
MODELS OF A VERY LARGE
DISTRIBUTED DATABASE

Mark Blakey
Research Laboratories

Telecom Australia
and

Department of Computer Science
Monash University

ABSTRACT

The problems inherent in managing a database
distributed over a very large number of sites are
considered. The applications of such databases to the
provision of telecommunications and other public
services are discussed. It is shown that the distribution
and maintenance of the directory information describing
object locations poses some fundamental problems. A
new partially informed class of distributed databases is
described which distributes the directory information on
a “needs-to-know” basis. The class is described by
models of the network topology, and by the knowledge
available to each site. These proposals are suficiently
general to support the partitioning of data relations into
distribution fragments, and for those fragments to be
replicated at multiple sites.

1. INTRODUCTION

Recent developments in computers and communication
technologies are enabling a rich variety of advanced
information-based and transaction processing services to
be offered over public networks. Typical applications
include electronic funds transfer, airline reservation
systems and real estate listings. Sophisticated
telecommunication services, such as on-line directory
services, are also emerging. All of these applications
rely on an underlying Distributed Database (DDB)
technology. Most present day services make relatively
modest demands of the DDB given that information is

This work is a synopsis of a doctoral project being undertaken by
the author at Monash University, Australia. A more detailed
account of this material is given in [l, 21.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. TO
copy otherwise, or to republish, requires a fee and/or specfic
permission.

@ 1988 ACM 0-89791-245-4/88/ooOl/O294 $1.50

distributed across a small number of sites (typically 20
or less) so that the information processing demands are
readily supported by existing commercial DDB systems
(see [3,4] for example). It is, however, likely that
applications will evolve requiring much higher degrees
of distribution. New telephony services such as
automatic call redirection could, for example, be
established by incorporating a DDB site into each
telephone exchange. Manufacturing and operational
efficiencies may also be significantly improved by
enabling direct communications between an enterprise’s
databases (e.g. warehouse contents which may
themselves be distributed) and those of its clients and
suppliers. Applications such as these require DDBs
distributed over a very large number of sites (possibly
hundreds) so that new techniques must be found to
assist in their management.

Some of these applications will naturally require that
data objects be partitioned into fragments [5], suitable
for storage allocation at specific sites, and that some
fragments be replicated at multiple sites. These
requirements, together with the size and dynamic nature
of the network, pose some fundamental problems in the
design of the system’s internal data directory that
associates fragments with storage sites. These problems
are further compounded by the common requirement
that the partitioning and distribution of objects be
transparent to system users and application programs.
Centralizing the directory to a special nominated site is
undesirable because (1) failure of that site effectively
prohibits any distributed transaction processing, and (2)
an additional overhead of a directory interrogation is
imposed on each transaction. The alternative
arrangement of fully replicating the directory at every
site is also undesirable as (1) an unreasonable storage
burden is imposed on every site, and (2) an exorbitant
amount of network traffic will result whenever data is
relocated (i.e. every directory copy would have to be
updated).

These problems may be solved by partitioning and
distributing the directory information on a “needs-to-
know” basis. Each site has a restricted view of the rest

294

of the network and of the data objects stored by the
visible sites. These proposals define a new class of
Partially Informed Distributed Databases (PIDDB). In
effect, this proposal partitions the directory information
so that sites may need to communicate with other sites
in the network to discover the identities and location of
those fragments that are not described by the local
knowledge. Despite the p= knowledge held at each
site, these systems will allow any distributed data object
to be located from any site.

The following sections present an overview of the
PIDDB class. A more complete description, involving
non-trivial formalisms and algorithms, may be found in
[1,2]. Models are presented in Section 2 that describe
the logical network topology, and the knowledge
available to any site. An extension of these models that
supports distributed objects is outlined in Section 3.
The objectives and overview of a distributed algorithm
for dynamically determining data locations is presented
in Section 4. The relationship of this algorithm to
PIDDB query processing is also discussed.

2. NETWORK TOPOLOGY

A logical model of the network topology is proposed
below that specifies what kind of information sites
possess about the rest of the network and how this
information is organized. This model anticipates the
development of an efficient and distributed algorithm for
dynamically determining data locations. The topology
defines the meta-database known to each site. It is
implicit in the definition of the PIDDB class that no site
would know the entire meta-database. ‘The portion
known to a site constitutes its local knowZedge view
(LKV). The proposed topology does not require that
sites store any data fragments in order to be able to
initiate or execute queries (although their meta
knowledge & subject to a series of constraints on the
LKV).

