 This is best illustrated by
means of an example.

Example 8.1. Consider the tree query go: R - S - II, and let
~0 = (R; S; D). First, observe that from the restrictions on admissible semijoins
in Section 8.1, there is no ambiguity in writing S K R K D; it can only mean
(S K R) K D. Then, it can be shown that

(i) RKSKR=RKS;
(ii) (RKSKD)K(SKDKR)=RKSKD;

(iii) (R K S) W (S K D K R) = R W (S K II)..

‘These syntactic properties we used in [IO, II] to prune the set of semijoin reducer programs (which
corresponds to eliminating some state trajectories in OUI model), but this pruning depends on the
specific cat model considered in these references (affine in amount of data moved).
ACM Trsnsaetions on Databav Systems, Vol. 11, No. 3, September 19.8~.

A State Transition Model * 317

22 RKSKD ScxRlxD D 4 L j4~34S547.48j
25 R Sc-cRlxD D C-ZSQCR 4 I (4~~63~-,.M3)
2, RD<SKD SlxD DKS 1 I (31.583o.4644)
25 RKS SMDKR DKS I I (.3Mb41-4243.44)
*a RwS,SwD 1 I
2, Rx.5 SMD I 1 :
28 RwS Dbc.9 1 2 I

33 DbcSlxR,RwS 5 L i

3, Rw(SlxD) D 5 1 3s D.Rw(SKD) 6 1 :

38 R D w(SixR) 6 2 37 R,Dw(SKR) 5 I :

38 RMSKD,DWS 5 I 34 RxSb.zD DwS 5 1 :
PO R,xSbcD SKRMD DD<SKR 6 I (45.4647.,*)

,I RxS Dw(SrxR) 8 2 42 RKS.DW(SMR) - 4 I :

43 Rw(SwD) DKS 8
2

I, DcxS,Rw(SrxD) 8 I :

45 Rw(SlxD) DDCSDCR 1 2 ,B
If Rw-KD,Dw(SKR)

DKSKR,R~(SXD) 1 I :
I I

48 RKSKD DM(SKR) I 2 :
I RbdSbdD I t

Fig. 6. Example 8.1.

318 * S. Lafortune and E. Wong

Using these and similar results, the state space for this example can be
constructed in a straightforward manner. It is given in Figure 6 (we have used
equivalence classes for simplicity). In that figure we also list the elements of each
T+(x) set. In order to keep this example simple, we have not performed any
semijoin transition when the answer could be reached in one more join. For the
last join, one can always include elementary semijoin programs in rs instead of
explicitly allowing a semijoin transition. Observe the advantage of dynamic
programming in this example, where card(X) = 50, while Figure 6 indicates that
there are more than 740 trajectories between z0 and X,.

The same example is treated in 18, p. 146-71, using the SDD-1 algorithm. The
solution given by that algorithm corresponds to the following state trajectory in
our model: x0, x3, x8, xQI, Xb

8.3 Case of Cyclic Queries

There is an extra conceptual difficulty in handling cyclic queries. The maximum
number of semijoins that can be done before full semijoin-reduction is attained
is of the order of the number of tuples in some relation in the query. Thus, in
our framework, there is no upper bound on the maximum number of steps that
can be expressed as a function of N.

Essentially the reason for so many steps is that, in contrast to the case of tree
queries, semijoin programs for cyclic queries cannot be syntactically examined
for idempotence, as was possible in Example 8.1. In general, examining the tuples
in two relations is necessary to determine if semijoins between them will reduce
one of the two.

Since it is necessary to recognize when each relation cannot be further semijoin-
reduced to determine which states X can be limited, the state space for such
queries depends on the particular tuples in the relations referenced by qO, and
not only on q0 and ~0. This suggests that it may be impractical to solve the
problem in such generality.

For this reason, we suggest below s list of heuristics that can be used to reduce
card(X), resulting in the determination of a possibly suboptimal solution. (In
any case, long semijoin reductions are unlikely to yield optimal trajectories.)

