
Bounded Ignorance: A Technique for
Increasing Concurrency in a
Replicated System

NARAYANAN KRISHNAKUMAR and ARTHUR J. BERNSTEIN

State University of New York, Stony Brook

Databases are replicated to improve performance and availability. The notion of correctness that
has commonly been adopted for concurrent accessby transactions to shared, possibly replicated,
data M serializability, However, serializability may be impractical m high-performance applica-
tions since it imposes too stringent a restriction on concurrency. When serializability is relaxed,
the integrity constraints describing the data may be violated. By allowing bounded violations of
the integrity constraints, however, we are able to increase the concurrency of transactions that
execute m a replicated environment, In this article, we introduce the notion of an N-Lgnoran t

transaction, which M a transaction that may be ignorant of the results of at most N prior

transactions. A system m which all transactions are N-Lgnorant can have an N + l-fold increase

in concurrency over serializable systems, at the expense of bounded violations of Its integrity

constraints. We present algorithms for implementing rephcated databases in N-ignorant sys-

tems. We then provide constructive methods for calculating the reachable states in such systems,

given the value of N, so that one may assess the maximum hability that is incurred in allowing

constraint violation. Finally, we generalize the notion of N-ignorance to a matrix of ignorance for

the purpose of higher concurrency.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—ahstrlb uted applzcatzons; distributed databases; H2.4 [Database Manage-
ment]: Systems—concurrency; dzstrz buted systems; transactz on processing

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Concurrency control, integrity constraints, reachability

analysls, replication, seriahzability

1. INTRODUCTION

Databases are often replicated to improve performance and availability.

Replication reduces the need for expensive remote accesses, thus enhancing

performance. Replicated databases can also tolerate failures, hence providing

This work was supported by NSF grants CCR 8701671 and CCR 8901966, A prehmmary version

of this article appeared in the 10th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, 1991.

Authors’ address: N. Krishnakumar, Bellcore, MRE-2B324, Morristown, NJ 07960; email:

nkk(ubellcore corn.

Permission to copy without fee all or part of this material M granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01994 0362-5915/94/1200-0586 $03.50

ACM Transactions on Database Systems. Vol 19, No 4, December 1994, Pages 586-625

Bounded Ignorance . 587

greater availability than single-site databases. This article describes tech-

niques for increasing concurrency, and hence throughput, among transac-

tions executing in a replicated environment.

The traditional approach to concurrency control ensures serializability

[Bernstein et al. 1987]. Serializable execution provides concurrency atomicity

(one transaction does not see intermediate states produced by another) and

failure atomicity (a transaction either runs to completion, or it has no effect

at all on the database). The corresponding notion of correctness for replicated

data is one-copy serializability, where the effect of the execution of a set of

transactions on the replicated data is equivalent to some serial execution of

those transactions on a single copy. As seen shortly, recent research has

focused on exploring other models of correctness and techniques which yield

higher concurrency than that realizable with the above approach.

The original work on concurrency control assumed that a transaction is a

sequence of read and write operations on records. In classical serializability

theory, two operations on a data item conflict unless they are both reads.

Since the operations of two transactions cannot be interleaved arbitrarily if

they conflict, such transactions cannot execute concurrently. One technique

for improving concurrency views the database as a collection of abstract data

objects and utilizes the semantics of the abstract operations from which

transactions are constructed (as opposed to the conventional classification of

operations as reads or writes on records). With this semantic view, we can

restrict the notion of conflict. For instance, two commutative operations do

not conflict, even if both update the same data item. Such properties have

been formalized and the corresponding concurrency controls developed in

Herlihy [1987; 1990], Herlihy and Weihl [1988], and Weihl [1988; 1989].

However, whether or not two operations commute might depend on the state

of the database. Consider an airline reservation system with a single flight,

and let res–seats denote the number of seats that have been reserved on the

flight. Suppose the plane can carry at most 200 passengers, so that the

integrity constraint of the system is res–seats s 200. Two reserve operations

that are each trying to reserve one seat do not commute when res–seats is

199, though they do commute when less than 199 seats have been reserved.

More elaborate models (for instance, the escrow transaction idea [0’Neill

1986]) are needed to exploit the inherent concurrency in such a situation.

Several researchers have considered weakening serializability. In Garcia-

Molina [1983], nonserializable schedules are allowed that preserve con-

sistency in the sense that the integrity constraints in the system are

maintained. Transactions are partitioned into disjoint subsets called types.

Each transaction is a sequence of atomic steps. Each type, y, is associated

with a compatibility set whose elements are the types, y’, such that the

atomic steps of y and y’ may be interleaved arbitrarily without violating

consistency. Interleaved schedules are not necessarily serializable. This idea

has been generalized in Lynch [1983] and Farrag and Ozsu [1990] in different
ways to give a specification of allowable interleaving at each transaction

breakpoint with respect to other transactions. In Fischer and Michael [1982]

and Wuu and Bernstein [1984], the problem of a replicated distributed

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994

588 . N. Knshnakumar and A. J Bernstein

dictionary is discussed, and nonserializable schedules are allowed so as to

increase concurrency. The Grapevine system [Birrell et al. 1982] allows a

naming service that does not act in a serializable fashion. Recently, built on

some of these ideas, several advanced transaction models and correctness

criteria have been proposed to overcome the limitations of serializability in

special applications. For instance Korth et al. [1988] looks at CAD environ-

ment which frequently involves long-running transactions and cooperating

tasks. Enforcing serializable behavior in such a situation implies that data

items will be inaccessible for long periods of time, an unacceptable condition.

The authors use a nested transaction model in which serializability may not

be preserved, and in Korth and Speegle [1988] define several criteria under

which nonserializable executions are termed correct. New models have also

been developed to deal with the management of data in multiple autonomous

databases (federated or heterogeneous databases). Among the models pro-

posed for such applications are the ConTract Model [Reuter and Wachter

199 1], relaxed atomicity [Levy et al. 1991], nested sagas [Garcia-Molina et al.

199 1], multilevel transactions [Weikum and Schek 1991], polytransactions

[Rusinkiewicz and Sheth 1991], and other approaches found in Elmagarmid

[1991].

Most of the above approaches are concerned with maintaining the integrity

constraints of the database, even though serializability is not preserved. In

this article, we are interested in applications that have stringent performance

requirements but which can permit bounded violations of the integrity con-

straints. We propose the notion of N-ignorance that utilizes this relaxation of

correctness in order to increase concurrency. In an N-ignorant system, a

transaction need not see the results of at most N prior transactions that it

would have seen if the execution had been serial. Therefore, concurrency can

be increased N + l-fold with respect to a serializable system. For instance,

consider the airline reservation example, and assume that each transaction is

allowed to reserve at most one seat. A serializable execution would allow at

most a single transaction to execute at a time in the system since all

transactions modify the same data item, namely, res–seats. Suppose a maxi-

mum overbooking of 10 passengers is considered acceptable. Then, even when

res–seats is 199, 11 transactions can be allowed to execute concurrently at

different sites without each being aware of the other transactions. N-ignorance

uses this observation to provide a 1 l-fold increase in concurrency. A related

approach is taken in SHARD [Lynch et al. 1986; Sarin 1986; Sarin et al.

1988], which is a replicated database system in which deviations from the
integrity constraints are also permitted. SHARD, however, makes no attempt

to place a fixed bound on the size of those deviations, relying instead on the

small probability of large deviations. More recently, other researchers have

proposed models [Pu and Leff 1991; Sheth et al. 1991; Wong and Agrawal

1992] which deal with boundedly inconsistent databases. This article is

distinct from these papers in two respects:

(1) We formalize the violations of the integrity constraints as a function of
the number, N, of conflicting transactions that can execute concurrently.

ACM Transactions cm Database Systems, Vol 19, No. 4, December 1994

Bounded Ignorance . 589

To compute the extent to which the constraints can be violated, we also

provide a systematic analysis of the reachable states of the system.

(2) Since we deal with a replicated database, the emphasis is on reducing the
number of sites a site has to communicate necessarily with after a

transaction is submitted for execution (for instance, majority quorum

consensus requires that at least a majority of the sites be consulted). We

thus attempt to increase the “autonomy” of sites in executing transac-

tions, and this results in smaller response times.

N-ignorance results thereby in an increase in both concurrency and auton-

omy, and this results in increased throughput.

The article is organized in the following fashion. In Section 2, we outline

the system model. A discussion of the motivation for our approach and a

review of closely related work is presented in Section 3. A suite of algorithms

for implementing N-ignorance is provided in Section 4. An analysis of

N-ignorant systems is developed in Section 5. We discuss briefly in Section 6

the generalization of N-ignorance to a matrix of ignorance. We conclude with

a discussion of future work in Section 7. The appendices have proofs of some

results that are stated in the body of the article,

2. THE MODEL

We assume a fully replicated database. Let the set of site identifiers be

denoted by &Y, and let each site have a unique site identifier. The state of a

database is characterized by an assignment of values to the data items in the

database. We refer to the state of the database at a site as the site uiew, and

it need not necessarily be up to date: it may be missing the updates of (a

limited number of) transactions which have executed at other sites.

A set of integrity constraints, ‘%, is specified for the system. A particular

integrity constraint, C (in ~), is a function which maps a state, s, to true or

false depending on whether or not the constraint is satisfied in that state. It

is assumed that all serializable executions of transactions starting from an

initial state, so, such that ‘dC = K [C (SO) = true] preserve these constraints.

A transaction, T, is executed atomically at a single site as follows in the

following three steps [Sarin 1986]. We say that T has been submitted at site

i when the request to execute T at site i is made (execution might, however,

be delayed).

(1) The read phase of T, RP ~, occurs first. The site view, 1, is read, and an

update, UT, for transforming the database is generated. We use the

notation RP~(1) = UT to indicate that u ~ is generated when the read

phase sees the site view 1. Let apply(UT, 1) denote the state resulting

from applying UT to 1. Then, it is either the case that Vc G

‘% [C(apply(u~, 1)) = true] (i.e., the resultant state satisfies the con-

straints), or UT is the null update. We say that T has been initiated
when the execution of RP~ has begun.

(2) The database at i is updated using UT.

(3) A request to broadcast UT to all other sites is made.

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

590 . N, Krishnakumar and A J. Bernstein

Note that the execution of T does not cause the site view to violate %’.

Violations might occur subsequently when a site learns of updates it was

ignorant of when T executed. Compensating transactions [Garcia-Molina

1983; Korth et al. 1990; Sarin 1986] can be used to restore the database to a

state satisfying 8.

For example, consider the airline reservation system. % is {res–seats <

200}. When a transaction T reserving a single seat is executed at site i, RP~

produces the update [res–seats := res–seats + 1] if res–seats <200 in i’s site

view and the null update otherwise.

We assume that a state is represented as a history—a sequence of updates.

(This is only for convenience. It is not required that the entire past history be

maintained at a site. It is in fact sufficient to use a compacted version of the

history, but the details are beyond the scope of this article.) We say that a

transaction T (or RP~) sees a particular update if the update is in the history

corresponding to the site view at the time that RP~ is executed. We define a

happened-before [Lamport 1978] ordering, ~ , between transactions T and

T’ as follows: T ~ T’ if and only if T’ sees u ~. A transaction T is said to be

concurrent with T’, denoted T cone T’ if and only if T B T’ and T’ ~ T. We

assume that the broadcast mechanism for disseminating updates satisfies the

property that sites learn of updates which have been generated at other sites

in accordance with ~ . Thus if a site knows of an update u ~ that was

produced by a transaction T, then it knows also of all updates generated by

transaction T’ such that T’ - T.

A run, R, is the execution of a set of transactions and is represented by a

quadruple [%R, ~ ~, < ~, go] where:

(1) 7#~ is the set of transactions that execute in R.

(2) + ~ is the happened-before ordering between the transactions.

(3) < ~ is a total ordering of the transactions consistent with ~ ~.

(4) go is the initial site view at all sites. gO is also referred to as the initial
state of R.

The ordering relation < ~ is constructed using timestamps. Thus, if TS(T)

is the timestamp of transaction T, then TI < ~ T2 if and only if TS(T1) <

TS(TZ) and TI + ~ T2 implies TS(TI) < TS(T2). Updates might arrive at

different sites in different orders (but satisfying ~ ~). However, we assume

that all sites start with the same initial state, and if the same set of updates

arrives at two sites, they will yield the same site view. This can be accom-
plished by assuming that the state of a site is the result of executing in

timestamp order the updates it has seen (perhaps implemented using an

undo/redo technique as in Jefferson [1985] and Sarin et al. [1986]).

The global state of the database at any time t is the state that includes all

updates (in the order < ~) that have occurred at all sites until time t. Even

though the read phase of a transaction enforces %’ on the local site view, the

global state may not satisfy $.3’.For instance, suppose there are two sites in

the airline reservation system. Assume that both sites have the same site

view in which res–seats is 199. Let each site execute a transaction reserving

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

Bounded Ignorance . 591

RIIn R.

A

B

Q

c

D E

Fig. 1.

a single seat. If the execution is

the effect of the other. However,

— Happened-before relatlon

A 2-ignorant run.

serializable, one of the transactions sees

we allow the two transactions to execute

concurrently. Thus each transaction produces an update that increments

res_seats in its site view, and the resulting global state has 201 reserved

seats. Our goal is to limit this deviation so that all global states satisfy a

weaker set of constraints, %’. For instance, %’ can be res–seats s 210.

Informally, a replica/concurrency control algorithm is required to coordi-

nate concurrent access to the replicas by several transactions and ensure that

the system does not behave “incorrectly.” In our case, the control algorithm

must place a bound on how out of date the site view is allowed to be when a

transaction is initiated. The read phase is delayed when this bound is

exceeded. This limits the global states which can occur in the system and,

hence, limits the extent to which the integrity constraints can be violated. A

site view seen by a transaction is thus restricted by the control algorithm.

