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Many algorithms have been devised for minimizmg the costs associated with obtaining the
answer to a single, isolated query in a distributed database system. However, if more than one

query may be processed by the system at the same time and if the arrival times of the queries

are unknown, the determination of optimal query-processing strategies becomes a stochastic

optimization problem. In order to cope with such problems, a theoretical state-transition model is

presented that treats the system as one operating under a stochastic load. Query-processing
strate~es may then be distributed over the processors of a network as probability distributions,
in a manner which accommodates many queries over time.

It M then shown that the model leads to the determination of optimal query-processing

strategies as the solution of mathematical programming problems, and analytical results for
several examples are presented. Furthermore, a divide-and-conquer approach is introduced for
decomposing stochastic query optimization problems mto distinct subproblems for processing
queries sequentially and m parallel.
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1. INTRODUCTION

The problem of optimizing the processing of a single, isolated query in a
distributed database system has received a great deal of attention in recent
years [4, 8, 27, 41]. Most of the literature devoted to this topic addresses the
problem of finding a deterministic strategy for assigning the component joins
of a relational query to the processors of a network that can most efficiently
execute the joins and that can most economically perform any required
interprocessor data transfers. Thus, for each new type of query that arrives
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at the system, a new optimal strategy is determined that minimizes the
overall cost to the network for processing that query.

However, in practice, it is the capacity of distributed systems for concur-
rent processing that often motivates the distribution of a database in a
network in the fh-st place. That is, a different approach to query optimization
is obtained if the system is viewed more generally as one which receives
different types of queries at different times and if the system is capable of
load-sharing the processing of more than one query at the same time. In
contrast to the static single-query optimization problem, the multiple-query
problem is not deterministic. Since it is usually not known when a particular
type of query will arrive at the system, the multiple-query input stream
constitutes a stochastic process. Instead of searching for a deterministic or
“pure” strategy for processing a single query, the system’s multiple-query
strategy is distributed over the sites of the network as a probability distri-
bution or “mixed” strategy. Thus, the “decision variables” of stochastic query
optimization problems are just the probabilities that a component join is
executed at a particular site of the network.

A general approach is proposed in this paper for stochastic query optimiza-
tion in relational [10, 13], distributed database systems, based on a Markov
model of the system. The model is an extension of one described in [15], which
is based on the original multiprocessing model of [ 14] and [ 16]. The model
may also be regarded as a probabilistic extension of the state-transition
model due to Lafortune and Wong [27] from a single-query input to a
multiple-query stochastic load. That is, following [27], a change of state in the
network is associated with the execution of each component join of a query.
The model is sufficiently general to encompass both long-haul and local-area
networks, semijoin strategies, and full or partial replication of relations over
sites of the network. The approach taken in this paper is multidisciplinary,
employing techniques and principles of such varied fields as automata theory
[3, 19, 25], scheduling theory [11], mathematical programming [22, 31, 37],
and performance analysis [17, 23]. Stochastic models are common in database
literature [e.g., 1, 5, 36, 37], but this paper differs from these references in
that it is concerned primarily with query-processing capacity, and not with
the performance of concurrency mechanisms.

The main objective of the model is to provide a means for determining
query-processing strategies that are globally optimally, in the sense that the
system achieves maximum throughput for the network as a whole. Using
the system throughput as a performance measure, optimal query-processing
strategies are sought as the solution of the mathematical programming
problem defined by maximizing the throughput as objective function, subject
to a set of suitable constraints on the system’s query-processing strategies.
Since it has been shown that optimal strategies for systems under stochastic
load, subject to overload constraints (as defined in Section 2), are mixed [ 14],
probabilistic query plans are of primary interest in this introductory paper.

This paper is organized accordin~ to the type of input queries to be
processed by the model, in order of their increasing complexity. The simplest
case of a single-join query is considered first in Section 2, which also
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describes many of the basic assumptions and concepts for the sequel. In
Section 3, it is shown that single-join models may always be solved as linear
programming problems, even when more than one single-join query may be
processed at different sites. However, multiple-join queries lead in general to
nonlinear programming problems, and both combinatorial and iterative solu-
tions of such problems are discussed in Section 4. The complexity of the
general model is also shown in Section 4 to be polynomial in the number of
sites in the network and exponential in the number of joins in a set of input
queries.

2. THE SINGLE-JOIN, SINGLE-QUERY MODEL

2.1 Basic Assumptions and Concepts

This section is concerned with the stochastic optimization of the most com-
mon type of input query: the single-join query type. Although the most
significant feature of the model is its ability to accommodate more than one
type of query, the single-query case is convenient for introducing some basic
assumptions and key concepts that apply to multiple-join, multiple-query
models, as well.

The model to be presented is similar in principle to the model of Lafortune
and Wong [27], and it may also be regarded as an extension of the data flow
model in [ 15]. As a state-transition model, there is a very natural choice of
state space for the model, i.e., the distributed database itself. More formally,
the state of the system at time t is defined to be the set of relations stored in
local memory at each processor site in the network at time t, so that the
granularity of distribution is the relation.

For example, let QI denote the single-query type consisting of the single-join

Q1=AMB=A’

where at time t = O relation A is stored in local memory at site 1 and
relation B at site 2, and suppose, for the sake of simplicity, that there are
only two autonomous processors in the network under consideration (as will
be seen, the model is easily extended to networks having more than just two
sites). Then, the “initial state” or “materialization” [40] of relations refer-
enced by the query QI in the two-site network is just the two-component
column vector

where the i-th component of the vector XO is the set of relations stored at site
i (i = 1, 2) at time t = O. There may be many such initial states, as discussed
further in Section 2.2.

It will be assumed that the input to the system consists of a single stream
of type QI queries and that the initial state XO is known with given
time-invariant probability p. = p( XO). That is, p. is the probability that
relation A is available at site 1 and relation B at site 2, and that neither
relation is locked due to updating or is unavailable for query processing for
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any other reason. Thus, the initial state XO represents a possible distributed
database design in the static sense of’ [9], [12], and [20] with probability po.
Moreover, following Lafortune and Wong [27], it will be assumed that query
processing cannot be interrupted, that the network is fully connected, and
that the identity of the sites of query arrival and answer are irrelevant for
global optimization purposes (see [15] for ways in which these restrictions
may be relaxed).