(i) Impose a bound on the maximum number of semijoins, based on the size
of an original relation after each reduction (in practice, on the estimate of this
size). If there are n links in the query graph and this bound is 2% then the state
space will be large enough to contain any strategy obtainable by the SDD-1
algorithm. Since a maximum of 2n semijoins are considered in the first iteration
of that algorithm, it has a maximum of 2n iterations.

(ii) Allow only some semijoin programs for each original relation, based for
example on the size of these relations and on the query graph.

(iii) Transform the cyclic query into a tree query (see [25] for a list of some
methods that have been proposed). For example, break each cycle in the query
graph of q0 by imposing a specific join for the first state transition. After that
step, the query becomes a tree query.’ (Choose the cheapest join in each cycle, or
exhaustively solve the problem for each possible combination of choices.)

‘This corresponds to the “relation-merging algorithm” mentioned in 1251.
ACM Transaaetions on Database systems, “01. 11, No. 3, Se!Jtember 1986.

A State Transition Model * 319

(iv) Solve each cycle in the query graph by considering only joins as state
transitions, and then solve the resulting tree query where each cycle is now
considered an original relation.

9. REDUNDANT INITIAL MATERIALIZATIONS

We now discuss the effect of beginning with an initial materialization that may
contain more than one copy of each original relation. Since a join or semijoin of
a relation with itself is not an admissible state transition, the fact that x0 is
redundant brings no complication, provided,

(1) for a state transition to be admissible, it must be admissible for each possible
selection of copies of the original relations involved in it;

(2) in the computation of the function c in part II of the algorithm, an extra
minimization is carried over all possible selections of copies for the original
relations involved in the state transition; and

(3) when the rules for state transitions require the deletion of a relation from a
state, all copies of that relation are deleted.

Proceeding in this manner is roughly equivalent to solving the same problem
for each possible irredundant xr,, and then taking the minimum among these
optimal solutions. This is exact if only join transitions are allowed, but when
semijoin transitions are also included, the same copy need not be used each time
an original relation is part of a transition, and thus (l)-(3) permit more gener-
ality.” (l)-(3) are advantageous because the extra minimization is brought at
the individual one-step state transition level, thus significantly simplifying the
task.

In conclusion, under conditions (l)-(3), all the results in this paper remain
valid when x,, is redundant.

10. CONCLUSION

We have presented a state transition model for the complete solution to the
problem of optimizing the processing of a query in a distributed database system,
when the join and semijoin operations are taken as the unit step in the sequence
of operations. The cost model can be as general as desired. By defining a state
space to parametrize the evolution of the processing, the problem can be separated
into two stages.

In the first stage all one-step state transitions must be optimized. This problem
has been addressed in the literature, and many different strategies can be used
for the optimization. The possibility of choosing among various copies of the
relations can also be included at this stage. We believe that the problem of the
estimation of the costs that is central to this stage is no more difficult than in
the other works on distributed query processing in the literature.

Then, in the second stage, dynamic programming is applied over the state
space to determine the minimum-cost sequence of operations (state trajectory)
yielding the answer to the query. This separation is an important feature, because

“This distinction is irrelevant in the site-uniformity ease.

ACM Transactians on Database Systems. Vol. 11. No. 3. September 1986.

320 * S. Lafottune and E. Wang

by properly defining the concept of state transitions, we are able to incorporate
the possibility of parallel processing without any further modifications.

We do not believe that the size of the state space hinders the practicality of
our algorithm. Experiences from query optimization for centralized databases
indicate that the cost of computing an optimal solution is often overestimated,
while the benefit is underestimated. Our premise is that this may also be true for
distributed databases. Moreover, the savings from dynamic programming over
an exhaustive search well compensates for the extra work in constructing the
state space. Concerning the case of join state transitions only, we believe that
our algorithm, by explicitly defining a state has computational advantages over
the algorithm in [18], which also uses a form of dynamic programming.