Consider a system with replica/concurrency control algorithm RCC. If the

run R, denoted by [7>R, + ~, < ~, gO], can be produced under RCC, we say

that R is an RCC-run. A state s is said to be reachable under RCC if there

exists an RCC-run R such that the global state of the system after executing

R is s. We say that RCC is correct with respect to $%’ if% is preserved in all

reachable global states, given that the initial state of the system satisfies %’.

Thus the notion of correctness in our model is not serializability, but that of

satisfying the relaxed constraints. To ensure that %“ is preserved globally, we

limit concurrency between transactions using the notion of N-ignorance.

Consider a run R and a transaction T in %jj. If the number of transactions

concurrent with T in R is not greater than N, we say that T is N-ignorant

in R. If all transactions in %R are N-ignorant in R, we say that R is an
N-ignorant run. An N-ignorant system is one in which only N-ignorant runs

are permitted.

For example, consider the run R in Figure 1. R is a 2-ignorant run since

all transactions are 2-ignorant. Let z be the initial state. If ● is the concatena-

tion operator, and the total order on the transactions is A < ~ B < ~ C < ~ D
<~ E, the state Z.(ZLA, U~, Uc, u~, u~) is reachable in the given system.

We say that two transactions TI and Tz conflict if there exists a state s

such that (a) s satisfies %, (b) RP~l reads s and produces update u~l, and

ACM Transactions on Database Systems, Vol. 19, No, 4, December 1994.

592 . N, Knshnakumar and A. J. Bernstein

RP~ reads s and produces update u T2, and (c) either of the states

S. (;JT,). (Z+,) Or S - (~T2) e (ttT1) does not satisfy %. We assume initially

that all transactions conflict potentially. This is a worst-case assumption

which we relax in Section 6 by taking into account transaction (or operation)

semantics [Herlihy 1987].

3. MOTIVATION AND RELATED WORK

Consider the airline reservation system, with the constraint %: {res-seats <

200) and a transaction that reserves at most one seat. If a maximum

overbooking of 10 passengers is considered acceptable, only the weakened

constraint set, ‘#’: {res-seats s 210}, needs to be enforced globally (each

transaction enforces % on its view of the database). This allows a transaction

executing at a replica site to be unaware of 10 concurrently executing

transactions at other sites. Thus, by relaxing the constraint, 11 transactions

can now run concurrently in the system, as against just one in the serializ-

able case. The algorithms described in Section 4 guarantee that a transaction

is no more than N-ignorant and hence that g“ always holds.

The notion of k-completeness, which is similar to N-ignorance, was intro-

duced in the context of the SHARD system [Lynch et al. 1986]. Both a total

order is imposed on transactions executed in a run and a transaction is

k-complete if it sees the results of all but at most k of the preceding

transactions in that order. No algorithm is presented in Lynch et al. for

enforcing a particular value of k, and hence, the extent of ignorance can only

be estimated in a probabilistic sense. Furthermore, a transaction which has

executed at one site may be unknown to other sites even after they have

executed a large number of subsequent transactions. This is a major draw-

back since it implies that a particular site might remain indefinitely unaware

of an earlier transaction at another site.

Suppose there are two kinds of transactions in the airline reservation

system: a reserve transaction that reserves a single seat on the flight and a

seat assignment transaction that assigns a passenger with a reservation to a

particular seat. Although passenger P may have made the first reservation

on the flight, the reservation might not be seen by a k-complete seat assign-

ment transaction executing at another site after the plane becomes full. This

may be a problem if the flight is overbooked since P may not even be

considered for a seat. With N-ignorance, however, only recent reservations

might be denied seats due to the overbooking. This is formalized as the
locality property in Section 5.1.1.

To motivate the role of constraint violation, consider two other approaches

to the airline reservation example:

(1) Though the plane accommodates 200 people, we can require that each
transaction enforce on its site view the constraint set {res-seats < 190}.

In a 10-ignorant system, the weakened constraint set that is then en-

forced globally is {res–seats < 200}. As a result, the system has the

desirable property of never overbooking the flight. However, there is a

ACM Transactions on Database Systems, Vol 19, No 4, December 1994

(2)

Bounded Ignorance . 593

problem if 190 seats are booked globally, since an up-to-date site will

reject reservations for the remaining 10 seats.

Assume that a transaction can be concurrent with at most 10 other

transactions when the number of reserved seats is small. As the seat

count approaches 200, the degree of concurrency is gradually reduced, so

that the total number of seats reserved globally converges to 200. Al-

though this approach combines enhanced concurrency with strict enforce-

ment of the original constraint, the replica control algorithm is more

complex since it is state dependent. This (escrow-based) approach is

described in Krishnakumar and Bernstein [1992].

Bounded constraint violation may be acceptable in applications in which

transactions make incremental changes to the database (e.g., reserve a single

seat) [Paige 1990; Qian and Wiederhold 1986]. A number of applications

exhibit this behavior. Consider a queue which is manipulated using enqueue

and dequeue transactions (which deal with one element). The queue’s behav-

ior is FIFO if elements are dequeued in the same order as they were

enqueued, and no element is dequeued multiple times. We can apply N-

ignorance to this data structure to give relaxed queues [Herlihy and Wing

1987]:

(1)

(2)

The dequeue operation dequeues one of the first N elements from the

queue, rather than the first element. This has been referred to as a

semiqueue in the literature, with the difference that the “out-of-order-

ness” is bounded.

The same element may be dequeued up to N times. This is a bounded

stuttering queue.

In distributed problem solving [Durfee et al. 1987], used in applications

such as distributed robot systems, each node may not have a completely

up-to-date global picture. Nodes cooperate by generating and exchanging

tentative partial solutions. Other examples include process control systems

where continuously varying quantities are monitored, and name-servers in

distributed operating systems where there may be at most a few out-of-date

entries [Birrell et al. 1982]. A replicated relational database is another

example. Consider a database with Manager and Employee relations. Suppose

there is a co~straint that any manager earns more than any employee. By

relaxing this constraint to allow at most k exceptions (i.e., any manager

earns more than all but at most h employees), a h + l-fold increase in the

concurrent execution of insert operations can be achieved.

The notion of setwise serializability is introduced in Sha et al. [1988]. The

database is decomposed into atomic data sets, and serializability is guaran-

teed within a single data set. Sha et al. discuss weakening constraints but

does not place any bound on the deviation. In Herman [1983] and Verjus

[1983], the problem of a set of processes which can concurrently allocate R
resources is considered. A particular process may be ignorant of allocations

made by others, but the constraint that no more than R resources can be

allocated at any time must be maintained. The algorithm ensures k-complete-

ACM Transactions on Database Systems, Vol 19, No, 4, December 1994,

594 . N. Krishnakumar and A. J Bernstein

ness for a fixed value of k but does not place a bound on how long a

particular allocation occurring at one site can remain invisible at another

and, thus, is not useful in a generalized transaction environment.

Applications where replicas are allowed to diverge in a controlled fashion

are discussed in Alonso et al. [1988]. In this model, however, an up-to-date

central copy is present which is used to detect divergences in other copies

(referred to as “quasi-copies”) and triggers appropriate action. The authors do
not discuss how one can extend this idea to a completely distributed environ-

ment. Barbara and Garcia-Molina [1992] and Kim et al. [19891 discuss how

simple numerical relationships between data items stored at different sites

may be maintained, while allowing site autonomy.

In Rusinkiewicz et al. [1991], an approach has been proposed for specifying

the dependency and consistency requirements for interdependent data (of

which replicated data is a subcase). Algorithms for maintaining the consis-

tency of interdependent data are given in Sheth et al. [1991]. Pu and Leff

[1991] have proposed a framework called ~-serializability, which parallels

closely the idea of N-ignorance. An e-transaction is allowed to import and

export a limited amount of “inconsistency,” and this entails, as in our case, an

increase in concurrency by allowing bounded inconsistencies in the database.

For instance, a query transaction, like Check_ balance in a banking system,

can import an inconsistency of $100 (i.e., the balance it reports can differ by

at most $100 with the real balance). Pu and Leff deal mainly with query

transactions (which only import inconsistency) that can return incorrect

results, and update transactions (which only export inconsistency) which are

serializable with respect to other update transactions. It is not clear how the

global integrity constraints of the database are affected if transactions can

both import and export inconsistency. Furthermore, in both Pu and Leff and

Sheth et al. [1991], one approach to bounding inconsistencies rests on having

a lock manager that sees all the conflicting transactions and grants locks to a

bounded number of them. Thus there needs to be a site that is aware of all

conflicting transactions executing in the system. In our algorithms, however,

we stress the increased autonomy of the sites by requiring less synchroniza-

tion between them—a lock manager need not even know that a conflicting

transaction is executing elsewhere (as in the state-based algorithms dis-

cussed in Barbara and Garcia-Molina [1992] and Krishnakumar and Bern-

stein [1992]). Wong and Agrawal [1992] extend the notion of ●-serializability

in the read/write model to the framework of high-level operations on single-

COPY abstract data types.
The background mechanism for broadcasting updates causally in this

article is adapted from Wuu and Bernstein [1984]. Each site i maintains a

lower bound on how up-to-date each other site j is. This information indicates

to i the updates that i is sure j knows about, and is maintained as an 0(M 2)

data structure called the timetable (where M is the total number of sites).

Improvements and optimizations have been proposed in Wu and Bernstein

and other subsequent papers that deal with gossip messages, such as the

two-phase gossip techniques of Agrawal and Malpani [1991] and Heddaya

et al. [1989], the lazy replication mechanism from Ladin et al. [1990], and

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994

Bounded Ignorance . 595

weak-consistency replication [Gelding 1992]. The primary objective in all

these improved protocols is to reduce the space required at each site for

maintaining the lower-bound information, and the space required in each

message to transport this information. We do not discuss the optimized

versions in this article, and adopt the original 0(M 2) data structure. It

should be noted that any of the optimized versions of the gossip message

algorithm or other mechanisms such as causal broadcast (of ISIS [Birman

et al. 1991]) can be used in our algorithms with minor changes. Our concern

is not with the replica control algorithm but the flexible integration of the

concurrency control mechanism (such as quorum locking) and the replica

control mechanism to ensure IV-ignorance.

In situations where violations can occur, it must be possible to apply

compensating transactions [Korth et al. 1990; Sarin 1986] to bring the

database closer to a state in which the integrity constraints are not violated

(e.g., bump a passenger in the airline example). We do not address the issue

of compensating transactions in this article, and the reader is referred to

Krishnakumar [1992].

4. IMPLEMENTATIONS OF N-IGNORANCE

One of the mechanisms used by traditional concurrency control algorithms to

synchronize transactions is locking [Eswaran et al. 1976]. Quorum locking

[Herlihy 1987] is an extension of locking to a replicated system, which by
limiting the amount of concurrency at any time ensures that a transaction

sees the results of conflicting transactions which have already completed. In

the algorithms described here, we use (a) quorum locking to control the

number of transactions which can be simultaneously accessing replicas of the

same data object and (b) gossip messages to limit the extent to which a site

may be ignorant of the effects of prior transactions done at nonquorum sites.

We present a simplified description of quorum locking [Herlihy 1987]. Each

site, i, before initiating a transaction T, locks the data items accessed by T at

a quorum of sites, Q~ (the size of any quorum is denoted by]Q l). The quorum

sites send their local site views along with the lock grant response to i. On

receiving the lock grant responses, site i merges the site views it has

obtained from the quorum sites with its own view, 1,, to get a new view, 1:

and determines the update, UT on the basis of 1{. UT is then appended to l; to

get l;. lj’ is sent to the quorum sites to be merged into their local site views,

and the lock at each quorum site is released. In a serializable execution,

transactions conflicting with T should not be allowed to execute concurrent to

T. This is guaranteed by ensuring that a site cannot simultaneously hold

locks on the behalf of two conflicting transactions, and that the quorums of

conflicting transactions intersect. (Of course, there can be transactions that

do not conflict with T. For instance, a transaction T’ that accesses a set of

data items that are disjoint from those accessed by T does not conflict with T.
In that case, a site can simultaneously hold a lock for both T and T’.)

Suppose we assume that any two transactions conflict. It can be ensured that

the quorums of two transactions intersect by taking [QI to be larger than

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994,

596 . N, Krlshnakumar and A, J. Bernstein

[lf\2j, where M = IJYI and [ikf/2] denote the largest integer smaller than

or equal to i14/2.

Gossip messages are point-to-point background messages which can be

used to broadcast information. In our algorithms, a gossip message sent by

site i to site j contains updates known to i (these need not be only updates of

transactions initiated at site i). Gossip messages ensure that a site learns of

updates in the happened-before order.

In Wuu and Bernstein [1984], a data structure called a timetabze is used at

each site to maintain information about the state of another site’s knowledge.

We use this data structure for the same purpose. The timetable at site i, TT,,

can be characterized as follows:

(1) TT,[i, i] is a counter incremented whenever a transaction T executes RP~

at site i.

(2) If TT,[j, h] = x, then site i knows that site j knows of all transactions

initiated at site k when TT~ [k, k] was less than or equal to x.

We denote the k th row of TT, as TTl [k], and the timetable at a site j at

(global) time t as T~’ (note that we use T? as a variable, but T~t is a

constant). We assume for simplicity that at any site i, at most one of the

following can occur at a time t:the execution of a transaction, the send of a

gossip message, or the receipt of a gossip message. When transaction T is

initiated at site i, the following actions are performed:

(Al) TT,[i, i] ‘= TT,[i, i] + 1.

(A2) TTl [i] is assigned as the vector timestamp TS(T), for T (as in Liskov

et al. [1988]).

We denote the jth element of the timestamp TS(T) as TS(T)[j].