The topology partitions the network into sets of
neighbours called N-Sets. All N-Sets contain at least
one site and all sites are assigned to at least one N-Set.
Sites in a common N-Set know of each others existence
and may possess extensive descriptions of the data
fragments possessed by each neighbour, although these
descriptions may be incomplete or even null (subject to
the constraints on the LKV). At least one site in each
N-Set would be nominated as an entry point. These
sites are distinguished by being known (i.e. name and
network address) by sites in other N-Sets. All incoming
data location or update requests from outside an N-set
would be directed into an entry point site. These sites
locally distribute the requests within the N-Set as
appropriate. Sites assigned to multiple N-Sets define
the overlapping articulation points between those sets.
Articulation points would typically arise where a site
makes frequent access to differing N-Sets so that

membership of those sets becomes attractive. Groups of
N-sets overlapping in this way define a neighbourhood.
Articulation points would commonly be entry points to
improve the efficiency of the data location procedure.

A network would typically be partitioned into a number
of disioint neighbourhoods. These neighbourhoods must
however be connected in some fashion so that the
location or existence of remote data can be determined.
Hyper-Sets (H-Sets) of N-Sets are introduced to provide
this connection. H-Sets define the mappings of
fragment names onto the N-sets possessing replications
of those fragments. H-Sets may contain any arbitrary
collection of N-Sets and neighbourhoods, however
neighbourhoods may not span H-Set boundaries. H-Sets
may be nested, but other forms of overlap are not
permitted. Nesting would typically be useful in lo%
networks where groups of sites were administered by
differing agencies; each H-Set would correspond to an
autonomous management domain. Such complex
networks require a global H-Set (HP) that encloses the
entire network to ensure that disjoint partitions of
knowledge do not occur.
connectivity

Since Hg provides
between disjoint sub-networks, its

definition must be known within every H-Set.

The N-Set/H-Set model is suitable for modeling the
network topologies commonly encountered in practice
(e.g. star, ring, hierarchical). In many cases either N- or
H-Sets can be used to model a part of the network. The
specific design depends on factors such as the
anticipated frequency of access between sets of sites,
and on the desired degree of autonomy for such sets.
As an example, consider the network of nine sites
organized into the logical hierarchy of Figure 1. Many
PIDDB representations of this network are possible.
One topology, in which all sites are grouped into a
single global H-Set H, is shown in Figure 2a. Sites and
N-Sets are represented as solid circles and enclosing
ellipses respectively. The articulation points at sites 2, 3
and 5 link the entire network into a single
neighbourhood. The N-Set boundaries group together
those sites expected to frequently access one another.

The constraints on the LKV require that at least one site
in each N-Set possesses a description of the immediately
enclosing H-Set. This ensures that all sites can locate
each of the other sites in that H-Set. Extending the
sample topology to very large networks is, however,
problematic. Single H-Set topologies reduce N-Set
autonomy as data or topological updates must be
acknowledged by large numbers of sites. It is also
likely that communications between sites in certain pairs
of N-Sets would occur infrequently. These
considerations provide the motivation for partitioning
the network into multiple H-Sets. Such an arrangement
minimizes the propagation domain of an update and
reduces the amount of information that sites must
possess about other portions (i.e. H-Sets) of the

295

Figure 1: Example of an Hierarchical Network

. -I

I-
. b b

r.-.l

.
/

.
. .

/ -

.

a) Single H-Set Representation b) Multiple H-Set Representation

Figure 2: Representations of the Hierarchical Network of Figure 1

network. As an example, a multiple H-Set
representation of the network of Figure 1 is given in
Figure 2b. This topology partitions the network into 5
H-Sets, shown here as shaded regions. H-Sets at the
same level of nesting (with respect to Hs) are shaded
similarly.

2.1 Gateway N-Sets and the Knowledge Kernel

Each H-Set includes a distinguished gateway N-Set N,
through which all communications with other
management domains (i.e. remote H-Sets) are directed.
Gateways local to the immediately enclosing H-set (Ht)
are denoted Nst; g ateways to a remote H-set (Hr) are
denoted N,:

N,l E Hl

NgrEHr

The three principal reasons for introducing gateways are:
(1) the volume of traffic between H-Sets may be
significantly reduced, (2) secure communications may be

established between domains (i.e. authentication
protocols can be employed between gateway N-Sets),
and (3) the characteristics (e.g. speed, storage,
communication channels etc.) of the gateway sites can
be chosen to avoid communications bottlenecks.