In the case of both join and semijoin state transitions, we allow any sequence
of these two operations, which is considerably more general than the popular
reduction-phase/assembly-phase strategy in the literature. In fact, there is no
guarantee that semijoin-reducer programs will be optimal. Moreover, not execut-
ing all the joins at the same site, but rather in a distributed fashion, may render
additional semijoins profitable. Of course, the optimization requires more work
in this case, although, apart from the problem of the construction of the state
space for cyclic queries, it is only computationally more difficult, not conceptually
so. We stress that the use of dynamic programming is significant here, especially
in the case of tree queries, due to the large “fan-out” of the state trajectories in
the state space (see Example 8.1).

Another important benefit of the state parameterization is that it provides a
precise framework into which many additional refinements can he incorporated.
For example, clever strategies concerning the computation of the function C over
the state space can improve on the systematic recursive approach of part III of
the algorithm. The “best-first” strategy of Section 5.3 is an example of such a
modification. These strategies require a minimal amount of additional work (for
example, the computation of an initial upper bound for the optimal cost), but
the rewards can be significant (cf. Section 7).

Our state transition model can indeed be applied to query optimization for a
centralized database. The development is the same as in this paper, with the
restriction that M = 1. We believe that in that case it is worth refining the state
space by considering as state information the ordering of the tuples in the
intermediate results (see Remark 4.1). (Such orderings are explicitly considered
by the optimizers of systems R [21] and R* [18].) Clearly, only the existence of
an order on the attributes which are part of a subsequent join are of interest.
The case of centralized databases is discussed in more detail in [17].

Among the areas of interest for future work, we mention:

(i) ;ie(zpmpriate selection of the distributed join strategies to include in Ts

(ii) the determination of efficient semijoin strategies for cyclic queries, alleviat-
ing the inconvenience of long semijoin sequences;

(iii) the study of other ways of improving on the basic dynamic programming
algorithm; and

ACM Trmsaetions on Lwabase Systmns, Vol. II, No. 3, September LSSS.

A State Transition Model * 321

(iv) the use of a similar state-transition approach in the case of recursive queries
(see [16] for recent work on conditions for the existence of bounds on the
number of steps in this case).

REFERENCES

1. APERS, P. G. M., HEVNER, A. R., AND YAO, S. B. Optimization algorithms for distributed
queries. IEEE Trans. Softw. Eng. SE-g, 1 (Jan. 1983), 57-66.

2. BERNSTEIN. P. A.. AND CHIU. D.-M. Usine semiioins to solve relational queries. J. ACM 28, 1
(Jan. 1981); 25-40.

_ .

3. BERNSTEIN. P. A.. AND GOODMAN. N. Power of natural semiioin. SIAM. J. Cornput. 10.4 (Nov.
1961), 751-771.

4. BERNSTEIN, P. A., AND GOODMAN, N. The power of inequality semijoins. hf. Syst. 64 (1981),
255-265.

5. BERNSTEIN, P. A., GOODMAN, N., Wow, E., REEVE, C., AND ROTHNIE, J. Query processing
in a system for distributed databases (SDD-1). ACM Tnzns. Dotabase Syst. 6, 4 (Dec. 1981).
602-625.

6. BLASGEN. M. W., AND ESWARAN, K. P. On the evaluation of queries in a relational database
system. Bes. Rep. RJ 1745, IBM Research Laboratory, San Jose, Calif., Apr. 1976.

7. CAREY, M. J., AND Lu, H. Some experimental results on distributed join algorithms in a local
network. Computer Science Rep. 567, Univ. of Wisconsin. Also in the Pnxeedings of the 11th
Conference an Very Large Data Bases (Stockholm, 1965).

8. CERI, S., AND PELAGKTTI, G. Distributed Databases-Principl onA Systems. McGraw-Hill
Computer Science Series, New York, 1964.