If site j sends a gossip message m at time t to site i, then m contains TTJt,

and all the updates that j has seen up to time t.We refer to this as the

~os.qi~ property. This property ensures that updates are delivered at sites in

happened-before order, since if a gossip message contains an update u*l, it

also contains every other update UT such that T - T1. Note that we may

optimize the amount of information [Wuu and Bernstein 1984] sent in a

message by (1) using the timetable to reason about the knowledge state of the

destination site (i.e., if j knows that i knows of some updates, then it need

not include those updates in its gossip message to i) and (2) sending only a

portion of the timetable. In a system with many sites and in which a large
number of updates occur, only the optimized approach is feasible. We do not

discuss such optimizations in this article.

Assume that a gossip message m is sent from site j at time t and arrives at

site i at time t’. Site i merges the update information into its site view on the

basis of the timestamps. TT, is updated in the following fashion:

(Ml) Vp GYY’ do T~[i, p] = max(TTl[i, p], TTl~[j, p]). This indicates that

for each site p, site i knows the updates of all the transactions initiated

at p that site j knew about (when j sent the gossip message).

ACM Transactions on Database Systems, Vol 19, NrI .4, December 1994

Bounded Ignorance . 597

Site1 S,te 2

(M2)

In

T O T5, T) =11,0)

1 2

1

H’

1 cl:

~ 00:

t! me ~

.1

f

H

1 0

:2 1 0

y/. .’

12 TS(T’)= (1,1)

1 2

.1

H

10

.2 1 1

Fig.2. Timetables andgossip messages.

(YP GLZY)(Vn eJV) do TTt[p, n] := max(TT,[p, n], T~t[p, n]). This
indicates that the transactions that j knew were initiated at n and

have been seen at p (when j sent the gossip message) are also known

by i to have been seen at p. Thus, i is up to date, concerning the

knowledge states at the other sites.

Figure 2, we have illustrated with a simple two-site example how

timetables are manipulated. T and T’ are two transactions that are executed

at site 1 and 2 respectively. The two messages shown are gossip messages,

and we have shown the timetable at each site at each (interesting) point in

time.

4.1 Properties of the Gossip Message Scheme

The following properties of gossip messages are needed to show the correct-

ness of the algorithms in Section 4.2. The proofs of the lemmas given below

are provided in Appendix A.

ACM Transactions on Database Systems,Vol 19, No. 4, December1994

598 . N. Krishnakumar and A. J. Bernstein

Recall that the vector TT’,[k] denotes the k th row of the timetable TTZ.

Consider two vectors, a and b. If a is elementwise less than or equal to b,

then we say a s b.

Observation 4.1.1. For t < t’,Vj ~JZFVi c&Y[T~’[i] < TTI’’[i]].

This observation follows from Al, Ml, and M2.

Observation 4.1.2. If a gossip message is sent from site j at time t and

received and merged at site i by time t’,then TTJt[j] s TTl~’[i].

This observations follows from Ml.

LEMMA 4.1.3. For any t, and for any site i, Vj ● FY [T~’[il s TT~[ill.

LEMMA 4.1.4. Consider distinct sites i and j. Assume that TT,[i, s], for

some s, is changed at time t due to either a transaction execution at i or the

receipt of a gossip message at i. Then for all t’ > t, TT,t[i, s] < TTJt’[i, s] if

and only if there exists a chain of gossip messages from i to j such that the first

message is sent from i after t and the last message is received at j before or at

1.

LEMMA 4.1.5. Corzsider a site i and a transaction T. For any t, TS(T) <

TT1’[i] if and only if u~ is in the site view of i at t.

LEMMA 4.1.6. Consider sites i and r and a transaction T. For any t, if

TS(T) < TT~[i], then UT is in the site view of i at t.

LEMMA 4.1.7. If Tz ~ Tl, then TS(TZ) s TS(TI). Further, if TI is initiated

at site i, then TS(Tz)[il < TS(Tl)[il.

LEMMA 4.1.8. The timestamps assigned to transactions are globally unique.

Since timestamps are globally unique, if we treat the vector of numbers as

the single number obtained by concatenating the elements of the vector, then

it follows from Lemma 4.1.7 that if Tz ~ TI then TS(TZ) < TS(TI). The <

order on the timestamps is taken as the < ~ order in any run R.

4.2 Algorithms for N-Ignorance

We integrate quorum locking and gossip messages to obtain a control algo-

rithm for an N-ignorant system. The messages that are propagated in the

system as part of the quorum algorithm are: (a) lock request, (b) lock grant,

(c) lock release, and (d) lock deny. Gossip messages are piggy-backed onto
these quorum messages. Gossip messages may also be transmitted periodi-

cally from a site, independent of the quorum messages. We make a liveness

assumption that there is sufficient message traffic such that given an update

UT, each site will eventually learn of UT. Furthermore, we assume that a site

modifies the timetable and installs the updates that it receives on a gossip

message in a single atomic step.

We assume for now that all transactions potentially conflict, so that a

transaction can be ignorant of at most N other transactions in the system.

Suppose site i is trying to initiate transaction T. We assume then that site i

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994

Bounded Ignorance . 599

does not try simultaneously to initiate another transaction T’ (since T’

conflicts potentially with T). Observe, however, that any number of transac-

tions that access disjoint data sets should be allowed to run concurrently. We

discuss the simple extension of the algorithms to this case in Section 4.3, and

a description of the more elaborate extension for matrices of ignorance is

given in Section 6.

Consider a transaction T submitted at site i. If site j is in Q~, then we say

that j participates in T. Once Q~ is established, the sites in Q~ cannot

participate in another transaction until the execution of T is completed.

However, IQI need not be greater than [M/2], so that (conflicting) transac-

tions may execute concurrently. When T is initiated, site i knows of all

updates known to each quorum site before the quorum site sent its lock grant

response to i. When T terminates, each quorum site learns of all updates

that i knows about. Hence, a tight coupling exists among these sites. The

condition for nonquorum sites is more relaxed: site i is allowed to initiate T

as long as nonquorum sites are ignorant of a bounded number of updates that

i knows about (this is verified by waiting for a timetable check to be satisfied,

until which the initiation is delayed). By adjusting IQ I and the amount of

allowed difference between the knowledge states of the initiator site and

nonquorum sites, we get algorithms with different values of IV. If communica-

tion delays are not uniform among sites, then it is reasonable for a site to

select nearby sites to be elements of its quorum and allow a knowledge lag to

exist with respect to distant sites. Thus, in the algorithms that we present

below, site i must lock (less than a majority of) quorum replicas and evaluate

a timetable check before it can initiate T. If gossip messages are frequent

enough, it can be expected that the knowledge state of distant sites does not

differ significantly from i’s knowledge state. Hence it is likely that the

timetable check will already be true when T is submitted, so that the

initiation of T is not delayed.

4.2.1 Algorithm A. Assume that transaction T is to be initiated at site i. 8

is an integer satisfying 8> 1 and is an upper bound on the number of

transactions initiated by site i that any other site k does not know about

when T is initiated (i.e., since TT,[i, i] indicates the number of transactions

initiated by i, TTL[i, i] – TT,[k, i] should be at most 8 – 1 before T is

initiated). Site i executes the following steps:

1, Wait until Vk EJ7Y [(~~[i, il – ~[k, i]) s 8 – 11.
2. Lock replicas at a quorum, Q~, of sites.

(After this step, i knows of all updates known to sites in Q~ at the time each sent
its lock grant message).

3. Execute RPT on i’s site view, create TS(T), and append U7 to the view.
4. Unlock quorum sites.

Since site i cannot initiate another transaction while it is trying to initiate

T, TT,[i, i] is unchanged while i is waiting in Step 1. From Observation 1,
TT,[k, i] never decreases. In fact, it increases with the arrival of gossip

messages at i. Thus, from the liveness assumptions, the timetable check in

Step 1 will be satisfied eventually.

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994

600 . N. Knshnakumar and A, J. Bernstein

THEOREM 4.2.1.1. Consider an a-run R = [WR, + ~, < ~, gO] with given 8

and ~Q~.Then the maximum number of transactions which precede a transac-

tion Tin < ~ and which are not in the site uiew seen by RP~ zs N = 8 * (M –

IQ I).

PROOF. Assume that T is to be initiated at site i. No transaction (involv-

ing the locked data items) can be initiated at any site, k G Q~, between the

time the lock grant message is sent from h to i and the time the lock release

message is received by h. Thus all transactions, T’, initiated at h satisfy

T’ ~ ~T or T + ~T’. Since T can only be ignorant of concurrent transactions,

it follows that transactions concurrent to T must be initiated at nonquorum

sites. we now argue by contradiction. Suppose that T is concurrent to at least

8 + 1 transactions initiated at a site j, where j @ Q~. Let T’ and T“ be the

first and the last of those transactions, respectively. From Step 1 it follows

that T“ could not have been initiated until site j knew that site i knew of

u~. Site i may learn of u~ at two points.

(1) Before RP~ is executed: in this case T’ ~ ~T, which is a contradiction,
since by assumption T’ conc~ T.

(2) After l?p~ has completed: let i know of U* by time t,after RP~ has
completed. From Lemma 4.1.5, TS(T’) < TT,t[i]. Suppose site j is trying

to initiate T“. After Step 1 in the algorithm, TT~[i, j] < TTJ[i, j]. Then

from Lemma 4.1.4 and the gossip property, T ~ ~T”, which is again a

contradiction, since we assume T“ conc~ T.

Thus, T is concurrent to at most ti transactions initiated at each nonquorum

site. Since all these transactions might have smaller timestampes than T, the

result follows. ❑

4.2.2 Algorithm B. Algorithm A does the timetable check first and then

locks a quorum. Algorithm B does the operations in reverse order. Unlike

Algorithm A, replicas at quorum sites are locked while a site is waiting for a

more restrictive timetable condition to be satisfied. Hence, less concurrency is

permitted. This results in smaller values of N.

The algorithm used by site i when executing T follows. In this case, 8 is an

integer satisfying 8 > 1 and is an upper bound on the number of transactions

known to site i that another site, j, does not know about when T is initiated

(instead of the number of transactions initiated at site i as in Algorithm A).

1. Lock replicas at a quorum, Q7, of sites,
(After this step, i knows of all updates known to sites in Q, at the time each sent

its lock grant message),
2. Choose a time tafter Step 1. Let <~ denote the total order on updates seen by /

until t,and let >—denote the transactions In <’R except the last 8 – 1 transac-
tions.
Walt until (Vk = (&&-– Q7)) (VT’ c=) [TS(T’) s T~[k]].

3. Execute RPT on i’s site view, create TS(T), and append UT to the view
4, Unlock the quorum sites,

Note that the timetable condition in Step 2 will eventually be satisfied due to

the liveness assumption and since Y– is a fixed set of transactions.

ACM Transactions on Database Systems, Vol. 19, No 4. December 1994

Bounded Ignorance . 601

THEOREM 4.2.2.1. Consider a B-run R = [%R, + ~, < ~, go] with given 8

and ~Q~. Then the maximum number of transactions which precede a transac-

tion Tin < ~ and which were not in the view seen by RP~ is N = 8 * (lM/Q]

– 1).

PROOF. Let T be initiated at a site i, and suppose it is ignorant of some

set of transactions, lg~, having smaller timestamps than TS(T). Then (’dT’
G lg~)T’conc~ T.

After Step 2 (from Lemma 4), each nonquorum site knows of the updates of

all transactions in Y– after Step 2 and hence is ignorant of at most 8 – 1

transactions that quorum sites participated in.

Let M satisfy M = k * IQI + c, where c and k are integers and O < c < IQI.

Let N = 8 *([M/l Ql] – 1). Note that any transaction TI executed by a site in

Q, after T completes satisfies T + ~ T, and therefore TS(T) < TS(T1). Any

transaction Tz that a site in Q~ participates in before it participates in T

satisfies Tz ~ ~ T. Thus, all transactions in lg~ are executed at sites in

(YY – QT).

Assume that IIgT I > N, and consider any transaction T~ in Tg~. It has to

accumulate a quorum Q~, of IQ I sites. Then Q~ n Q~,, = ~. (If this were not

so, then either T~ ~ ~ T or T ~ ~ T~. In either case, T is not concurrent to

T~, and so T~ @ Ig~.)

Now choose T’ to be the transaction with the largest timestamp in lg~,

and let T’ be executed at site j. At the time T’ was initiated, site j

determined that site i was ignorant of at most 8 – 1 transactions that sites

in Q~, knew about at that time. This implies that i was ignorant of at most

8 – 1 transactions that sites in Q~ had participated in up to that time. Let K

be the set containing those transactions and T’ as well. Then IKI <6. At

most, all elements of K are in lg~.

Let T ● (lg~ – K). Then TS(T’) > TS(T”). Furthermore, Q~ cannot in-

tersect the quorums of either T or T’. (If Q~, n Q~ # ~, then T“ @ Ig~,

which contradicts the assumption T = (lg~ – K). Similarly, if Q~, n Q~ #

~, then T“ + ~ T’ from Lemma 4.1.7. Since T“ @ K, it follows that T“ should

be known to T which means that T“ @ lg~.) Since T is an arbitrary element

of (~g~ – K), there must be at least (Ilg~ I – 8) transactions in lg~ which the

sites in Q~ and Q~ have not participated in. It follows that the quorums of all

transactions in lg~ – K are confined to M – 2 * IQI sites. 13y selecting T“ to

be the transaction in lg~ – K with the largest timestamp we are in a

position to repeat the earlier argument. Note that the cardinality of the set
lg~ – K is at least N + 1 – 6. By successive application of the same argu-

ment, we arrive at the result that the quorums of at least N + 1 – (k – 1)* 8

transactions in Ig~ will have to be confined within (M – k * IQl) = c sites.