All sites within Ns possess a knowledge kernel. This
contains information about:

l the local (immediately enclosing) H-Set Ht,

l the set of remote H-Sets knowing Ht,

l the global H-Set Hs,

2.2 Enclosure Hierarchy Trees

The relationships and relative nestings between H-Sets
may be described by an Enclosure Hierarchy Tree
(EHT). Each node of an EHT represents a specific H-
Set and indicates that it contains or OWI?S each of the
descendant subtrees. N-Sets are not explicitly
represented in EHTs. The EHT including Hg spans the

296

entire network and is called the Global Enclosure
Hierarchy Tree (GEHT). The GEHT for the sample
topology of Figure 2b is shown in Figure 3.

Figure 3: Sample GEHT
(Network of Figure 2b)

It is unlikely that any site would know the GEHT.
Instead each site possesses a Local Enclosure Hierarchy
Tree (LEHT) describing only that portion of the
topology known locally (i.e. the LEHT defines the
LKV). The nodes of an LEHT represent knowledge
abour H-Sets and define where this knowledge resides.
The relative positions of nodes within an LEHT are
consistent with the relative H-Set nestings defined by
the GEHT. Individual sites could not otherwise deduce
the relationships between the known H-Sets. This
information is typically used when determining which
remote H-Sets may be able to assist in the refinement of
a query. It is also required when changes to the
network topology alter the GEHT. Sites informed of
the update could not otherwise infer the scope of the
change. Eight types of LEHT nodes have been
identified representing four different classes of
knowledge.

2.3 Network Topology Schemas

The PIDDB topology proposed above is not yet
complete enough for the development of operational
procedures such as the data location algorithm. An
overview of the conceptual schemas defining what
information is associated with N-Sets and H-Sets, is
given below. The schemas are expressed as sets of n-
ary tuples of data elements; the ordering of tuples within
sets and of elements within tuples is not significant.
Underscored elements in the schema defizons indicate
that the nume rather than the value of the object is
referenced. Some of the parameters included in the
schema definitions will not always be available (e.g.
status of another site). These parameters are enclosed in
square braces ([I) to indicate that their inclusion is

dependent on their availability.

2.3.1 Notation

Before presenting the detailed schemas, some notation
and knowledge operators are required. In addition to
the usual structural and value instance information, an
object in a PIDDB is not fully described without
knowledge of its location. The boolean operator $ is
useful for expressing or testing this knowledge:

#‘OBJ is true if object OBJ is possessed by site S,.

Another operator, a, is a macro that defines the set of
sites possessing OBJ.

@ (OBJ) = (S,: #‘OBJ}

The relational data model [6,7] is assumed throughout
this paper: fragment Q of relation x is denoted Rz.
Two further definitions are required:

F (Rx) The fragmentation schema defining the
partitioning of relation R, into the set of
fragments {RF),

A(R,Q) The fragment aIiocation schema defining
the assignment of fragment Rz to its set of
storage sites #(RF). This schema also
includes the cardinality lR!$

Queries may or may not be defined with respect to these
schemas . Queries that are not refined with respect to
either schema are completely unrefined. Those defined
with respect to the fragmentation schema are partially
refined. Queries that are also defined with respect to
the allocation schema are fully refined.

The allocation schema does not constitute a fragment
directory in the sense descriG in 01. Rather, this
schema fogether with the topological (i.e. N-Set and
H-Set schemas) and knowledge models (i.e. LEHT)
constitute the distributed directory.

2.3.2 N-Set Schema

Sites possess extensive knowledge about their
neighbours, limited knowledge about certain other N-
Sets, and no knowledge about any other site. Each site
S, in N-Set Nt would typically be described by its
communication parameters C,, usage costs U,, current
status D,, the set of fragmentation and allocation
schemas held by S, (Fa and A, respectively), and
boolean indicators Pn and E, that are true if S, is an
articulation point and/or an N-Set entry point
respectively. Another boolean N, associated with each
N-Set is true if Ni is a gateway N-Set. These
parameters constitute the schema:

Ni = K&P Ng, N,>

where Hi identifies the N-Set and N, describes the set of
sites participating in Ni:

N, = I<&, P,,, En, IF,], [AnI, Gl, RJ,l, D,l>l

297

where 2, identifies’ a specific site. F, and A, simplify
the data location process within an N-Set as all sites
know what data their neighbours possess. It is not
therefore necessary to explore the local N-Sets dmG
query processing when these elements are available.
The policy adopted for inclusion and maintenance of
these elements is local to each N-Set and may vary
between N-Sets.