9. CHEN, A., AND LI, V. Optimizing star queries in distributed database systems. In Proceedings
of the IOLh conference on very Large Data Bmes (19&o, 429-438.

10. CHIU, D.-M., BERNSTEIN, P. A., AND Ho, Y.-C. Optimizing chain queries in a distributed
database system. SIAM J. Cornput. 13.1 (Feb. 196% 116134.

11. CHIU, D.-M., AND Ho, Y.-C. A methodology for interpreting tree queries into optimal semijoin
exoressions. In Proceedines of the 1980 ACM-SIGMOD Conference (Santa Monica. Calif.. May
19’80). ACM, N.w York, 169.i78.

12. CHU. W. W.. AND HURLEY. P. Optimal querv mocessina for distributed database systems. IEEE
Tm&. Cm&t. C-31,9 (Sept. 1982). 635&j. -

13. EPSTEIN, R., STONEBRAKER, M., AND WONG, E. Distributed query processing in a relational
database system. In Praeeedings of the 1978 ACM-SIGMOD Conferece (Austin, Tex., May 197%
ACM, New York, 169-160.

14. GOODMAN, N., AND SHMUELI, 0. Tree queries: A simple class of relational queries. ACM Trans.
Databose Syst. 7.4 (Dec. 1992), 653-677.

15. HEVNER, A. R., AND YAO, S. B. Query processing in distributed database systems. IEEE Trans.
Softw. Eng. SE-&3 (May 1979), 177-187.

16. IOANNEDIS, Y. A time bound on the materialization of 6ome recursively defined views. In
Proceedings of the 11th Conference on Very Large Dota Bases (Stockholm, 1985).

17. LAFORTUNE, S. Distributed information and distributed control: Cases from stochastic systems
and database mangement. Ph.D. dissertation, Univ. of California, Berkeley, May 1986.

18. LOHMAN, G. M., MOHAN, C., HAAS, L. M., LINDSAY, B. G., SELINGER, P. G., WILMS, P. F., AND
DANIELS, D. Query processing in R’. Res. Rep. RJ 4272, IBM Research Laboratory, San Jose,
Calif.. Apr. 1994.

19. RICH, E. Artifkial Intelligence. McGraw-Hill, New York, 1983.
29. SELINGER, P. G., AND Aomn, M. Access path selection in distributed database management

systems. Res. Rep. RJ 2683, IBM Research Laboratory, San Jose, Calif., Aug. 1960.
21. SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLIN, D. D., LORIE, R. A., AND P~lce,T. G. Access

path selection in a relational database management system. Res. Rep. RJ 2429, IBM Research
Laboratory, San Jose, Calif., Jan. 1979.

22. VALDURIEZ, P., AND GARDARIN, G. Join and semijoin algorithms for B multiprocessor database
machine. ACM Trans. Database Syst. 9, 1 (Mar. 1964). 133-161.

322 * S. Lafortune and E. Wong

23. WONC, E. Retrieving dispersed data from SDD-1: A system for distributed databases. In
Proceedings of the 2nd Berkeky Workshop on Distributed Data Monngement and Computer
Network (Lawrence Berkeley Laboratory, May 25-21, 1917). 217-235.

24. WONG, E. Dynamic remeterialization: Processing distributed queries using redundant data.
IEEE ‘l’mm. So/w, Eng. SE-g, 3 (May 1983,, 228-232.

25. Yu, C. T., AND CHANG, C. C. Distributed query processing. ACM Comput. Sure. 16, 4 (Dec.
1984),399-433.

26. Yu, C. T., AND Ozsouocw, M. Z. On determining tree query membership of a distributed
query. Con. J. Oper. Res. hf. Process. 22, 3 (Aug. 1984), 261-268.

27. Yu, C. T., Ozsouoc~u, M. Z., AND LAM, K. Distributed query optimization for tree queries.
J. Comput. Syst. Sci. 29 (1984),409-445.

Received September 1985; revised January 1986; accepted February 1986