But

1(-)1M

‘+1 -(k-1)*8=8* lQ1-k ‘1’

and lM/l Ql — k] = lM — k * lQ1/l QIJ which is O since c < IQI. Thus one tram-

action must have been initiated with a quorum of size c, and this is a

contradiction. ❑

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994

602 . N Krishnakumar and A. J, Bernstein

We have shown that N is an upper bound on ignorance. We now show a

run in which this upper bound is attained. Let the system quiesce, and wait

until all sites know of all updates. Then all sites will have the same site view

and timetable. Assume that the sites are partitioned into disjoint sets of size

IQI (with c sites left over, if M = k * IQI + c, where c and k are integers and
O < c < IQl). Assume also that a transaction initiated at a site uses the set to

which the site belongs as its quorum. We thus have [M/l Q 1]disjoint quorums.

The algorithm permits 8 transactions to execute within each quorum with no

exchange of gossip messages between quorums. Any transactions at a partic-

ular quorum is concurrent to 6 *([M/l Q 1] – 1) transactions.

4.3 Discussion

The parameters 8 and IQI can be varied to get a range of values for N. If

IQ I > [M/2j, all runs are serializable. If serializability can be relaxed, the IQI

can be reduced and performance improves because (1) it takes less time to

gather a quorum and (2) conflicting transactions can execute concurrently. If

gossip messages are exchanged frequently enough, the timetable checks at

Step 1 and Step 2 in Algorithms A and B, respectively, may already be

satisfied when a transaction is submitted.

Algorithms A and B can be optimized in several ways without changing the

value of N. For instance, assume that during the time a site j is locked due to

the execution of a transaction, j can send out only those gossip messages that

have updates seen by it before it was locked. Thus any gossip message

containing the updates seen at j after j was locked can be sent out only after

it is unlocked. If in Step 1 of Algorithm A, Vk ● YY is replaced by Vk G S,

where S is any subset of SY such that IS I = M – IQI + 1 then it can be

shown [Krishnakumar and Bernstein 1990] that the value of N derived in

Theorem 4.2.1.1 does not change. The corresponding modification for Algo-

rithm B is to replace Vk G S?Y — Q in Step 2, with Vk G S, where S is any

subset of Y> with M – 2 * IQ I + 1 nonquorum sites. Using S instead of SW

reduces the waiting time (on the average) in Steps 1 and 2 of Algorithms A

and B respectively, since the new timetable check allows a transaction to be

initiated without having to wait for messages from IQ I – 1 sites.

The system model that we have described up to this point has not dealt

with failures of any kind. Assume now that we allow site crashes, message

delays, and communication link failures and that we rely on a standard

commit protocol [Gray 1978; Skeen 1982] to abort transactions interrupted by

failures of quorum sites. In this context, the above transformed algorithms
are fault tolerant: they can allow up to IQ I — 1 nonquorum site failures (since

the timetable check need not take into account up to IQI – 1 sites), and

transactions can still be initiated and executed successfully at the sites that

have not failed. Furthermore, observe that as with quorum locking, Algo-

rithms A and B might result in deadlocks. We assume that standard tech-

niques [Bernstein et al. 1987] are used to breaking deadlocks.

We now discuss briefly how Algorithms A and B can be extended to allow

the concurrent execution of transactions accessing disjoint sets of data items.

Each transaction declares, at the time it is submitted, the data items that it

ACM TransactIons on Database Systems,Vol. 19, No 4, December 1994

Bounded Ignorance . 603

might access. Then, a site is allowed to hold locks simultaneously on behalf of

transactions that are accessing disjoint data sets. If a site is trying to initiate

transaction T, it can simultaneously try to initiate another transaction T’ if

T and T’ access different sets of data items. The timetable checks in both

Algorithms A and B are also weakened. For instance, in the extension to

Algorithm A, T is initiated (at Step 1) when all other sites are ignorant of at

most 8 — 1 transactions initiated at i, where each transaction accesses some

data item also accessed by T. Notice that this check is less restrictive than the

one in the original algorithm. A similar weaker check can be given for

Algorithm B.

5. ANALYSIS OF N-IGNORANCE

Let Y be the set of all possible global states of the database. Given an

N-ignorant system, a subset, &“, of S may not be reachable. For instance, in

a O-ignorant system, if C(s) is false for some C in %’, then s is not reachable

in the system. To verify that a given N-ignorant system is correct (according

to our relaxed definition of correctness), it is necessary to determine its

reachable states, and demonstrate that they do not violate the relaxed

constraints, Z“. This section reasons about which states in & are reachable.

We first provide an analysis of the system in which we make no assumptions

about which replica/concurrency control algorithm is being used. Using this

analysis, a superset of the reachable states of the system can be determined.

We then show the “locality” property of N-ignorance that asserts that only

the most recent updates in the total order are not seen by a transaction. To

arrive at tighter characterizations of the set of reachable states, we reason

about the actual runs of the N-ignorant system for Algorithms A and B, and

provide constructive methods of deriving the reachable states.

We make the following assumptions:

Assumption 5.1. In any run, R, a transaction T in ?zflE is of the form:

if P~ then u,

where P~ is the read phase predicate evaluated on the site view during RP~,

and ZLT, the update, is a sequence of assignment statements.

If P~ is true of the site view, then UT is generated; otherwise the null

update is generated. If C is in %’, let P~, ~ satisfy P~, ~ + wp(u~, C), where

wp(u ~, C) is the weakest precondition of UT which guarantees its termina-

tion in a state satisfying C. Let P; denote the assertion A ~ ● ~ Py, ~, and P;

denote the assertion A ~ ~ ,,C.

Assumption 5.2. P~ G P; ~ P2T-

Informally, a compensating transaction is one that takes the system from a
“bad” state (one in which % is not satisfied) to a “better” state. Assumption

5.2 rules out compensating transactions (see Krishnakumar [1992] where

Assumption 5.2 is removed).

ACM Transactions on Database Systems, Vol 19, No 4, December 1994

604 . N. Krlshnakumar and A, J. Bernstein

5.1 An Impiementation-lndependent Analysis of N-Ignorance

This section present properties of an N-ignorant system that hold irrespec-

tive of the control algorithm being used.

THEOREM 5.1.1. consider an N-ignorant system and a run R with final

state g. If the updates of every pair of transactions commute then there exists a

state g’ satisfying Z_ such that g can be obtained by concatenating at most N

updates to g’.

PROOF. Consider the last transaction, T, in <~, such that RP~ produces

a nonnull update. Let i be the site of initiation of T, and 1 be the view seen in

RP~. When T executes it is unaware of at most N transactions in WR. Since

all updates commute, g may be obtained by concatenating the updates of

those N transactions to the state /.(UT), which is the required state g’.

Further, 1.(UT) satisfies %, otherwise a null update would have been pro-

duced by RP~ from Assumption 5.2. ❑

It follows from Theorem 5.1.1 that, if the updates of every pair of transac-

tions commute, a superset of the set of reachable states in the system can be

obtained by taking every state satisfying the constraints and concatenating

all sequences of N or fewer updates to them.

Example 5.1.2. We extend the airline system example. The initial state is

given by res–seats = O. Let the constraints ‘Z- be as follows:

(Cl) res-seats 20

(C2) res-seats s 200

The transactions in the system are RESERVE and CANCEL:

T1. RESERVE: T2. CANCEL:
P;l: P;2:

P ~1,cl: [True] PT2, C1: [res_seats > O]
P ~1 ~,: [res_seats < 200] P~z,c,: [True]

u ~1: res’_seats = res–seats + 1 ~T2: res–seats = res–seats – 1

PTI, Cl and ‘T2. C2 are actually [r=seats ~ – 11 and [res–.=ats s 2011 re-
spectively. For brevity, we have simplified P~ ~,cl and P~z, ~z to [True] since

P: ~ and P~z check whether C 1 and C2 hold respectively.

Since every pair of updates commute, it follows from Theorem 5.1.1 that in

an N-ignorant system, res–seats = 200 + N is the most overbooked state

with respect to C2. ❑

In order to relax the assumption that updates commute, we say that a set

of updates nc-commutes if each update, UT, in the set can be decomposed into

two parts:

(1) a commutative part, denoted up, satisfying the condition that for any two

updates UT and u~t, in the set, up and u ~, commute.

(2) a noncommutative part, denoted u;, satisfying the following three re-

strictions:

(NC 1) Any data item updated in U$ is overwritten with a constant.

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Bounded Ignorance . 605

(iYC2) If any two updates in the set, UT and u~,, are such that U$ and Zt ~

do not commute, then all data items updated in U$ are also

updated in u~,.

(NC3) For any two updates in the set, UT and u~,, U$ and u;, commute.

Consider a run R and assume that the set of updates of the transactions in

%R nc-commutes. ‘Then the transactions in Z7R can be partitioned into classes

called nc-classes such that the updates of transactions from different nc-

classes commute.

Example 5.1.3. The airline reservation system of Example 5.1.2 is aug-

mented with two more transactions that change the size of the plane. The

state of the system is represented by the tuple (size, res_seats). The initial

state is (Srnall,O). Let the constraints for the system be:

(Cl) res-seats 20.

(C2) [size= Small) + (res-seats < 200)1.

(C3) [(size = Large) = (res-seats s 300)],

The transactions in the system are RESERVE, CANCEL, ENLARGE, and

SHRINK:

T1. RESERVE:

P;l:

P~l,c,l: [True]

%, ~~: [(size = Large) v (res–seats <21301

%1, ~.;: Kslze = Small) v fres–seats <300)1
u~l: res_seats = res_seats + 1
U$]: null

T3. ENLARGE:
P;73 :

PT3, CI: [TrUel
Pr~,r2: [True]

PT3, ~3: [res–seatss 3001

Zf~3: null
U~.3: size = Large

T2. CANCEL

P;2:

P~2, C,: [res-seats > O]

P~2, ~z: [True]

PT2, c,3: [True]
Z&z: res–seats = res–seats – 1

+2: null

T4. SHRINK:

P;4 :

P~t, ~:1: [True]
p~i, C2: [res_seats < 200]

PT4, c3: [True]

Z/;4: null

ZL;41 Size = small

In any run, the SHRINK and ENLARGE transactions are in the same

nc-class. RESERVE and CANCEL can be assigned to arbitrary nc-classes.

‘1’HEOREM 5.1.4. Consider an IV-ignorant system and a run R zuith final

state g. If the set of updates nc-commutes then there exists a state g’ satisfying

%’ such that g can be obtained by concatenating at most N of either updates or

commutative parts of updates to g’.

PROOF. Consider the last transaction T in < ~ that produces a nonnull

update. Let Y be the set of transactions in R concurrent to T. Let 1 be the

view seen by RP~ and g’ be the state 1=(UT). g’ satkfies % since the null

update was not produced by RP~.

ACM Transactions on Database Systems, Vol. 19, No. 4, December 1994.

606 . N. Krishnakumar and A. J, Bernstein

g‘ is a subsequence of g. Thus, g can be obtained by inserting the updates

of all the transactions from ~~ into the sequence g‘, at the positions specified

by <~. For each transaction T’ in ~ define p~ as follows:

(1) If RP~: produces a nonnull update and is the last transaction from its
nc-class in < ~, then p~ = UT,.

(2) If RP~ produces a nonnull update and is not the last transaction from its
nc-class in < ~, then p~! = u~t.

(3) If RP~ produces a null update, then p~ = null.

Then g can be obtained by appending, in any order, to g’ the updates p~ for

each T’ in Z This follows because

(1) For any T’ and T“ in ~: pTt and p~ commute,

(2) If p~ = U$, then it follows from (NC2) that all the data items updated by

ZL~,, are updated by another transaction (from the same nc-class) which

occurs after T’ in < ~. Thus, the values in g of the data items updated by

u~, are not influenced by u~,. Therefore, u$, need not form a part of p~.

It follows from Theorem 5.1.4 that any reachable state can be reached by

starting in a state g’ satisfying % and appending at most N of either updates

or commutative parts of updates. For example, the most overbooked state

with respect to constraint (C2) in Example 5.1.3 is (Small, 200 + N).

5.1.1 The Locality of N-ignorance. N-ignorance has the property that in

any run R, the update of a transaction T is unknown to at most N

transactions that follow T in the < ~ order (since all these transactions are

concurrent to T). We refer to this as the locality of N-ignorance. Consider the

following example. Assume that there are two sites, i and j, and N = 2. Let

both sites have the same initial site view (UE). Consider a 2-ignorant run, R,

in which each site executes two transactions, A and B at i, and C and D at

j, such that A ~ ~ B and C ~ ~ D. Assume that the timestamps of the

transactions are such that the final global state, g, is (u~, u~, uB, u c, u~).

The state 1 at site j immediately after the execution of D is { u~, UC, UD).

Define the transaction sequence of a state s, tr-seq(s), as the sequence of all

transactions T (such that ZLT G s) ordered in the same way as the correspond-

ing updates in s. For instance, tr-seq ((u~, u~)) is (A, B). For two sequences,

SI and Sz, define Icp(SI, Sz) as the longest common prefix of SI and SZ. If s~ is

a prefix of Sl, define SUff(Sl, s~) such that SI = s~.suff(sl, s~). In the example

above, lcp (g, l) = (UE) and SUff(&?, (Ujj)) = (UA, UB, UC, UD). Denote the
length of a sequence s by IsI. Then note that IsUff(g, (u~))1 = 4<2 *N.

Lemma 5.1.1.1 formalizes this relationship.

LEMMA 5.1.1.1. Consider an N-ignorant system and a run R with final

state g. Consider the site view 1 seen the last transaction, T, in < ~, and let

g’ = l*(uT). Then Isuff(g, Icp(g, g’))1 s 2 * N.