The state-transition rules for the model are also based on those of [27].
Given that the system is in state XO when a type QI query arrives, the state
XO undergoes transition to one of two other final states

where the join A’ = A ~ B is computed at site i in state i, (i = 1, 2). The
two transitions from XO to xl and to Xz are depicted in the (extended)
state-transition graph of Figure la, where the transition arcs have been
labeled by the data transfers needed to effect the joins shown in the destina-
tion states. That is, the label B 2:1 that appears along the arc from XO to
x ~ indicates that relation B should be transferred from site 2 to site 1 so
that the join A’ = A N B may be computed at site 1. Similarly, Al :2 repre-
sents the transmission of relation A from site 1 to site 2 so that A’

may be executed at site 2. The colon notation (relation source: destination) for
message passing is borrowed from the Smalltalk-80 language [18].

It will be assumed in Section 4 that one join of a multiple-join query must
be executed before the next join begins, so that final states xl, Xz may be
considered “join execution state s.” Thus, the feedback loops shown as dashed
arcs in Figure la represent the transition from an execution state back to the
initial state. As will be seen, the feedback loops are unnecessary for query
optimization purposes and are omitted in the sequel. It should be mentioned
that Figure la assumes that the join A’ is not cached and that subsequent
queries of QI require recomputation of A’. However, if the system caches
intermediate and\or final joins, it will be assumed that such joins must be
recomputed nevertheless if component relations of the joins are updated.
Thus, for systems with caching, the symbol QI also represents a request that
joins be recomputed to reflect updates to their component relations. This
topic is discussed further in Section 3.1.

Since the state-transition graph of Figure 1 contains a node with two
possible transition arcs on the same input symbol QI (i.e., the state XO), the
corresponding finite-state machine M defined by the graph is nondeterminis-
tic [2, p. 319]. For networks having more than two sites, possibly with
replication of data over the sites, and for more complex queries requiring
more than the single-join of QI, there may be many candidate sites for
performing a component join, hence, many transitions arcs per node of the
state-transition graph. As in [27] and [40], it will be assumed typically that
only sites at which one of the two operand relations of a component join
resides may be a candidate site for the join. This simplification avoids such
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complications as the relaying of data through intermediate, nonoperand sites

(but this restriction may also be removed, as described in [15]).
A common alternative to the state-transition graph as a representation for

finite-state machines is the state-transition table, as shown in Figure l(b) for
Ql, with the states transposed as row vectors. Projecting over the first and
second components, respectively, of the state yields the component state-
transition tables of Figure l(c), which correspond to finite-state machine
models for site processors 1 and 2, such that the original network machine M

is the composite machine of the site machines Ml and Mz [25, p. 386]. Note
that the states x,~ of the site machines are double subscripted, first by the
subscript i of the site, and then by the subscript j of the corresponding
network state. Thus, when site machines 1 and 2 are in their respective
initial states XIO and Xzo, Ml may undergo transition to Xll, in which case it
receives the message B 2:1 from site 2, or it may transmit the message Al :2
to site 2 and undergo transition to state x ~z. Similarly, IMz may send and
receive messages to and from Ml, and it may change state accordingly.
In this way, the model may be regarded as a network of communicating
finite-state machines Ml and Mz [7].

Suppose now that a transition probability is associated with each transition
arc of a state-transition graph, or equivalently, that a third column is added
to the state-transition table for M, as shown in Figure 2(a). That is, let p,j

denote the conditional, time-invariant probability that the system undergoes
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transition to state Xj, given that it is in state x,. Thus pol and poz repre-
sent the relative frequencies with which sites 1 and 2 are selected for com-
puting the join A’, and any value assignment to the probability distribution

{pOl, P02}constitutes a query-processing strategy for the query Ql, provided
that we have:

Pol + P02 = 1 (normalization)
(2.1)

Pol> P02 ~ o (nonnegativity).

It will be assumed that the transition probabilities of all state-transition
models in this paper are also the transition probabilities of a finite Markov
chain, for each input query type, which is equivalent to the assumption that
the join process is Markovian. (This assumption may be relaxed, and a
similar analysis may be carried out [15].) Note that, unlike the imbedded
Markov chains of queueing theory [23], no explicit relationship between
“transition time” (measured in units of transition steps) and real time is
assumed for this paper (i.e., the real time between transitions of the abstract
Markov model of this paper is undefined). The network machine Tl together
with the transition probabilities p,~ then constitute a nondeterministic,
finite-state sequential machine, with Markovian transition probabilities or a
“sequential stochastic automaton” (SSA) [3].

The site machines &ll and M2 may be similarly regarded as SSAS.
Consider a particular tagged arrival of QI in the input stream to the system.
If Ml undergoes transition from x lo to x ~1, then the join A’ is computed at
ih!l, while M2 contributes no processing towards the execution of the tagged
query QI (i.e., Xzo = X21). Although real-time processor 1 may execute A’

while processor 2 is busy performing some other task, the abstract automata
Ml, Mz, and M of the model execute transition steps in parallel with respect
to the processing of tagged query Ql, as shown in Figure 2, so that we have:

=P(~lJ%) =P(~2Jl~20), j= 1,2

or

Po] = Plo,lj ‘P20,2J7 j=l,2. (2.2)
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Hence, the global strategy pOj for M and the local strategies p 10, IJ, p20, ~1 for

Ml and Mz are all equivalent.
The model is also easily extended to networks having more than two sites

and to systems with data replication, by means of the following “state-
splitting” technique. Suppose, for example, that the network has three sites
and that two copies of relation B are located at sites 2 and 3, so that the
initial state X. equals (A, B, B). Thus, the join A’ may be computed at site 1
by transferring relation B from either site 2 or site 3 to site 1, as indicated by
the two message labels along the transition arc from XO to x ~ in Figure 3(a).
In order to distinguish between these two alternatives, state x ~ may be split
into two new states x;, x;, as shown in Figure 3(b). Therefore, the query-
processing distribution for this example consists of four components

{Al> P’Al! P02> P03}.

2.2 The Linear Programming Problem

The query-processing distribution { pol, p 02} defined in the previous section
represents a family of strategies for scheduling the processing of a single
query QI. In order to determine a best strategy in some sense from among all
those satisfying (2. 1), a suitable performance criterion must be selected. In
this section, the system throughput is proposed as a performance measure.
However, it will be convenient to determine first the system’s mean process-
ing time as a key performance parameter.

The transition probabilities provide an effective means for defining the
expected processing time for QI at each site. More specifically, delays due to
query processing can be associated with each node of the state-transition
graph corresponding to the computation of a component join. The expected
delay due to computing the join is then just the product of the delay and the
corresponding transition probability. Accordingly, let tm(Ai, Bj) denote
the delay, or join-processing time due to computing A ~ B at site m, where
Ai denotes the event that relation A is located at site i and Bj the event
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that relation B is at site j. Thus, as a function of random events, tm is a
random variable, and by the transition rule for QI we have:

[

i, if Ai N Bj takes place at site i,

m= J, if Ai cu Bj takes place at site j,
i =J”, if both A, B are located at site m.

A variety of techniques have been suggested for estimating the local process-

ing cost t~, usually based on the expected size of the operand relations A, B

and measured in terms of number of disk accesses, CPU time, etc. [32, 41].
For this paper, only coarse estimates of join-processing times are necessary.

In addition to associating join-processing times with the nodes of the
state-transition graph, it is similarly possible to assign communication costs
to the arcs of the graph. This type of delay, denoted ci~(l?), is the total time
required to transfer relation R from site i to site ~“. Thus, for example, in
order that A‘ = A w B be performed at site 1 for query QI, the relation B

must be routed first from site 2 to site 1, incurring the communication cost
Czl(B ). Typically, communication costs are considered negligible in local-area
networks, but may dominate the overall processing time in long-haul net-
works [13, p. 592].

For the query type QI, let T,, (i = 1, 2), denote the total processing time
(join and communication) required to compute A’ in state i, so that we have:

TI = tl(Al, B2) + CZI(B),

Tz = tz(Al, B2) + CIZ(A), (2.3)

which will be assumed constants for query optimization purposes. Thus, by
Equation (2), the mean processing time ~, at site i is given by

~L= ~LPol, i=l,2. (2.4)

It should be emphasized that the processing time T, depends on the initial
state x o and that ~, is therefore a conditional mean. Note also that ~, is
regarded as an abstract “cost” to the automaton M,.

Suppose now that input queries of type QI arrive at the system at average
intervals of length 8 and that successive inputs are statistically independent,
so that the system may be said to operate under stochastic load with mean
interarrival time 8.

Since inputs arrive at average intervals of length 5, it seems reasonable to
require that none of the processors in the network be allowed to take 1onger
on the average than the period 8 to execute its task. If it did, the cumulative
delay at each site due to queueing could increase indefinitely, requiring the
use of infinite buffer storage at each site. Since, in practice, only finite buffer
storage is ever available, the system may be regarded as overloaded if the
mean processing time ~, is permitted to exceed 8 at any site. In fact, for
either discrete or continuous time input streams, it can be shown under quite
general conditions that such overload can be avoided if the inequalities

T,<A<6 (2.5)
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are satisfied [35], where A represents a common upperbound on ~,, for each
processor i in the network. Inequalities (2.5) will accordingly be called
overload constraints. Note that input process needs not be stationary for
Inequalities (2.5), in contrast to Lindley’s analogous G\G\ 1 stability condi-
tion for queueing theory [29].

Thus, in order to maximize the system throughput, or query-processing
capacity A = 1/8, the system’s mean interarrival time ~ may be minimized,
where ( 8 – a ) > 0 is chosen to be sufficiently large to provide for adequate,
yet reasonable finite buffer storage requirements (see also [351). The choice of
A as objective function leads quite naturally to an optimization model that
will be referred to as the stochastic query optimization model. By (2.4) and
Inequalities (2.5), the stochastic query optimization problem for QI assumes
the form

min A

subject to

?-l = Tlpol < A

T2 =T2P02< A

Pol + P02 = 1

pol, po9 > 0

(2.6)

where pol, po2 and A are the decision variables (i.e., the unknowns)
and where TI, Tz are assumed known constants. This is a linear program-
ming problem with a simple analytical solution. By eliminating Pol = 1 – P02

from (2.6), three constraints remain:

TI –Tlpo2 < A

T2p02 < A (2.7)

P017P02 ~ o

From the theory of linear programming [34], the minimum value of A occurs
at an extreme point (i. e., vertex) of the region of feasible solutions defined by
Constraints (2.7). But there are only three such extreme points, and it is
easily verified (e.g., graphically) that the optimal solution is given by the
following:

T2 TI TIT2
P: I= T1+T21 PZ2=T1+T22

‘*= T1+T2
(2.8)

for which both site means ~~, r; attain the minimum A *, i.e., the optimal
solution is load-balanced, with both overload constraints “active” [31]. Note
that this solution is a mixed strategy for query processing, in the sense that
site 1 is selected to perform the join A’ Tz out of (Tl + T2 ) times, on the
average, while site 2 is chosen T1 out of (Tl + T2 ) times, and neither site is

selected always in favor of the other. That is, Strategy (2.8) is not a “pure,” or
deterministic, query-processing strategy. In particular, if TI is less than Tz,
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the pure strategy pol = 1, poz = O yields interarrival time A ~ when substi-

tuted in Equation (2.6), where we have

Tz

‘*= TI+TZAP<AP”
(2.9)

Thus, the use of Strategy (2.8) is clearly preferable from a stochastic point of
view, while the use of a pure strategy could result in severe degradation in
throughput, particularly if we have TI >>0.

This simple example serves to illustrate the general principle that the
presence of overload constraints is incompatible with the optimality of pure
strategies [14, 38]. In general, stochastic operation cannot be avoided unless
suboptimality is considered acceptable. This principle applies also to con-
strained optimization with respect to other objective functions (e.g., mini-
mization of the total mean processing time, subject to overload constraints).
Although it is usually possible to restrict the solutions of mathematical
programming problems to integer values (see, e.g., [34]), mixed real-valued
strategies for stochastic query optimization problems will be of primary
interest in this paper.

The single-join, single-query model for QI is also useful for describing the
implications of stochastic query optimization on both distributed database
design and performance analysis. For the design problem, two optimal solu-
tions could be computed, with respect to XO = (A, B) and xl = (B, A). Pre-
sumably, the design X. would be chosen if A * is less than A‘ *. AS the
number of sites, replicated relations, queries, etc., increases, the number of
initial states that would have to be considered in such a comparative design
study would become prohibitively large (as discussed further in Section 4).
However, in practice, the number of competitive designs is often limited by
application-dependent considerations, such as local autonomy constraints, so
that the optimal location of the component relations A, B with respect to the
system’s capacity for processing QI is given by

x: = arg min Alp.
Xo

In contrast to the distributed database design problem, a performance
analysis would typically assume that the total query-processing capacity of
the system is given by the total probability mean

~A*(xo)~(Xo)

~(1

where A *( X.) denotes the optimal mean interarrival time conditioned on ~0,
and the index x o of the sum ranges over a prescribed set of initial states for
all input queries under consideration. In practice, operational query schedul-
ing should be monitored and augmented by decision-making procedures
based on statistical performance histories [32]. Furthermore, (2.9) indicates
that such procedures would be particularly relevant for scheduling high-
frequency queries that reference database relations that are expensive to
process.
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To illustrate the extension of the stochastic query optimization model to
more than two sites, consider the second example of Figure 3 in Section 2.1,
in which there are three sites and in which the initial state XO equals
(A, l?, B). This is again a linear programming problem given by

where

A

po3 = 1

>0

(2.10)

T; =tl(Al, B2) +C21(B),

T; ==tl(Al, B3) +c~l(B),

T, = tz(Al, B2) + CIZ(A),

T~ = t~(Al, B3) + cl~(A).