PROOF. Assume the lemma is not true, and thus if Icp(g, g’) is denoted by

P, Isuff(g, P) I z 2 * N + 1. The situation is shown in Figure 3. Let tr-seq(g’) be
denoted by <~. Consider transactions TI and Tz in <~. Since < ~ is the

ACM Transactions on Database Systems, Vol 19, No. 4, December 1994,

Bounded Ignorance . 607

tr-seq(g)

t

CR
~.

“’Y’”” 4>2.V

tr-ieq(p) .1<-:,0,)

Figure 3

~, /
‘ R —. T’_e T.. . ..-. -..

=J--y”’*-
tr-se~(g’)

global total ordering of transactions, TI precedes Tz in < R iff it precedes T2

in <’~.

Let the first transaction in tr-seq(suff(g, p)) and tr-seq(suff(g’, p)) be de-

noted by T“ and T’ respectively, and let the transactions in <‘~ that occur

after T’ be denoted O%.Note that by assumption, T“ precedes T’ in < R. T“

cannot be in ?/, for if it were, then T“ would follow T’ in c &, which is a

contradiction. Thus T“ does not occur in < ‘R. Furthermore, consider any

transaction U G % u {T’). T“ is concurrent with U, since

(1) U*R T“: if this were not the case, U would precede T“ in < R, and

therefore it would precede T’ in <&.

(2) T“ + ~ U: if this were not the case, T“ would precede U in <~, since
sites learn of updates in =’ R order.

Since 1 is the site view of T, at most N updates in g are not in g’. Since

Isuff(g, P) I >2 * N + 1, it follows that IZ U {T’}1 > N + 1. However, since T“

is concurrent with all transactions in ‘% u {T’}, itis concurrent with at least

N + 1 transactions. This is not allowable in an N-ignorant system. ❑

From Lemma 5.1.1.1, it follows that a transaction might not see in its site

view at most N of the preceding 2 * N updates in < R. To illustrate this,

consider a run, R, of transactions from Example 5.1.3 with initial state

(Small, O). Let %Y~ include a single enlarge transaction and a single shrink

transaction, and let the remaining elements be reserve transactions. Assume

that in <R, the enlarge transaction is followed by the shrink transaction.
Assuming N-completeness, reserve transactions that execute after the

shrink in < R can be ignorant of the shrink update (and N – 1 others), and

keep reserving seats assuming that the size is Large. The final state can then

be (Small,300 + N – 1) (since the last reserve transaction in < R has to
preserve (C3) and can be ignorant of the shrink update and N – 1 other
reserve updates). However, Lemma 5.1.1.1 ensures that in an N-ignorant

system the read phase of the (2* N + l)st reserve transaction after the

ACM Transactions on Database Systems, Vol. 19, No, 4, December 1994.

608 . N, Krishnakumar and A J. Bernstein

shrink will see the shrink update, and will thus produce the null update.

Hence the value of res–seats in the worst state is 200 + 2 * N. (In fact, in the

previous section, we utilized the properties of the updates to show that it is

impossible to reach a state in which the size is Small and the value of

res_seats exceeds 200 + IV.)

In a general situation where the updates do not commute (and do not

satisfy any of the special cases discussed earlier), we can use the locality

property to compute the set of reachable states.

THEOREM 5.1.1.2. Consider an N-ignorant system and a run R with final

state g. Then there exists g’ satisfying F such that g can be obtained by

removing at most N updates from g’ and then concatenating an update

sequence u such that (a) the updates that were removed from g’ occur in u in

the same order as g’ and (b) at most N ot?ler updates are inserted among

these removed updates.

PROOF. Consider the last transaction T in < ~ that produces a nonrlull

update, and let RP~ see g“ in R. Then g’ = g“.< UT) satisfies %’. g’ can be

missing at most N updates from g. From the proof of Lemma 5.1.1.1, at most

2 * N updates need to be appended to Icp(g, g“) to obtain g, and these

updates include those that are in g but are missing g’. ❑

5.2 Analysis of N-Ignorance Using Algorithms A and B

The results of Theorems 5.1.1 and 5.1.4 do not discuss whether the bounds

they prescribe are reachable. For instance, consider a flight which can have

at most 200 passengers, and assume that there are two types of reserve

transactions: one that reserves a single seat and another that reserves 60

seats. If N = 4, then Theorem 5.1.1 implies that 200 + 4 * 60 = 440 is an

upper bound on the number of reserved seats. If M = 2, however, a global

state with 440 reserved seats is not reachable, since it is not possible to

execute four transactions which each reserve 60 seats at the same site. The

most overbooked reachable state has actually 381 reserved seats. (This is

possible in a run with an initial state of 19 seats reserved at both sites, and

then each site executes a sequence of three 60-seat transactions and one

l-seat transaction. Each of the four transactions at one site is ignorant of all

the 4 transactions at the other site.) Thus, we must examine the feasibility of

a run to provide a better upper bound. We do this by considering particular

implementations.
In addition to Assumptions 5.1 and 5.2, we assume that all updates

commute with one another. This allows us to treat an update sequence as a

set, and we represent the addition and removal of updates from an update

sequence by the operators u and –.

Further, we make two more assumptions.

Assumption 5.2.1. P~ ~ = wp(uT, C),

Assumption 5.2.1 states that if all constraints are true in a state 1 U {UT},

then RP~ generates UT if it executes on 1.

ACM Transactions on Database Systems, Vol. 19, No, 4, December 1994.

Bouncledlgnorance . 609

Example 5.2.2. To illustrate Assumption 5.2.1, consider the airline reser-

vation system in Example 5.1.2. Assume that there is a second kind of reserve

transaction: one which reserves two seats if res–seats < 150. Then Assump-

tion 5.2.1 is invalid since an attempt to reserve two seats fails when the site

view indicates that 190 seats are reserved. This is so since the state with 192

reserved seats satisfies the constraint, but the read phase predicate is false

since the site view seen by the transaction does not have less than 150 seats.

Consider a constraint C = ‘G’. Let & be the set of all possible states. We

define an update, UT, to be increasing [Lynch et al. 1986] with respect to C if

and only if it satisfies the condition:

T(,=s GY’)[C(S) = fake A C(s U {UT}) = true].

We define an update, UT, to be decreasing with respect to C if and only if it

satisfies the condition:

7(3s ●&’)[C(s) = true A C(s U {UT}) =~alse].

A transaction T is defined to be increasing or decreasing with respect to C

according to whether UT is increasing or decreasing with respect to C.

Assumption 5.2.3. All transactions in the system are either increasing or

decreasing with respect to each constraint C = Z’.

Example 5.1.2 illustrates a system that satisfies all of the above assump-

tions. T 1 is an increasing transaction with respect to constraint C2 but

decreasing with respect to constraint C 1. On the other hand, T2 is increasing

with respect to C 1 and decreasing with respect to C2. In Example 5.1.3, T3 is

increasing with respect to C3 and decreasing with respect to C2, whereas T4

is increasing with respect to C2 and decreasing with respect to C3.

There may exist transactions that are both increasing and decreasing with

respect to a constraint C, and they will be considered to be increasing

transactions with respect to C in the following analysis.

For simplicity, we assume that we are dealing with one constraint, C, and

hence, will refer to the read phase predicate as P~. In the general case we

can reason separately about each constraint. Thus given that Algorithm A or

B is being used, our goal is to determine all the reachable states of the system

for a particular value of N. The maximum liability incurred due to constraint

violation can then be assessed.

We simplify the problem by assuming that we deal only with runs where

all transactions produce nonnull updates. (In Krishnakumar and Bernstein

[1990] it is shown that this assumption does not change any of the results in

this section.)

Consider an A-run, R, in an N-ignorant system. Let the set LastJ have as
its elements the last 8 transactions that are initiated at site j. Define IncrJ

to be the subset of Lastl satisfying {T IT e Lastl A T is increasing}, and DecrJ

to be the subset Lastj – IncrJ. Define V = {Tl(V.j e .$9”) (T @ Last~)}. Denote

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994.

610 . N. Krishnakumar and A. J, Bernstein

~ = (.Jje YYDeCrj, and Y= Uj~.X~ lncrJ. Similarly, the sets Z, g, and Y

can be defined for a B-run, and the reader is referred to Appendix B for the

definitions. Note that for any run R (using either Algorithm A or B),

WR = ‘%u&Zu Y.

If S is a set and u a partial order on the elements of S, we say that the

pair (S, ~) is a par%ally ordered set. If ~ is a total order, then (S, ~) is a

chain. IS I denotes the cardinality of the chain (S,U_). The least element (if it

exists) of a chain (S, ~) is the element h in S such that h ~ h’, for all

h’(+ h) in S. If S’l and S’z are disjoint sets, and (Sl, <1) and (Sz, SL) are

chains, then (Sl, ~1) and (S ~, ~ ~) are said to be disjoint, and their union

is given by (S1 U S2, Al U S2) (since S1 n S2 = q$, this is not a chain).
If S is a subset of W~, let upd(R, S) denote the set of updates due to the

execution of transactions from S in R. Since every pair of updates commute,

we abuse the concatenation operator .: if 1 is a state, then l.upd(R, S)

denotes the state resulting from concatenating to 1 the updates of transac-

tions of S in any order.

THEOREM 5.2.4. Consider an N-ignorant system and assume that every

pair of updates commutes. For every A-run (B-run) R with initial state go

and final state g, there exists an A-run (B-run) R’ with the following

properties:

(1) R’ has final state g.

(2) R’ has initial state g; = gO=upd(R, ?? U9), and C(g~) = true.

(3) 7tiR =3 and the partially ordered set (WR, ~ ~) is the union of at most
[M/l Qll chains of transactions, such that any two chains are disjoint.

(4) The read phase of the least element of each chain sees g~.

(5) Furthermore,

(a) if the algorithm is A, I%Rl s 8 * M.

(b) if the algorithm is B, I%Rl <8 * lkl/l Qll, and the cardinality of each
chain is at most 8.

Theorem 5.2.4 shows that the final state of any run of an arbitrarily large

number of transactions can be produced by a run which has at most 6 * M

increasing transactions for Algorithm A or at most 8 * 134/lQ 11increasing

transactions for Algorithm B. Thus if we take each state s, such that

C(s) = true, as the initial state of a run (s is the starting state at all sites),

and execute at most 8 * M increasing transactions for Algorithm A or at most
8 ,~[M! IQ 1] increasing transactions for Algorithm B, we can generate all the

reachable states of the system. Furthermore, the transactions are executed in

disjoint chains, so that no gossip messages are sent in the new run, and the

quorums are assigned statically and are disjoint. Thus no details of quorums

and gossip messages occur in this construction. We have provided thereby a

constructive procedure for determining the exact set of reachable states. The

proof of Theorem 5.2.4 is given in Appendix B. Theorem 5.2.4 is extended in

Krishnakumar and Bernstein [1990] to the case where the set of updates

nc-commutes, and where Assumption 5.2.2 can be discarded.

ACM TransactIons on Database Systems, Vol 19, No, 4, December 1994

Bounded Ignorance . 611

6. A MATRIX OF IGNORANCE

We have assumed that each transaction conflicts with every other transac-

tion. This was done for simplicity, and in this section we relax that assump-

tion. Consider, for example, a queue having two transaction types: Enq that

enqueues a single element at the tail of the queue and Deq that removes a

single element from the head of the queue. If we assume that an Enq

transaction can be ignorant of any number of preceding Enq or Deq transac-

tions and that a Deq transaction can be ignorant of the updates of at most 25

preceding Enqs and at most 10 preceding Deqs, we get the following relaxed

behavior:

(1) A Deq can dequeue any of the first 25 elements of the queue.

(2) The same element of the queue can be dequeued at most 11 times.

This is the specification for a “bounded stuttering semiqueue” that we saw

briefly in Section 3.

In general, consider two transaction types ~~ and ~2. Suppose a transac-

tion of type Yq can be ignorant of any number of transactions of type 31 and

at most ~z(> O) transactions of type =2. Similarly, suppose a transaction of

type 32 can be ignorant of at most IVl(> O) transactions of type Y; and at

most ~~(> O) transactions of type Sz. These constraints can be combined into

an ignorance matrix, Ill (where a blank in the position [r, c] indicates that a

transaction of type ~ can be ignorant of an unbounded number of transac-

tions of type ~):

T, Tz

H

TI N1

Tz N, N;

An ignorance matrix is a generalization of a standard conflict relation: a

conflict is recorded in the ignorance matrix by a zero and the absence of a

conflict by a blank. There is a relationship between llM[r, c] and likf[c, r]. If

lA!f[r, c] is zero then a transaction of type ~ cannot be concurrent with any

transaction of type Z. In that case, even if Lll[c, r] is greater than zero, a

transaction of type ~ cannot be concurrent with a transaction of type Y;.

Thus concurrency can be realized only if LU![r, c] and IM[c, r] are greater

than zero.

Algorithms A and B can be extended to implement an ignorance matrix. In

the following we describe how this is done for the above ignorance matrix

using Algorithm B. (The extension to more than two transaction tYPes is

straightforward.)

A timetable TTZ is maintained at each site i, which carries information

about both types of transactions. Two ~T-type locks do not conflict (two
transactions of type >= can hold locks at the same time at a site), but a

Y1-type lock conflicts with a ~2-type lock, and vice versa. A transaction holds

a lock until it completes. Suppose the quorum sizes for types Jal and YZ are

ACM Transactions on Database Systems, Vol. 19, No. 4. December 1994

612 . N, Krishnakumar and A J. Bernstein

IQ, I and IQ, I respectively. AS in -Wwithrn 5 it is not necessw that IQII +
IQ, I > M. (The quorums need not intersect as in a serializable case [Herlihy

1987]. Note, however, that if Ill[l, 2] = O or li14[2, 1] = O, the quorums must

intersect.)