This problem also has an analytical solution, but unlike the two-site model, it
does not have a unique solution, since there are five unknowns ( p~l, P\l, P(,2,

P03 and A ) in four active constraints (excluding the nonn%ativity Con-

straints). However, by eliminating pOz and poa, all points along the line
segment,

T:(TZ + Ta) + TzT:~ T2 T3
p~l=– ,

TI(TZ + T~) + T2T~ P’& + T;(TZ + T~) + T2Ta
(2.11)

for which O < p~l, p{l < 1, are optimal. Additional constraints, such as those
discussed in [15], are required if a unique optimum is desired.

3. GENERAL SINGLE-JOIN MODELS

3.1 Sequential Operation

One of the main incentives for implementing a database as a distributed
system is the need for the use of the database as a shared resource. Fre-
quently, more than one transaction may be executing several different types
of queries against the same database at the same time. Two modes of
multiple-query distributed database operation are identified in this paper:
sequential and parallel operation. In this section, the sequential mode, in
which queries arrive separately, one after the other, with an average interar-
rival time of length 8, is presented for the general case of N query types and
a network of J4 > IV processor types. It is assumed that no writes (updates)
may be made to the relations referenced by the N query types while they are
being processed.
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Let

Q1=A, MBJ=A’ l? j=l,2, . . ..N

denote N distinct query types (although the relations AJ and B] need not be
distinct).

Algorithm 3.1. For constructing the network state-transition graph (table) for
N sequential query types and M > N sites, given initial state X..

Forj=l,2,. ... N
Set i := O

Form =1,2, . . ..M
Step 1. If AJ, BJ~xO(m), do nothing (i.e., increment m and repeat step 1).
Step 2. If AJ, BJ exO(m ), then set i := i + 1 and add a transition arc

(row) from x. to x,~, where,

({A”} U x,(m),
x=

lJ xO(&”), F# m,/’= 1,2, . . ..II4

Step 3. If AJcxO(m) and B,/xO(m), then:

Forn=l,2,. ... M,(n+m)

If BJ~xO(n), then:
Step 3a. Set i = i + 1 and add a transition arc (row) from XO to X,J,

labeled B] n : m, where,

({A, M BJn} U xO(m)
x=

,J
Xo(k), k # m, k=l,2,..., M

Step 3b. Set i .= i + 1 and add a transition arc (row) from XO to X,j,
labeled AJ m : n, where,

({A”} U x,(n)
x=

,J
XO(k), k # n, k=l,2,..., M

Step 4. If BJ~xO(m) and A,/xO(m), then execute Step 3 with AJ, B,

interchanged.
End

This algorithm generates all states that contain a single join in one state
component, according to the transition rule that a join may be executed at
operand sites, only, as described in Section 2.1. In particular, Step 2 of the
algorithm is concerned with the case in which both operands of a join are
located at the same site, and Steps 3 and 4 handle the two possible cases in
which the operands are located at different sites. In order that this algorithm
be consistent with the state-splitting convention for data replication, as
described in Section 2.1, Algorithm 3.1 generates a state-transition graph
that is actually a tree. That is, there is only one incoming transition arc per
noninitial state, and in Step 3a of the algorithm, the join AJ M Bj m is labeled
by the transmitting site m to distinguish joins formed by sending B from
different sites.
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LEMMA 3.1. The query-processing strategies for the netz.oork and

site machines, obtained by projecting ouer each site component of the

netulork machine, are equal.

PROOF. Since the site machines are defined so that the projection operator

rm( x ) = .xm of network state x to site state Xn is both a one-to-one and onto

mapping and because there is a site machine transition from xm to ym

iff there is a network transition from x = m; 1(. Xm ) to y = m; 1( ym ), the

mapping m-n is a state machine isomorphism [19, p. 19] for each site m = 1,

2 ,, ..> &f (see, e.g., Figure 3). Hence, the tran .wtion probability distributions
of the site and network machines are defined on isomorphic sample spaces,
and the site machine transition probabilities constitute the marginal distri-
butions of the network transition probability distribution. Thus, it follows
that

PO, ‘Plo>ll ‘P20,2, = ““” =P/vIo, Afl (3.1)

where i ranges over the states generated by Algorithm 3.1. ❑

This lemma is really a consequence of the manner in which the site
machines are defined and will hold for all state-transition models of this
paper. Note that (3. 1) indicates that it suffices to consider just the network
transition probabilities as decision variables for stochastic query optimization
purposes.

For the following proposition, let q~ denote the probability that a given
query type is of type Q~, where ql + qz + . . . +q~ equals 1. It will be
assumed that qj is known and that the input to the system may be regarded
as a merged stream of mixed query types. For example, for continuous-time
Poisson inputs, such a merged stream may be obtained by superposition and
is again Poisson with rate A = 1/6 = ~ A, and q, = A,/h, as described in [ 17,
p. 11]. For discrete-time Bernoulli inputs, merging may be carried out as
described in the Appendix. Also, it should be recalled that, for systems that
cache joins, QJ represents the computation of the j-th join due to update of its
component relations, as described in Section 2.1. For such systems, q] denotes
the corresponding fraction of the update load due to QJ, as in [ 12].

PROPOSITION 3.1. The general, sequential single d”oin stochastic query

optimization model for N queries and M sites defines a linear program-

ming problem that may be decomposed into N indeperldent linear

program ming subproblerns.

PROOF. It will be convenient to define first the following sets of state
indexes,

l?(j) =={il A’’exL,(m), forsomem, l <m <M},

K(j, m) = {il A’j~x,j( m)}, j= 1,2,.. .,N (3.2)

m=l,2, . . ..M.

That is, K(j) is the set of indexes i of states generated by Algorithm 3.1 for
query Q~, and K( j, m) is the set of indexes i of those states generated by
Algorithm 3.1 that contain Al in component m, for query Q~ (i.e., with data
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replication, there may be more than one such state). Then the overload
constraints have the form

TmJ = ~ T,l(A’j)pO,,j, j= 1,2,..., N
LeK(J, m) (3.3)

m=l,2, . . ..M

where PO,,j is by Lemma 3.1 the network transition probability associated
with a change of state from x ~ to Xtj, where ~~j is the mean processing time
at site m, conditioned on the event that a query is of type Qj, and where
T,J( A’l) is the total (join and communication) processing time for A“, as
defined in Section 2.2. The linear programming problem defined by the model
is obtained as in Section 2.2 by minimizing the mean interarrival time
A, subject to the system’s overload, normalization, and nonnegativity
constraints, i.e.,

min A

subject to

fq,. Tm,5A, m=l,2 ,. ... M
j=~

(3.4)
J=l ieK(j)

PO, LJ ~ o> j=l,2, . . ..N

i eK( j)

where i again ranges over the states generated by Algorithm 3.1. But since A

can always be written as the sum of conditional means,

N
A= ~qlAJ

j=l

where A . is the mean interarrival time conditioned on

(3.5)

query type Q,, A is

separable in its conditional means A ~. By the decomposition principle of
linear programming [21, p. 520], the original problem (3.4) may be divided
into subproblems by query type, i.e., for each j = 1, ..., N,

min A ~

subject to

~1< Aj,‘r m=l,2, . . ..M

z Po,,, = 1 (3.6)
zcK(J)

Po,2.1 ~ o? icK(j)

constitutes a linear programming subproblem in a set of decision variables
disjoint from the decision variables of the other subproblems. Thus, each such
subproblem may be solved independent y of the others, and the total mean
can be computed then by reconditioning on query type, i.e., by the probability
sum (3.5). ❑

ACMTransactionsonDatabaseSystems,Vol. 18,No.2,June 1993.



276 . P. E. Drenlck and E. J. Smith

COROLLARY 3.1. (a) The optimal solution of Proposition 3.1 is the minimax

processing-time solution, which is load-balancing; (b) The optimal location of

component relations with respect to query-processing capacity is given by

arg min Alp.
Xn

Part (a) of this corollary follows from the theory of linear programming and
may also be shown (with some minor modifications) as in [ 16, pp. 71–72]. The
minimax solution is load-balancing since all mean processing times ~, achieve
the same maximum throughput A *. Part (b) simply states that the compo-
nent relations are best located according to the state with the greatest
throughput capacity.

Although the optimization problem of this proposition is based on the
assumption of sequential arrivals, it is mixed-mode with respect to query
processing, in the sense that no specific assumptions are made concerning the
order of arrivals and their execution. Thus, for IV = 2, the execution of QI
may precede the execution of Qz (or vice-versa), on the same or on different
machines. Moreover, since all of the overload constraints hold for all of the
processors, the execution of QI and Q3 may overlap in real time; i.e., they
may be executed concurrently. For the case of discrete-time input, the concur-
rent execution of several queries can be formulated in a more explicit
manner, as described in the next section.

Example 3.1. Let N=iW=2 and

Q1=AKIB=A’, Q,= Bcu C=B’

and suppose we have X. = ((A, C), (B)). The state-transition graph for this
model is shown in Figure 4, and the mean processing times for the joins
A’, B‘ at sites 1 and 2 are given by

TII( A’) = tl(Al, B2) + CZI(B), 7’IZ(B’) == tl(B2, Cl) + CZI(B)

TZI(A’) = tz(Al, B2) + CIZ(A), TZZ(B’) = tz(B2, Cl) + CIZ(A),

as described in Section 2.2. The two linear programming subproblems for this
example are

min A ~

Tll= TII(A’)PO, II < A ~

T21 = T’ZI(A’)PO, ZI < A ~

Po,ll +P0,21 = 1

PU,11>PU,21 ~ o

min A ~

712 = ~12(B’)P().12 ~ Az

’72z = TZ2(B’)P0,22 ~ A2

P0,12 +P0,22 = 1

P0,12>P0,22 ~ o
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Fig. 4. State-transition graph for QI, Qz

with optimal solutions

T21(A’) T,, (B’)

p~.12 = T12(B) + T22(B’) ‘p~, H = T1l(Af) + T21(A’) ‘

T1l(A’) T12(B’)

P3>21 = Tll( A’) + 2’21( A’) ‘ p~,N = T12(B1) + T22(B’) ‘

T11(A’)T21( A’) T12(B’)T22(B’)

‘~ = T1l(A’) + T21(A’) ‘ ‘; = T12(B’) + T22(B’) “

Note that the two optimization problems are completely independent of each
other, having no common variables. Their separate solutions may be com-
bined by the-probability summation in (3.5), yielding

T11(A’)T21( A’) T12(B’)T22(B’)
A * = ql Tll(Af) + T21(A’)

+ ‘2 T12(B’) + T22(B’) “

This example also provides an opportunity to illustrate the

(3.7)

use of a

suboptimal approach to developing query plans, which first selects the “best”
deterministic plan for each query type, as in R* [321, and then seeks to
control the load on the system by choosing which query should be executed,
based on the given state of the system. In terms of the model’s parameters,
this approach selects first the optimal pure strategy for each conditional
subproblem, followed by solution of the overall problem, reconditioned by
query type, for the probabilities q, as unknown load control variables. That
is, under this interpretation of the model, q, represents the probability that
the system schedules Q, for execution, given initial state XO.

For Example 3.1, suppose that we have

T21(A’) = aT1l( A’), a>l

T12(B’) = ~T22(B’), p>l

so that T1l(A’) is less than T21(A’) and T22(B’) is less than T12(B ‘). Sub-
stituting the corresponding pure (deterministic) strategy p o,11= Po,22= 1,
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PO, M = PO, 12 = O into the above conditional Subproblerns for ~ 1 and A ~,
followed by reconditioning on query type, yields the linear program,

with optimal solution,

On substituting q?, q; in (3.7), the following inequality is obtained:

o!
l< APj A*=—

B

l+a
—<2,

‘l+p

Thus, even this simple example shows that the model provides a theoretical
framework for comparing suboptimal query plans with optimal strategies.