Note that Algorithm B was developed under the assumption that all

transactions conflict. This need not be true. For example, Y–l-type transactions

do not conflict with each other, and as a result it should be possible for an

arbitrary number of them to execute concurrently as long as no Z2-t.vpe

transaction is executing in the network. Furthermore, the following situation

should not occur: more than NI ,Y:-type transactions are executing concur-

rently, and a ~~-type transaction is initiated (its quorum need not intersect

with those of the Y–l-type transactions, so it might not be aware of those

transactions). If the ignorance level in Algorithm B is set to NI, this situation

can be avoided since the initiator of the Y;-type transaction cannot be

ignorant of more than NI concurrent transactions. Unfortunately, in order to

ensure this, Algorithm B restricts pessimistically the level of “multiprogram-

ming”: whether or not an attempt is being made to initiate a .Tz-type

transaction, a bound is placed on the number of Y=-type transactions that can

be executing concurrently.

To overcome this limitation we extend the gossip message technique to

distribute information about active (as well as completed) transactions. Hence,

a site learns of the existence of some concurrent transactions and can place

an upper bound on the number of concm-rent transactions of which it might

be ignorant. As a result, a site trying to initiate a Tj-type transaction can

place a bound on the number of ti~-type transactions with which it might be

concurrent and thus decide whether to initiate the transaction or not.

The extension is implemented as follows. When a ~~-type transaction T is

submitted at site i, it tries to acquire a quorum and thus tries to lock i. If site

i can be locked (i.e., no transaction of type %j has site i in its quorum), a

dummy transaction T~ that is associated with T and having a null update is

created. T~ represents the fact that T has been submitted. T~ is treated as if

it is of type .Y; (except that no quorum is required) and is assigned a

timestamp as in Section 4 by using TTl[i]. The null update is logged in i‘s

history, and the timetable is also updated. TS(T~) is associated with T as its

initial timestamp. We assume that the creation and assignment of an initial

timestamp to a transaction is done atomically, so that concurrent transac-

tions at the same site get unique timestamps.

As T~’s update propagates across the network in gossip messages, sites
learn that a transaction T (with initial timestamp T’S(T~)) of type Y; has

been submitted. Furthermore, since T~ is assigned a timestamp, site i can

determine from TT, the sites at which T~ is known.

Let a candidate transaction of type ~~ at site i be either

(1) a transaction T’ of type Y; that has completed and whose update is
known at i or

(2) a dummy transaction T~ associated with a transaction T of type f~ such
that T has not completed, but the null update of T,J has been logged at i.

ACM TransactIons on Database Systems, Vol 19, No 4. December 1994

Bounded Ignorance . 613

Notice that it is not necessary that either T’ or T be submitted at i.

Furthermore, the number of candidate dummy transactions seen at i is

exactly the number of transactions of type ,Y71 whose submission but not

completion is known to i. Let 81 satisfy al > 1. Before initiating a transac-

tion of type >;, i accumulates a quorum of size IQ1 I and, using TT, and its log,

determines that the following assertion is true: there does not exist a nonqzm-

rum site that is ignorant of more than 61 – 1 candidate transactions of type

Y7 that i has seen.

Suppose a transaction T’ of type Sz is submitted at site j. Consider a site i

not in Q~,. Since the quorum of a ~–z-type transaction need not intersect the

quorum of a $l-type transaction, i can be executing transactions of type ~

without j knowing of their existence. However, there can be at most 81

transactions of type .71 seen by site i that are concurrent to T’ such that j

has not even seen the corresponding dummy transactions. This observation

allows us to relate the value of al to IVl. There are at most M – IQz I sites

that are not in T”s quorum. The proof of Algorithm B (Theorem 4.2.2.1 in

Section 4.2.2) provides the intuition that mutually disjoint quorums of size

IQ1 I allow the largest number of transactions of type Y; to be concurrent to T’.

There can be at most 1(M – IQz 1)/1QI 11 such quorums. Since T’ can be
concurrent to at most al transactions of type Y7 within each such quorum. T’

is concurrent to at most al *[(M – IQz 1)/1QI 1] such transactions. Suppose

ftmther that j knows of c candidate dummy transactions of type t~l. Each

such dummy transaction corresponds to a transaction T of type .Y1 such that

T is concurrent to T’. Thus the maximum number of ~7-type transactions

that can be concurrent to T’ is given by c + til * [(M – IQZ 1)/1QllJ If NI is

greater than or equal to the value, T’ can be initiated.

Assume that before initiating a transaction of type Yz, a site must deter-

mine that there does not exist a nonquorum site that is ignorant of more than

8Z – 1 candidate transactions of type Y;. Using similar reasoning, it follows

that a transaction T“ of type 91 can be concurrent to at most 8Z *1(M –

IQ1 l)\lQz 11transactions of type ~Z whose dummy transactions it has not seen.
T“ can be initiated only if it has seen at most iVz – 8Z ~ 1(M - lQJ/1 Qz 1]

candidate dummy transactions of type Y—z.Similarly, a transaction of type f~z

needs to verify that at most N: – 8Z *1(M – IQz 1)/1Qz 11candidate dummy

transactions of type Y7 have been seen before it can be initiated.

We summarize the three conditions under which a transaction T of type Y;

can be initiated at site i:

(1) IQII sites have been locked in QT.

(2) There does not exist a nonquorum site that is ignorant of more than
81 – 1 candidate transactions of type Y; at i.

(3) i sees at at most Nz – 8Z * 1(M – IQ1 l)\l Qz II candidate dummy transac-
tions of type Y;.

The conditions under which a transaction T’ of type .Zj can be initiated at

site i are as follows:

(1) IQZ I sites have been locked in Q~.

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

614 . N, Krishnakumar and A. J. Bernstein

(2) There does not exist a nonquorum site that is ignorant of more than
8Z – 1 candidate transactions of type YZj at 1.

(3) i sees at most N; – 8Z * 1(M – IQZ I)/IQz l] candidate dummy transactions

of type %j, and at most NI – til * 1(M – IQZ 1)/1Q1ll candidate dummy

transactions of type Y;.

In general, we associate an integer 8, with each transaction type i.

Suppose a transaction of type ~ can be ignorant of N,, ~ transactions of type

Y7, and IQJ I and IQ,] are the quorum sizes for type Y; and ~, respectively. Let

T be of type ~. The i can see at most N, ~ – ~j * [(M’ – IQ, l)\lQjlj candidate

dummy transactions of type ~ when it initiates T.

7. CONCLUSIONS AND FUTURE WORK

We have introduced the notion of N-ignorance in replicated systems as a

mechanism for increasing concurrency among transactions, with the tradeoff

that the integrity constraints of the system may be violated to a bounded

extent. N-ignorance has the nice property that only the more recent updates

in the total order are unknown to a transaction. The technique is useful in

systems where transactions make incremental changes to the database state.

Furthermore, as demonstrated in the airline reservation example, the idea of

ignorance can be useful even though updates like size changes are not

increment al.

We have described algorithms for implementing N-ignorance, and have

investigated the relationship between the value of N and the extent to which

a constraint is violated, so that one may verify that the behavior of the

system is acceptable. We have provided some implementation-independent

results that help us identify a superset of the reachable states. By taking the

specific implementations into account, we give results that enable us to

obtain the exact set of reachable states under certain assumptions.

N-ignorance is most useful when many transaction types conflict. To

improve concurrency when few transaction types conflict, we have extended

the algorithms to permit the use of a matrix of ignorance, so that the

allowable ignorance of each transaction type with respect to each other type

can be individually specified. With this extension N-ignorance allows higher

concurrency that one-copy serializability, since (1) nonconflicting locks can be

recognized and (2) concurrency restrictions based on conflicts can be relaxed

using ignorance. The actual performance, however, of the algorithms used to

implement N-ignorance depends largely on how frequently gossip messages
are propagated and how much time is involved in processing these messages.

Any system that is based on ignorance will have to be tuned to determine the

appropriate frequency of gossip messages.

Several other problems remain open. Krishnakumar [1992] discusses how

compensating transactions can be included for analysis in the model. A

compensating transaction is normally used to bring a system that does not

satisfy the constraints back to a ‘(good” state. However, the concept of

semantic compensation has been difficult to capture [Korth et al. 1990]. For

the analysis in Krishnakumar [1992], a compensating transaction is simply

ACM TransactIons on Database Systems, Vol. 19, No 4, December 1994

Bounded Ignorance . 615

modeled as one that does not make a “bad” state even “worse.” We define a

partial order on reachable states to formalize the notions of “bad” and

“worse.” It is important to develop a lucid theory of compensation in N-

ignorant systems, since compensation is integral to such a system. Issues

that have to be addressed by such a theory include the following questions:

(a) when to compensate, (b) whether to compensate on the “bad state as a
whole or to compensate only for an “errant” transaction, (c) how to avoid

overcompensation in a replicated environment, and so on.

Another area that needs to be investigated is in how to determine the value

of N (or the ignorance matrix) given the original and relaxed constraints.

This problem is difficult in general [Krishnakumar 1991], and a case study of

how the matrix can be derived automatically in some cases (such as con-

straints over relational databases) is shown in Krishnakumar [1992].

Finally we would like to identify classes of applications (beyond those

where the transactions do only incremental changes) where the idea of

ignorance is useful in increasing concurrency. One example is that of the

airline reservation system with size changes. It is important to characterize

such systems accurately.

APPENDIX A

Properties of the Gossip Messages Scheme

LEMMA Al. For any t, and for any site i, Vj GSV [T~’[i] < TT~[i]].

PROOF. The nontrivial case is when i #j. Let us refer to transaction

executions and the receipts of gossip messages collectively as (interesting)

events (the send of a gossip message is not considered since it does not affect

the sender’s timetable). The lemma follows by induction on the number, n, of

events in the system.

Base Case. n = O. The timetables remain unchanged forever, so that at

any time t,l’T’,t[i, h] = O = TTJt[i, h], for all i, j, and k in J%-Z

Induction Hypothesis. Assume that the lemma holds when n events take

place in the system.

Inductive Step. Consider the case when n + 1 events take place in the

system. We have to show that the n + 1st event preserves the lemma.

Assume that this event occurs at time t’.From the induction hypothesis, we

know that the lemma is true for all t < t’.We consider now the cases for the

n + 1st event:

(1) Transaction execution at site i: in this case, only 7’7’,[i, i] is incremented
at Al, so 7T’,[i] is unchanged.

(2) Receipt of a gossip message at site i: this can either increase IW’,[i, k] for
some k or not alter !i7!’i[i, k] for any k. TTJ[i] remains unchanged.

(3) Receipt of a gossip message at .j(# i): assume that the gossip message
was sent at time t“ from site 1 such that t“ < t’.7’TJ[i] can be updated

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994.

616 . N Krishnakumar and A, J. Bernstein

only at Step (M2). From the induction hypothesis, for all t < t‘,Z’Tjf[i] s

TT,’[i]. Furthermore, TT~[i] < TZ’j[i]. Observe that TT~ is sent in the

gossip message from 1. Then for any k in ;7Y, T~[i, k] cannot be updated

to a value larger than TTZt’[i, k] at (M2).

In all the above cases, the lemma is preserved for any time greater than or

equal to t’. ❑

LEMMA A.2. Consider distinct sites i and j. Assume that TT, [i, s], for some

s, is changed at time t due to either a transaction execution at i or the receipt

of a gossip message at i. Then for all t’ > t, TT,t[i, s] < TTJf’[i, s] if and only If

there exists a chain of gossip messages from i to j such that the first message is

sent from i after t, the last message is received at j before or at t’.

PROOF.

If. Given that a chain of messages exists from i to j as in the statement of

the lemma, show that at t’, TTlt[i, s] < TTlt’’[i, s].

This follows from (Ml), (M2), and the gossip property.

Only If. Given that at t,TT, [i, s] changes, and at t’> t,TT,t[i, s] <

TT,L’[i, s]. Show that there exists a chain of gossip messages from i to j as in

the statement of the lemma.

The follows by induction on the number, n, of events in the system (as in

Lemma 4.1.3).

Base Case. n = 0. The timetables remain unchanged forever, so the lemma

is trivially true.

Induction Hypothesis. Assume that the only-if part of the lemma holds

when n events take place in the system.

Inductive Step. Consider the case when n + 1 events take place in the

system. We have to show that the n + 1st event preserves the only if part of

the lemma. Assume that the n + Ist event occurs at time t’at site j. Assume

that TTJf’[i, s] > TT,~[i, s]. If for some t“(< t’),it is true that TT~t’’[i, s] z

TT,’[i, s], then the inductive hypothesis ensures that there exists a chain of

gossip messages as in the statement of the lemma. If not, observe that only a

gossip message from some site 1 can cause the update of TT~[i, s] at t’. This
implies that TT/’[i, s] a TT,~[i, s]. From the inductive hypothesis, there ex-

ists a chain of messages from L to Z as in the statement of the lemma, and by

appending the message from 1 to j, we get the required chain from i to j, ❑

LEMMA A.3. Consider a site i and a transaction T. For any t, TS(T) s

TT,t[i] if and only lf UT is in the site view of i at t.

PROC)F. Let T be initiated at site j at t’(< t).

If. Given that UT is in the site view of i at t,show that TS(T) < TT,’[i].

(1) i = .j: follows from (Al), (A2), and Observation 4.1.1.

(2) i + j: let UT be in the site view of i at t.There then exists a chain of

gossip messages, each containing u ~, such that the first message in the

AC.’M Transactions on Database Systems, Vol 19, No 4. December 1994

Bounded Ignorance . 617

chain is sent from site j after t’,and the last message is received at site i

before or at after t, We know that TS(T) = TTlt’[j]. From Observations

4.1.1 and 4.1.2 and the existence of the chain above, it follows that

T’S(T) < T’T,li].

Only if. (liven that TS(T) < TTtt[i], show that U* is in the site view of i

at t.

(1J i = j: from Lemma Al, (Ml), and (M2), TT, [i, i] is not altered when a
gossip message arrives at i. Thus TTZ[i, i] is incremented only when site i

initiates a transaction. Thus if’ TS(T)[i] g TT,f[i, i], then T has been

initiated at i before t, so that T is in the site view at i at time t.

(2) i + j:observe that T’S(T) = T~~’[j], and note that T~[j, j] changes at t‘
due to the execution of T at j. From our assumption, T~”[j] < TTZ’[i],

and specifically TTjt’[j, j] < TTZt[i, j]. From Lemma A.2, Tjt’[j, j] <

TTZt[i, j] only if there exists a chain of gossip messages such that the first

message in the chain is sent from j after T has been initiated; the last

message is received at i before or at t. From the gossip property, all the

messages in the chain will contain UT. Since the last message in the

chain is received before or at t,UT will be in the site view of i at t. ❑

LEMMA A.4. Consider sites i and r and a transaction T. For any t, if

TS(T) s T~~[i], then UT is in the site view ofi at t.

PROOF. From Lemma A. 1, Z’T~[i] =s T~t[i], and we are given that TS(T)

< TT,t[i]. Thus TS(T) < TT,~[i], so that, from Lemma A.3, UT is in the site

view of i at t. ❑

LEMMA A.5. If Tz * TI, then TS(Tz) < TS(TI). Further, if TI is initiated

at site i, then TS(Tz)[i] < TS(Tl)[il.

PROOF. Let Tz be initiated at site j at time t‘and TI at site i at time t,

where t’< t.By definition, UT is in i’s view at some time t“< t.From

Lemma A.3, TS(Ta) < TT,t”[i]. Note that at t,both TT,[i, i] is incremented in

(Al) and the vector TTj[i] is assigned as the timestamp of TI in A2. From
Observation 4.1.1 and the above results, the lemma follows. ❑

LEMMA A.6. The timestamps assigned to transactions are globally unique.

PROOF. Assume not, so that t’or two transactions TI and Tz, TS(TZ) =

TS(TI), Then from Lemma A.5, TICOrIC Tz. Let TI be initiated at site i at

time t.TS(TZ) < TT,t[i] by assumption. It follows from Lemma A.3 that UT,

is in the site view of i when TI is initiated. But then Tz ~ TI, which is a

contradiction. ❑

APPENDIX B

PROOF OF THEOREM 5.2.4 First we define the sets %, ~, and Yin the case

of a B-run, R. Choose at most [M/l Q\] transactions as in Figure 4 to form a

set 9.

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994

618 . N. Knshnakumar and A. J. Bernstein

If 2 IS the last transaction !n -.. [{, then include T In L

Whjle I ‘1’ : ++j I do

begin

Choose the transaction T’ with the largest t,mestamp such

that (JT does not intersect any of the quorums of

transactions in C

If such a 7’ cannot be found

then e,at

else add T’ to L’

end

Fig. 4. Procedure to construct Y

Notice that the quorums of any two transactions in S? are disjoint. Let @

denote the set of quorums, Q~, such that T G Y’. If T =Y”, consider the last

8 – 1 transactions in the < ~ order that RP~ sees. Denote the set that
includes T and these 6 – 1 transactions as Last~r. For each q G E, define

Incr~ to be the subset of Last~ satisfying {T’ IT’ G Last~ ~ T’ is increasing}.

The set Decr~ is defined to be Last, – Incr~. Finally, let % = {T’ I(b’q G &’)T’

@ Last~), 9 = U ~.< Decrg, and >= U ~=d IncrQ.
Before proving Theorem 5.2.4, we prove two important lemmas.

LEMMA A.7. Consider the execution of an A-run (B-run) R. Denote the

updates of all transactions in % by %“. Then either of the following is true of

any transaction T @ 7?:

(1) RP~ sees all the updates in %’, or

(2) there exists a transaction T’(G Y) such that RP~ sees all the updates in
Y’ and UT.

PROOF. First assume that R is an A-run. Let T be initiated at site i. T, by

assumption, is in Last,. Assume that RP~ does not see all the updates in ?/’.

Assume further that if T, is the last transaction initiated at i, RP~, does not

see all the updates in ?/’. (If RP~ does see all updates in %’, then the lemma

follows trivially.)

There then exists a site j and a transaction T“ initiated at j such that both

T“ G % and u~t, is known to i only after i has executed T,. i must learn of

UT,, eventually: otherwise the last transaction in Lact,, TJ, cannot be initi-
ated. From Lemmas A.2 and A.3 and the gossip property, T] sees the updates

of all transactions initiated at site i (Figure 5). Now there are two cases:

(1) RP~, sees all updates in %“, and also u ~. The second condition in the
statement of the lemma is satisfied by substituting Tj for T’.

(2) Otherwise, the argument can be repeated with respect to Tj. Thus there
exists another site k such that some transactions not in Lastk is not

known at j until TJ has been executed. Furthermore, if TA is the last

transaction initiated at k, then RP~, will have to see the updates of all

ACM TransactIons on Database Systems, Vol 19, No. 4, December 1994

Bounded Ignorance . 619

,Slt(,Sitf

1 .i

~..
/ .. \

Figure 5

the transactions initiated at both i and j. This situation is similar to the

one encountered earlier. Hence a similar reasoning may be used. Note

that k cannot be i, since RP~, sees all the transactions in Lastl, and
~+R~,

Since there are a finite number of sites, there must exist a site m such that

the last transaction in Lastm is the required transaction T’.

The proof of the lemma for Algorithm B follows the same lines as for

Algorithm A. Let T G Last~ for some q ● @. Consider the transaction T~ in 9

whose quorum is q (by construction, To is unique). There are two cases for

T~ :

(1)

(2)

RP~, sees all the updates in %’. Then the second condition in the

statement of the lemma is satisfied by substituting T~ for T’.

Otherwise, there exists a transaction T“ in % such that u~,, is known at

any of t-he sites in q only after T~ has executed. Furthermore, by

construction, T“ is seen by the read phase of some transaction T~, in S?.

The argument can now be repeated for T~. ❑

LEMMA A.8. Consider a system using Algorithm A, with given 6 and IQ1.

Consider a set of transactions ~and a set of sites Y such that IYI z IQ I and

la <8 * I&l. Assume that L is a linear order on the transactions in K Then

ACM TransactIons on Database Systems, Vol. 19, No. 4, December 1994.

620 s N. Knshnakumar and A. J Bernstein

there exists an A-run R of the transactions in Y– executed over the sites in .?–

such that - ~ = L.

PROOF. I’-Jumber the sites from O to I.FI – 1. Label the transactions in :7

from TO to Tl,il ~, such that for T, and T,, t < j if and only if T, L T]. Assume

that all the sites if Z are at the same initial state. The execution of R is done

as follows. The transactions labeled T“ to T7 ~ are initiated at site O in

succession, with a quorum of sites O to IQ I – 1. Then the transactions labeled

Tt~ to Tz ,~-1 are all initiated at site L with quorum from 1 to IQl, and so on.
Thus the set of transactions from T,, ~ to ~.,. ~, ,5_~ are all initiated at site

m, with the quorum being the sites m through (m + IQ I – 1)mod Iti-l. Fur-

thermore, these transactions are initiated only after T,,. ~~ ,$ to T,. ,5- ~ have

finished execution.

In run R, ~H = L. Furthermore, the timetable check in Algorithm A for

any transaction is trivially satisfied since at most 8 transactions are initiated

at each site. ❑

THEOREM A.9. Consider an N-ignorant system, and assume that elery pair

of updates commutes. For every A-run (B-run) R uwth initial state gO and

final state g, there exists an A-run (B-run) R’ with the following properties:

(1) R’ has final state g.

(2) R’ has initial state g; = gO=upd(R, ?[U ~), and C(g~) = true.

(3) %R =3 and the partially ordered set {w~, ~ ~) is the union of at most

[M/l Qll chains of transactions, such that any two chains are disjoint.

(4) T?ze read phase of the least element of each chain sees g;.

(5) Furthermore,

(a) if the algorit?lm is A, ~7iR~ <<7 * M.

(b) if the algorlthnl LS B, 1~~1 s 8 * [M/l Ql], and the cardinality of each

chain LS at most S.

PROOF. Consider the state g~, = g(,.upd(R, % U W). From Lemma A.7, there

exists some transaction T in Y/R such that RP~ sees the updates of all

transactions in %. Assume that RP~ sees the updates of transactions in

?[UP’ U Y’. where 57’ L 2, and Y’ c .E Then, since T produces a nonnull

update,

L’(gowpd(R, % U@’ U#-’)) = trz~e, . . . (~)

We now present some intuition that is useful throughout the proof.

Assume that if C is a constraint. s is a state such that C(.s) = true. Then
the state resulting from the removal of an increasing update from the update

sequence of s still satisfies C. Likewise the state resulting from the addition

of a decreasing update to s satisfies C. The intuition is clear from the

definition of increasing and decreasing transactions.

It thus follows from the definition of increasing and decreasing transac-

tions that we can substitute 9 for ~’ and @ for .7’ in (1-) to get

C(gO.Upd(R, %U~)) = true,

i.e., C(g{l) = trzle.

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

Bounded Ignorance . 621

Procedure Part It[on

For all T, do [7, =,1

For each maximal element I of 1,--; ‘I; do

begin

[T==(][, k,=’

For each I’ln Ilnit,atedat as(teln (J I do

F, = ET 1.’ {[’)

For each site i E ST do

If (~T1 such that I < }r, I

then begin

Let 7“ be the last transaction Imt!ated at I

If 7“ —,q I

then begin

1’, = [-~ . {/)

Foralll’’ such that T“lslnI

and IS Imtla ted at t,

ET = E, l., ~T”]

end

end

end

end Partit]on

Fig. 6. The Parltlon procedure.

We now demonstrate how R’, with initial state g~, can be constructed from

an A-run R such that 7~Rr = Y. We then show how R’ is constructed if R is a

B-run.

A maximal element of a partially ordered set (S, <) is defined as an

element m in S such that there is no m’(+ m) in S where m < m’. Note that

if the quorum size is IQl, the number of maximal elements of (’7?~, - ~) is at

most [M/lQl].

Consider a set, S’, and a relation, Z, defined on a superset of S. Then the

restriction of Z to S is denoted by 2/S.

Construction of A-Run R’. First, we construct at most [M/l Q 11sets of sites

using the Partition procedure in Figure 6.

Note that Partition produces a set of sites, F~, corresponding to each

maximal element T of (Y, ~ ~/Y), and by construction, IF~ I > IQ 1.The set

ET is the set of all transactions from 7 that are initiated in R at sites in F~.

Furthermore, the sets, ET, are mutually disjoint, and the sets, F~, are also

mutually disjoint. - ~, is defined as follows: consider a maximal transaction

T of (Y, 4 ~/Y) and any linearization, 0., of * ~/E~. Then ~ ~/E~ = 0~.

(w~, -~) thus has at most 1M/lQll mutually disjoint chains.
An execution of (the A-run) R’ is constructed as follows. We know that

lF~ I > IQI, and IET I <8 * IFT I since at most the last 8 increasing transactions

ACM Transactions on Database Systems, Vol. 19, No. 4. December 1994.

622 . N, Krishnakumar and A. J. Bernstein

initiated at each site in F~ can be in ET. From Lemma A.8, for any T

maximal in (Y, ~ ~~Y), all transactions in ET can be executed within sites

in F~ according to ~ ~/E7. < ~ is the linearization of ~ ~, specified by the

timestamps in this execution. Furthermore, the timetable check for each

transaction is trivially satisfied, since at most 8 transactions are initiated at

each site.

The Final State of A-Run R’ is g, The above result can be shown if RP~

for each transaction T in 2“ R produces the update 11~ in R’ (as in R) and not

the null update. Thus, consider a transaction T in ‘%R. In R, assume that

RP~ sees gO.upd(R, % U $27’ U .7’), where Z’ c %’, ~’ c 9, and .Y g~”’. We

know that since T produces a nonnull update, u ~, in R.

C(go*[Upd(R, W U@’ U~’) U {UT}]) = true.

This can be rewritten as

C(gO*[Upd(R, W UL?J’) U upd(~,~’) U {ZLT}]) = true. (*)

By the construction above for R’, RP~ sees in R’ all updates from

gO= (Upd(R, Y U 9)). Assume that it also sees the updates in upd(+~’, ~“),

where X“ c Z. Notice from Partition and the construction of R’ that for

transactions that are maximal in (Y, + ~/x), >“ L y-’. We now show that

RP~ produces UT in R’ whether or not is is maximal n (Y, - ~/.F).

Case 1. Assume that T is maximal in (,Y, ~ ~/_fl). So Y’ L, Y’. From

Lemma A.7, it follows that % = %. (*) is then

C(gO*[Upd(R, %’U9’) U upd(R, ~’) U {UT}]) = true,

From the definition of increasing and decreasing transactions, we can substi-

tute ~ for ~’, and Y for Y’, and C will still be true of the resultant state.

Thus

C(g0.[upd(R,7/ u&Z) u upd(l?, >”) u {UT}]) = true.

Any transactions in TI in Y“ produced a nonnull update u ~, in R, and will

either produce UT or null in R’. Then from the definition of an increasing1
transaction.

C(go=[upd(R,7/U~) U Upd(R’,.Y’) U {UT}]) = true.

From Assumption 5.2.1, RP~ produces UT in R’,

Case 2. Assume that T is not maximal in (#-, s ~/Y). Consider transac-

tion T’ in R such that T ~ ~ T’, T’ is maximal in (~, ~ ~/fl), and T G E~.
Assume that RP~t sees, in R’, the state 1’= gO.upd(R’, % U $7 u Yl), where

& c>. Assume that the subset of Upd(R’, >) that RP~ sees in R’ is

upd(R’, Yz), where >Z G.Y. Note that T is in >1 and >Z CYI, since T + ~, T’
from Partition and the construction of R’. From Assumption 5.2, and the fact

that RPT produces a nonnull update in R’ (as proved above), C(1’) = true.