3.2 Parallel Operation

The capacity of distributed database systems for load-sharing through paral-
lel processing is of particular significance to the design and performance
analysis of such systems. The sequential model of the previous section
represents the processing the system undergoes if queries arrive one after the
other, but not if they arrive at approximately the same time. Suppose that N
queries of types QI, Qz, . . . . Q~ are to be processed in parallel in the sense
that each is processed at a different site (although not necessarily at the
same time), as in [27]. In order to provide for explicit parallel query process-
ing in a manner consistent with the previous section, let Q~+ ~ denote
another aggregate query type, which occurs with probability q~+ ~, (q ~ +

q2 + . . . + q~ +~ = 1).Thus, the input stream consists of mixed arrivals of

types Q1, Q2, ..., QN+I. For discrete-time J3mmmlli inputs, qN+~ may be
computed as described in the Appendix. Since the probability of simultaneous
arrivals in a merged, continuous-time input stream is zero, this section is
applicable primarily for discrete-time input streams. The state space for the
parallel mode model for Q~+ ~ is based on that of Algorithm 3.1, but changed
as follows:

Definition 3.1. The states of the parallel-network machine consist of
all possible N-way site component-wise unions of single-join states x ~,~,
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(j= 1,2,.. ., N) of the form
N

xl = ~ Xhjj
J=]

such that

(1) no component of x, contains more than one join A’~, for some j,
(l<j<N) and

(2) no particular join Mj appears in more than one component of x,.

This state space can be constructed algorithmically using conventional
methods (e. g., [2, Chap. 4]). The transitions of the parallel network machine
are defined by the transmission of the data transfers associated with each of
the corresponding single-join transitions from XO to x~ ,J, (j = 1,2,... , IV).

Example 3.2. Consider again the two-join, two-site model of Example 3.1,
with queries

QI=AHB=A’, Q,= Bcu C= B’.

The state-transition graph for the parallel machine for Qa is shown in Figure
5, in which we have xl~ = Xll U Xzz and xz~ = Xlz U X21.

PROPOSITION 3.2. The general, parallel single-join stochastic query opti-

mization model defines a linear programming problem.

PROOF. Let I denote the total number of parallel network machine states
x,, (i=l,2, ..., l), and let K(j, m) denote the index set of (3.2), restricted to
parallel-network machine states. Then the linear programming problem
defined by the parallel-network machine is given by

min A ~+ ~

subject to

rrn,iv+, = : ~ T,W+I,(A’))PO,,W+I, ~ Aiv+,
J=l zeK(j, m)

m=l,2 ,. ... M

~ PO,,,N+I, = 1
~=1

Po,,(N+l) > 0? i=l,2 ,. ..,1. ❑

Example 3.3. For the model of Example 3.2, the stochastic query opti-
mization problem for parallel processing of QI = A N B = A’ and Qz = B N
C’=B’is given by

min A s

subject to

713 = T13(A’)po,13 + Tz3(B’)po, z3 < A ~

’23 = Tl~(B’)po,13 + Tz~(A’)po,z~ < A s

P0,13 + P0,23 = 1

P0,13> PO.23 ~ O
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-[
A,c

‘X(7 — B

A$, A, G.
’13 B’, B 1

(B2.1, C12)

1

‘B2:1’A1’2)>BW0
Fig.5. Parallel-network machine for Q3.

with optimal solution

~i,13 = [T23( A’) – T,3(B’)]/D

P;,23 = [~13(A’) – ~23(B’)]/~

A: = [T13(A’)T’2~( A’) – 7’l~(B’)Tz3(B’)]/D

where the denominator

D = [7’1~( A’) + T2~(A’)] – [TIS(B’) + T2s(B’)1

must be nonzero.

a conditioning
the sense that
the results for

The parallel-mode query type Q~+ ~ may be regarded as
variable, just like Ql, Qz, . . . . Q~ for the sequential mode, in
the optimum interarrival time A fi+ ~ may be combined with
sequential queries by extending the range of the probability sum (3.5) to
include Q~+ ~, i.e.,

N+ 1
~“= ~qlA~

1=1

and by normalizing the multipliers q]. In this way, A * provides a measure of
the total query-processing capacity of the system due to both the sequential
and parallel processing modes.

4. MULTIPLE-JOIN MODELS

In this section, the state-transition model is extended to queries involving
more than one join, and the complexity of the model is discussed. Accordingly,
suppose we have

QA=A~B NC.

For query optimization purposes, it is customary to further define the
multiple-join queries such as Q4 by indicating which joins may take place
pair-wise (as in, e.g., query graphs [4]). However, it will be convenient for the
purpose of stochastic query optimization to simply enumerate all logically
valid joins in the order in which they may be executed, as is common practice
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for modeling precedence in scheduling theory [ 11]. For example, suppose that
Q1 has two valid execution sequences

QSl=(Q,, S1)=AW(BHC)=A~B’=A

QSZ=(Q1, SZ)=(ARB)MC=A’ ~C=B” (4.1)

where S’l and S’z denote the sequences. That is, under sequence S’l, B‘ =

B N C is computed before A = A M B’, and under sequence Sz, A’ = A M B

is computed before B“ = A’ N C. In this way, the computation of multiple-
join queries may be equivalently defined in terms of precedence of the join
operator, without reference to the actual join clauses and attributes involved.
Also, it will be assumed that any other execution sequence not enumerated in
this manner is invalid. Thus, the sequence (A M C) N B is invalid for Q1,
presumably due to an improper attempt to join A and C or A M C and 1?.

The symbols QSI, QSZ will be regarded as subtypes of the query type Ql,
and, using the decomposition principle of separable nonlinear programming

[31], the symbols will be used as conditioning variables that divide the
original problem into a set of subproblems, in a manner similar in principle to
the treatment of mixed query types in Section 3.1. Thus, sequencing com-
prises another level of decomposition in the divide-and-conquer paradigm
proposed in this paper.

The state-transition graph for the sequence S’l of Q1 is shown in Figure 6.
There are two stages of computation, one stage for each of the two joins of

QS1, with states Xlll, Xzll in the first stage (i.e., as in Section 3.3; the first
subscript is the state index; the second the query type, or subtype; and the
third the stage). The answer states Xllz, Xalz, x~lz may be generated by
applying Algorithm 3.1 to the first stage states, with x II ~ and x ~1~ as initial
states and subject to the stage-2 join A“ = A RI B‘ as the input to the second
stage, in a manner similar to Step 2b of Algorithm 3.2. More particularly, the
transition arc from Xll ~ to Xllz is labeled “SS” (Same Site) to indicate that
because both operands A and B‘ of the join A = A M B‘ are located at site
1, the transition rule of Section 2.1 dictates that the join A also take place
at site 1, with probability 1, given that the system is in state x II ~. Similarly,
given that the system is in state Xzl ~, the transition rule of Section 2.1
applies again, causing a change of state to either x ~lz or x ~lz, with transition
probabilities Pzll,zlz and pzll,~lz, respectively (Pzll,zlz + PZ11,312= 1). The
state-transition graph for the sequences S2 of Q~ may be obtained in the
same manner.