ACM Transactions on Database Systems, Vol 19, No 4, December 1994

Bounded Ignorance . 623

Then from the definition of an increasing transaction, we can substitute

(& U{ Z’}) for~l to get,

C(gO*upd(R’, % U.f3 U_$?2 U {~})) = true.

From Assumption 5.2.1, RP~ produces UT in R’.

Since the update of every transaction in 7fl~# is the same in R’ as in R, and

any pair of updates commutes, the A-run R’ produces the same final state, g,

as the A-run R.

Construction of B-Run R’. For Algorithm B, the set @ was constructed

such that it has at most 1M/l Qlj elements. Furthermore, for each q ● @,

there is a chain determined by < ~ over lncr~. The chains can be made

mutually disjoint by the following. If a transaction T appears in more than

one chain, then choose arbitrarily a chain in which T is retained, and remove

T from all the other chains. Thus there are at most] M/l Ql] mutually disjoint

chains, each of length at most 8. For the B-run R’, - ~, is the union of the

ordering indicated by these chains. An execution of R’ is constructed as

follows. Divide ~> into [M/l Ql] mutually disjoint sets of sites, each of size at

least IQI. These sets are the quorums in the execution of R’. Thus all

transactions in a chain are executed at a single quorum, and each chain of

transactions is executed at a different quorum. The update of any transaction

executed at one quorum is not known to any transaction executed in any

other quorum. < ~, is the linearization of - ~, specified by the timestamps

in this execution. Furthermore, the timetable check for each transaction is

trivially satisfied since there are at most 8 transactions in each chain.

The Final State of R’ is g. Same proof as the one for Algorithm A.

We have thus constructed the A-run (B-run) R’ as in the statement of the

theorem. ❑

REFERENCES

AGRAWAL, D. AND MALPANI, A. 1991. Efficient dissemination of information in computer net-

works. Comput. J. 34, (Dec.), 534–541.

ALONSO, R., BARBARA, D., AND GARCIA-M• LINA, H. 1988. Quasi-copies: Efficient data sharing for

reformation retrieval systems. In Advances m Database Tec/-mology-EDl3T 88, J. W. Schmidt,

S. Ceri, and M. Missikoff, Eds. Lecture Notes in Computer Science, vol. 303. Springer-Verlag,

New York, 443-468.

BARBARA, D. AND GARCIA-M• LINA, FL 1992. The demarcation protocol: A technique for main-

taining arithmetic constraints in distributed database systems. In Proceedings of the Interna-

tional Conference on Eztendin.g Data Base Technology. Springer-Verlag, New York.
BERNSTEIN,P. A., HADZILACOS,V., ANDGOODMAN,N. 1987. Concurrency Control and Recovery

m Database Systems, Addison-Wesley, Reading, Mass.

BIRMAN, K., SCHIPER, A., AND STEPHENSON, P. 1991. Light causal and atomic multicast, Tech.

Rep. TR-91-1 192, Cornell Univ., Ithaca, N. Y.

BIRRELL, A. D,, LEVIN, R., NEE~HAM, R. M., AND SCHRODER, M. D. 1982. Grapevine: An exercise

in distributed computing. Commun. ACM 2?5, 4 (Apr.), 260–274.
DURIWE, E. H., LIMsmt, V. R. AND CO~KILL, D. D, 1987. Cooperation through communication in

a distributed problem solving network. In Dwtributed Artificial Intelligence, M. N. Huhns, Ed.

Research Notes in Artificial Intelligence. Morgan Kaufmann, San Mateo, Calif.

ELMAGAEtMID, A., ED. 1991. Data Eng. Bull. 14, 1 (Mar.).

ACM Transactions on Database Systems, Vol. 19, No 4, December 1994.

624 . N. Krlshnakumar and A, J. Bernstein

ESWARAN, K. P., GRAY, J. N., LORIE, R, A., AND TRAIGER, I. L. 1976. The notion of consistency

and predicate locks m a database system. Commun ACM 19, 11 (Nov.) 624–633.

FARRA~, A. A. AND OZS[, M T 1990. Using semantic knowledge of transactions to increase

concurrency. ACM Trans Database Syst. 15, 2 (Mar,), 484–502.

FISL’HER, M. J. ANL) MICHAEL, A. 1982 Sacrificing seriahzability to attain high avadab]llty of

data in an unreliable network In Proceedings of the ACM SIGACT-SIGMOD Symposium on

Pr[nclpl.s of Dutabase Systems. ACM, New York, 70-75.

GARCL\-MOLINA, H, 1983. Using semantic knowledge for transaction processing in a dis-

tributed database. ACM Trans. Database Syst. 8, 2 (June), 186–213.

GARCI~-MOLINA, H., GAWLJCX, D , KLEIN, J., KLEISSNER, K., ANEZ SALEM, K. 1991. Modeling

long-running activities as nested sagas, Data h’ng, Bull. 14, 1 (Mar,), 39-43.

GOLDING, R. A. 1992, The timestamped anti-entropy weak-consistency group communication

protocol Tech Rep UCSC-CRL-92-29, Univ. of California, Santa Cruz, Calif.

GRAY, J. N. 1978. Notes on database operating systems. In Operatzng Systems: An Advanced

(,’ourse. Lecture Notes in Computer Science, vol. 60, Springer-Verlag, Berlin, 393-481

HEDDA~A, A., Hsu, M., AND WF,lHL, W. E. 1989, Two phase gossip, Managing distributed event

histories Inf SCZ. 49, 1, 35-57

HMLMHY, M, P. 1990, Apologizing versus asking permission Optimistic concurrency control

for abstract data types, ACM Trans. Database Syst 15, 1 (Mar), 96-124.

HERLIH~, M P. 1!387 Concurrency vs availability: Atomicity mechanisms for replicated data

ACM Trans. Comput Syst 5, 3 (Aug.), 249-274.

HERLIH~, M P. AND WEIHL, W E, 1988 Hybrid concurrency control for abstract data types In

Pro.vedlngs of the ACM Synzposium on Principles of Database Systems, ACM, New York,

201-210,

HEItLIH~, M. P. AND WING, J M, 1987. Speclfylng graceful degradation in distributed systems

In Prowedzngs of tile 6th Annual ACM Symposium on Principles of DlstrLbuted t70mputmg.

ACM, New York, 167–177.

HERMAN, D. 1983, Towards a systematic approach to Implement distributed control of syn-

chromzat]on. In Dmtrzbuted C’nnzputing Systems, Y Paker, and J.-P. Verjus, Eds. Academic

Press, New York, 3–22

JEIWERS(,N, D. 1985. Virtual time. ACM Trans. Program Lang. Syst 7,3(July), 404-425

KI!A, J H , P~RL K H , ANIJ KZM, M 1989. A model of distributed control Dependency and

uncertainty Inf Proce.v9. L~tt 30, 1 (Jan.), 73–77

KOR~H, H, ~NL> SPMWLE, G. 1988. Formal model of correctness without seriahzabdity. In

Proceedings of the AChf SIGMOD Internatlonul Conference on Management of Data. ACM,

New York, 379-388

KORTH, H , Km, W,, AND BANClLHON, F, 1988. On long-duration CAD transactions. Inf SCZ. 46.

KORTH, H F , L~v~, E., AND SIBKRSCHATZ, A. 1990. A formal approach to recovery by compen-

sating transactions. In Procwdzngs of the 16 International Conference on Very Large Data

Base VLDB Endowment, 95–106.

KRHHNAKCTLIAR, N. 1992. Increasing concurrency and autonomy in replicated database sys-

tems Ph.D. thesis, State Univ. of New York, Stony Brook, N Y,

KRISHNAKIJZWR, N. 1991. On computing serial dependency relations, Tech. Rep, SUSB-TR-91-

10, State Umv. of New York, Stony Brook, N, Y. To appear 1~ .J Comput. Syst Scz.

KRMH~AKUM.LR, N. .AND BERNSTEIN, A. 1992 High throughput escrow algorithms for replicated

databases. In Prowedlngs of the 18 Internatmnal Conference on Very Large Data Bases. VLDB

Endowment, 175– 186

KKISHNAKLTMAK, N. AND BKRNSTZHN, A J. 1990 Bounded ignorance in replicated systems Tech,

Rep SUSB-TR-90-29, State Umv. of New York, Stony Brook, N, Y,

LAOIN, R , LMr<ov, B., ANU SHRIRA, L. 1990. Lazy replication: Exploiting the semantics of

distributed services. In Proceezlzngs of the 9th Annual ACM Syznposzum on Prlnczples of

Dzstrlhuted C’omputzng ACM, New York

LAMPORT, L. 1978 Time, clocks and ordering of events in a distributed system, Cornmun

ACM 21, 7 (July), 558-565.

LEVY, E , KORTH, H , AND SILTSERSCHATZZ,A. 1991. A theory of relaxed atomicity In Proceedings

of t~le 10 Annual ACM SUvmpo.szurzl on Prznrzples of Dlstrlbu ted Computzng, ACM, New York.

ACM TransactIons on Database Systems, Vol 19, No 4, December 1994

Bounded Ignorance . 625

LISKOV, B., L~DIN, R., ANU SHRIRA, L. 1988. A technique for constructing highly available

distributed services. Algorithmzca 3,393-420.

LYNCH, N. A. 1983. Multilevel atomicity—a new correctness criterion for database concur-

rency control. ACM Z’rans. Database Syst. 8, 4(Dec.),484–502.

LYNCH, N. A., BILAUSTEIN, B. T., AND SIEGEL, M. 1986. Correctness conditions for highly

available replicated databases. In p?wceedmgs of the 5tb Annual ACM Symposium on Princr -

plesofDzstributed Computmg. ACM, New York, 11-28.

O’NEIL, P.E. 1986. Theescrow transactional model. ACM Trans. Database S.yst. 11,4 (Dec.),

405-430.
PAIGE, R. 1990. Symbolic finite differencing—part i. In the European Symposium on Pro-

gramm ing. Sprmger-Verlag, New York, 36-56.

Pu, C. AND LEFF, A. 1991. Execution autonomy m distributed transaction processing. Tech.

Rep. CUCS-024-91 Columbia Univ., New York.

QIAN, X. ANI)WIIIDEWHOLD, G. 1986. Knowledge-based integrity constraint validation. In Pro-

ceedings of the 12 Internalzonal Conference on Very Large Data Bases, VLDB Endowment,

3-12.

REUTER, A, ANLIWAL’HT~R, H. 1991. The contract model. Data Eng. Bull. 14, l(Mar.),39-43.

RUSINKIEWICZ, M. AND SHSTH, A. 1991. Polytransactions for managing interdependent data

Data Eng. Bull. 14, l(Mar.),39-43.

RUSINKIEWICZ, M., SHETH, A., AN~KARABATIS, G. 1991. Specifying interdatabase dependencies

in multidatabase environments. Tech. Rep. TM-STS-O18609/l, Bellcore, Morristown, NJ.

SARIN, S. K. 1986. Robust application design in highly available distributed databases. In

Proceedings of the 5th Symposium on Rellabllity In Distributed Software and Database

Systems. IEEE, New York, 87-94.

SARIN, S. K., DEWITT, M., AND ROSENBURG, R. 1988. Overview of SHARD: A system for highly

available replicated data. Tech. Rep. CCA-88-01, Computer Corp. of America, Boston, Mass.

SARIN, S. K., KALTFMAN, C. W., ANJI SOMERS, J. E. 1986. Using history information to process

delayed database updates. In Proceedings of the 12 International Conference on Very Large

Data Bases, VLDB Endowment, 71-78.

SHA, L., LEHOCZKY, J. P., AND JENSEN, E. D. 1988. Modular concurrency control and failure

recovery. IEEE Trans. Comput. 37, 2 (Feb.), 146–159

SI-IETH, A., LEU, Y., AND ELMAGARMID, A. 1991. Maintaining consistency of interdependent data

in multidatabase systems. Tech. Rep. TM-STS-O 19409/1, Bell core, Morristown, N. J.

SKEEN, M. D. 1982. Crash recovery in a distributed database system. Ph.D. thesis, Univ. of

California, Berkeley, Calif.

VERJUS, J.-P. 1983. Synchronization in distributed systems. In DtstrLbuted Cornputmg Sys-

tems, Y. Paker and J.-P Verjus, Eds. Academic Press, New York, 3-22.

WEIHL, W. E. 1989. Local atomicity proper’ues: Modular concurrency control for abstract data

types. ACM Trans. Program, Lang. Syst. 11, 2 (Apr.), 249-282.

WEIHL, W. E. 1988. Commutativity-based concurrency control for abstract data types. IEEE

Trans. Cornput 37, 12 (Dec.), 1488-1505.

WEIKUM, G. AND SCHEK, H.-J. 1991. Multi-level transactions and open-nested transactions.

Data Eng. Bull. 14, 1 (Mar.), 39-43.

WONG, M. H. AND AGRAWAL, D. 1992. Tolerating bounded inconsistency for mcreasmg concur-

rency in database systems. In Proceedings of the 11th ACM SIGACT-SIGMOD Symposl unL o~L

Principles of Database Systems. ACM, New York, 236-245.

Wuu, G. T. J. AND BERNSTEIN, A. 1984. Efficient solutions to the replicated log and dictionary

problems. In Proceedings of the 3rd Annual ACM Symposium on Prznczples of Dmtrtbuted

Computmg. ACM, New York, 233-244.

Accepted June 1994

ACM Transactions on Database Systems, Vol. 19. No. 4, December 1994