The optimal solution for this problem can be computed in a manner similar
to that of Section 3. The stochastic query optimization problem for QSI is
given by

min A ~

711 = T1ll(B’)PO,lll + T112(A’’)P0,111 + Tzu(A’’)Po,211P2I1,212< A ]

~21 – ~211(~’)~0,211 + ~312(A)~0,211 ~211,312< A 1~0,111 + ~0,211

= ~211,212 + ~211,312=1 (4.6)
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[

A, i;
’312 = A “ ,13’, R1

Fig. 6 State-transitIon graph for QSI.

where, as usual, the decision variables must also be nonnegative. This
problem is a nonlinear programming problem of a special kind, sometimes
called multilineal (i.e., a function of n variables is said to be multilineal of
degree n if it is a polynomial in which the variables are raised to powers of O
and 1 only [16]). The problem has five unknowns (PO, 111, PO,ZII, Pzll,zlz,

P 211,312,and A I) and its overload constraints are multilineal of degree two.
The multilineal optimization problem (4.6) has an analytical solu-

tion, which can be obtained directly from its Kuhn–Tucker conditions [22,
31], which are more conveniently expressed in vector notation. Accordingly,
let

y=(yl>yz,. ... ys)

= (Po, 111, Po.211> P211,212, P211,312> A ,)

~(Y) = (~l(Y)>~2(Y))>g(Y) = (&Tl(Y), g2(Y)>.

where

f(Y) ‘Y5,

~l(Y) ‘Po,lll +P0,211 – 1 = 0,

‘2(Y) ‘P211,212 ‘P211,312 – 1 = ‘>gl(Y) = ‘]

g2(y) = Al – 7’21>0,

g2+J(Y) =YJ~oj~=l>2> ...,5.

Then the optimization problem (4.6) may be rewritten in the more compact
form

min f(y)

h(y) ==0 (4.7)

g(y) >0.

The Kuhn–Tucker conditions state that if the objective and constraint func-
tions are differentiable and if y is a solution of (4.7), then vectors

U=(UI, U2, ..., U7)> ZJ=(U1, ZJ2)
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exist such that we have

7

~ U,g,(y) = o,
j= 1

283

(4.8)

U>o,

where v denotes the gradient operator (see, e.g., [22, p. 14]). There are two
possible approaches for obtaining a solution by means of (4.8). First, the
solution space may be divided into subspaces for which various combinations
of the Lagrange multipliers UJ are positive or equal to zero (see [15] for the
details of this technique). Also, on the other hand, it is possible to solve (4.8)
by setting various combinations of constraints active and others inactive (e.g.,
[31]). In either case, a combinatorial solution is obtained with two possible
global optima. In particular, if we have

al = [Tlll(l?’) + TIIZ(A)], 131= T’,,, (B’)

a2 = 7’212( A), b, = T312(A)

then the optimal solution for QSI is the minimum of the three candidate
solutions of Figure 7. Note that all three candidates have a pure (determinis-
tic) component strategy for one stage and a mixed strategy for the other.

Since the stochastic optimization problem is symmetric in the sequences
QSI and QSZ, the problem for QSZ may be solved in exactly the same
manner as for QSI. The sequence(s) QS& corresponding to

is then the desired optimum. This solution is a stochastic analog for the
minimum-cost solutions of many current optimizers (e.g., system R* [321).

Also, it is possible to seek approximate solutions to nonlinear program-
ming problems, instead of computing the exact solution by means of the
Kuhn–Tucker conditions. Many iterative search techniques have been devel-

oped [22], and many general-purpose nonlinear programming codes are com-

mercially available [39]. In practice, the system designer may either choose a
realistic query-processing strategy that is not necessarily better than all
others, or the designer may conduct a search for a globally optimal one.
Iterative techniques offer a means for computing a solution that is unequivo-
cally feasible and locally optimal, while global optimization typically requires
highly reliable data, which may be unavailable, or may require excessive
computational effort. Thus, in practice, it may be preferable to formulate the
design problem as a feasibility problem in mathematical programming, which
can then be solved by an appropriate iterative method, or by suboptimization
techniques, as in Example 3.2.

It is possible to extend the methods of this section to more than a single,
multiple-join query in the manner of Section 3 [15]. However, due to the
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bl+b2
al(bl+b2)

al o 1
al+bl+b2 al+bl+b2 al+bl+b2

bl-a2 al albl

bl>a2
1 0

al+bl-a2 al+bl-az al+bl-a2

bl+b2 fi a2(bl+b2)

a2>bl
o 1

a2+b2 a2+b2 a2+b2

Fig.7. Candidate global optima for(QSl).

complexity of theunderlying state space of themodel, this is computationally
feasible for only a relatively small number of joins per query. More particu-
larly, since the transition graph of the model is in general a tree (due to
the state-splitting technique of Section 2.1), the (worst-case) complexity
of the model for a single query (sub-) type with K stages and M sites with
full replication is determined by the number of nodes of an M-ary tree with K

levels; and, therefore, this worst-case complexity is of order O(MK ) [M,
p. 376]. That is, the complexity of the model is polynomial in the number of

sites and exponential in the number of stages, restricting the number of joins

in multiple-join queries. Furthermore, for discrete-time input of a query type

having N s M parallel joins, the total number of ways the N joins may be

distributed over the M sites (with no more than one join per site per state) is
equal to the number of permutations of M items N at a time, i.e., M! /( M –
N)!, Thus, the overall worst-case complexity of the state space is of order

O(M!\(M – N)!)~, which effectively restricts the full discrete-input model of
Section 3.2 to single-join queries or to a few high-frequency multiple-join
queries.

5. CONCLUDING REMARKS

A general approach has been described for obtaining optimal stochastic
query-processing strategies for distributed relational database systems.
Starting from the algorithmic generation of a state-transition graph that
defines the ways a query (or queries) may be processed by the system, the
graph also defines a set of probability distributions that encompasses
the query-processing strategies for transferring operand relations and com-
puting the component joins of the query. Optimal values for each query-
processing strategy could then be determined by the solution of standard
mathematical programming problems. Also, it was shown that the state-
transition approach may be carried out for more complex queries by means of
divide-and-conquer techniques that decompose a large problem into a number
of smaller subproblems. By conditioning the original problem on suitably
chosen system parameters, such as query type and operational sequence, and
by making use of the decomposition principles of mathematical programming,

ACM Transactions on Database Systems, Vol. 18, No. 2, June 1993



Stochastic Query Optimization . 285

the original stochastic query optimization problem could be factored into
conditional subproblems, each of which could be optimized separately. It
should be noted that much of the material devoted to optimizing throughput
may be applied to maximizing system utilization, as well. The model may be
extended also in a number of ways to accommodate application-dependent
and network-topological constraints, as well as semijoin strategies [15].

The computational complexity of state-transition models was found to be
polynomial in the number of sites in the data network, but to increase
exponentially in the number of joins executed sequentially, and for discrete-
time input, to increase factorially in the number of joins performed in
parallel. In view of the breadth and complexity of distributed database
systems, it is hoped that the theory may be developed to the point at which it
may be used in conjunction with suitable suboptimal techniques and heuris-
tic algorithms (e.g., [30]). It is anticipated that such an approach would
be based on techniques for reducing the size of the state space, such as
probability conditioning and state merging.

The main result of this paper is that the state-transition approach provides
a general methodology for the design and analysis of distributed relational
database systems for query processing. The flexibility of the approach is
based on the generality of the probability calculus itself, which acts as a
mapping of transition graphs into mathematical programming problems. It is
expected that this mapping can be carried out by means of software that
would first automatically compile network and database definitions into
state-transition tables, from which stochastic query optimization problems
could be generated and solved by means of mathematical programming
techniques, as required. The single-join models of Section 3 may be particu-
larly appropriate for design purposes. Since the single-join models may be
always formulated as linear programming problems, they are readily solved
and are amenable to a variety of sensitivity analysis options [21]. Moreover,
since the computational complexity of linear state-transition models is poly-
nomial in the number of sites in the network, very large data networks,
requiring conceivably up to tens of thousands of variables and constraints
[26], may be accommodated.

Before the techniques of the state-transition model can be applied to
realistic distributed database systems, further research is still necessary.
Since the analysis of this paper was based on the transient (i.e., initial
state-dependent) behavior of the system, it would be natural to extend the
analysis to its steady-state performance, as well. Such an extension would
permit investigation of such topics as throughput degradation due to locking

[1, 5, 12, 371, and alternative optimal and suboptimal long-term cache
policies, including storage costs, nonhomogeneous input streams, etc..

In view of the potentially high order of computational complexity of state-
transition models, further study of solution techniques for stochastic query
optimization problems is indicated, as well. As shown in Section 4, such
problems may be solved by direct combinatorial optimization techniques,
yielding global optima, or by iterative nonlinear programming methods,
which typically converge to local optima. Thus, the trade-off between
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combinatorial search and large-scale approximation merits further investiga-

tion. In particular, it is expected that multiple-join problems of degree

considerably higher than the second-degree model of Section 4 will have to be

considered. However, it is anticipated that the use of customized nonlinear

programming techniques that exploit the linearity of the objective function (if

the mean interarrival time is to be minimized) and the multilinearity of the

constraints of the stochastic query optimization problem will prove even more

effective than the use of general-purpose algorithms (e.g,, [39]). Practical

suboptimal and heuristic techniques should be compared also with, and

possibly used in conjunction with, the optimal strategies of this paper.

APPENDIX. BERNOULLI SEQUENCES

Classical queueing theory [23] is concerned with continuous-time models

having nonnegative real-valued interarrival and service times. More recently,

there has been some interest in the development of an analogous discrete-time

theory [6]. Typical examples of discrete-time queueing systems include syn-

chronous communication channels, interactive terminal systems, etc. [24].

The discrete-time analog for the continuous Poisson input to classical

queues is the Bernoulli sequence, in which each input (customer) represents

an independent Bernoulli trial, with probability A of an arrival and probabil-

ity 1 – A of no arrival of a customer on each trial. Since the total number

of arrivals by time n > 0 is a binomial random variable with parameters

(n, A), the interarrival time q between successive inputs has the geometric

probability distribution

{

IL—1

p(q= n)= A(lp ‘ :1:0 (Al)

,

with mean I/A.

Unlike the Poisson processes, which have the desirable “reproductive”

property that several Poisson input streams may be “merged” into a single

Poisson stream by superposition (see, e.g., [17, p. 10]), the result of merging

Bernoulli sequences is not again Bernoulli, a complication which presents a

major obstacle in discrete-time queueing networks [24]. Fortunately, for the

purposes of the present paper, it is always possible to merge Bernoulli

sequences, provided that simultaneous arrivals are interpreted as an

“aggregate arrival.”

For example, let ~l(k), lV2(h ), (k = 1,2, . . . ) denote two independ-

ent Bernoulli sequences with parameters Al, A2, respectively. The merged

stream for IVl, Nz may then be regarded as a single, four-class rnultino-

mial stream [28, p. 172] with parameters

c1 = AI(l – A2), for arrivals from iVl,

CZ=(l– AI) AZ, for arrivals from iV2,

C3 = A1A2, for simultaneous arrivals from

both NI and N2,

C4 = (1 – AI)(I – AZ), for no arrival.
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The equivalent Bernoulli sequence with mixed arrivals, including the

“aggregate arrivals” corresponding to C3, has parameter

A=l– C4=C1+C2+C3=1–(1– A1)(l– A2),

and the probability that a given arrival is from the sequence ~, is

q, = Cz/~, i = 1,2,3,

~l+(72+q3 =17

where lV3 represents the sequence of simultaneous arrivals. In general, if m

Bernoulli sequences are merged, the composite stream is again Bernoulli

with parameter 1 – 11 ~= ~ (1 – A,). The merged stream then contains all

possible combinations of simultaneous arrivals, formed by defining each of

the ~ ~= 2(T ) combinations of simultaneous arrivals from the m input streams

as an aggregate arrival.

Since parallel query processing is one of the main topics of this paper, it is

necessary to account for the presence of simultaneous arrivals in a discrete-

time input stream. This is done in Section 3.2 by defining a special query type

for each combination of simultaneous arrivals and by conditioning on query

type as a natural part of the general solution procedure.
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