2.3.3 H-Set Schema

The fundamental purpose of the H-Set schema is to
express the mappings of data fragments onto their
containing N-Sets. The H-Set schema therefore contains
mapping tuples expressing facts such as fragment RF
resides in N-Set Nk:

<g, &>

The H-Set schema also includes parameters to ensure
that the network is both navigatable and maintainable.
For example, sites require knowledge of the identities of
at least one ancestor! H-Set, and each of the descendant
H-Sets. The names of these H-Sets are represented by
the sets & and I& respectively. Two further parameters
complete the H-Set schema. Ci is a boolean that is true
if Hi is the local H-Set HI. Nh identifies the set of N-
Sets participating in Hi and is required to distribute
updates of the H-Set schema or extension. The
complete H-set schema is expressed by the tuple:

Hi = < &, Fi, Ci, &, &, Nh >

where I3i identifies the H-Set, and Fi is the set of tuples
associating fragments with their storage N-Sets in Hi-

3. DISTRIBUTED OBJECTS

Large database systems often serve as repositories of
information relevant to a number of applications. It is
unlikely that all users of such systems would be
interested in all of the available data. The view concept
[7,8] simplifies the apparent structure and contents of
the database to include only those portions relevant to
an application or a users interest. A view is a
description of a virtual object that identifies the
components of the fundamental base objects (e.g.
relations) included in the view, and defines how these
components are combined to instantiate a virtual object.

Distributed systems introduce additional complexity into
the view management problem as view components may
be both logically and physically distributed across a
computer network. An application of the view concept
arises in the PIDDB context as a mechanism for
modelling distributed virtual objects. A distributed

1. It is implicit that the site name s is sufficient to uniquely
identify a specific network address.

2. An ancestor H-Set encloses Hi. Similarly, a descendant H-Set
is nested within Hi.

object is an instantiation of a virtual object whose
components reside at differing locations. This concept
permits- agencies to cooperate to “provide” services to
the rest of the network. A telecommunications
administration may, for example, wish to define virtual
objects combining parts of, say, its telephony and
electronic mail directories. Users may then directly
interrogate the integrated directory without knowledge
of its structure or distribution. The base objects of such
integrated services may be owned by diflerent
administrations. This class of view is commercially
significant as it permits information providers to
“repackage” their individual information pools into a
number of distinct service offerings that would typically
be used and tariffed quite differently.

The network is partitioned into two types of domains
with respect to each distributed object:

1. Service Provider Domains (PDs) which own some
component(s) of the object, and

2. Subscriber Domains (SDS) which know of or
possess an instantiation of the distributed object.

Distributed objects are indistinguishable from other base
objects within the SDS and may be represented via
LEHTs in the usual way.

The view defining a distributed object may be arbitrarily
complex and may contain O&X views as
subcomponents. The structure of these views is defined
by a dependency or view graph. View graphs are both
directed and acyclic. The direction of the edges
indicates the nature of the dependencies (i.e. arrow
heads point towards the more basic objects). Cycles in
this graph would represent recursive view definitions
that could not be instantiated. An example of a view
graph for a distributed object is given in Figure 4. R,,
Rt, and R, are base relations which may reside at
differing sites. R, is a view on these relations (e.g. a
natural join following projection or selection over each
component). Rabcd is another view defined in terms of
R, and R,. Two nodes in this graph are dependent on
R, illustrating why a tree description would be
inadequate.

Figure 4: Sample View Graph

298

The PDs are responsible for ensuring that each of the
SDS receive updates whenever (1) a change in a base
object causes a resultant change in a distributed object,
or (2) the view definition is altered resulting in changes
to the distributed object.

4. PIDDB QUERY PROCESSING

The special nature and requirements of PIDDB query
processing are identified below by developing the
ramifications of the conceptual framework proposed
above. The distribution of responsibility for evaluating
and combining portions of the input query, and the
requirements of the data location algorithm to support it
are presented.

4.1 H-Set Decomposition

The PIDDB framework imposes the constraint that all
communications between H-Sets must be via their
gateway N-Sets, and that these N-Sets are the only ones
known to other H-Sets. It is also implicit that sites can
access fragments in remote H-Sets without knowing
their specific storage locations. It is therefore a natural
extension of these principles to partition queries
involving multiple H-Sets into sub-queries that can be
independently evaluated within each H-Set. The
gateway sites are then responsible for locating and
accessing fragments within their local H-Set on behalf
of sites in other H-Sets. Query evaluation therefore
requires a master schedule concerned with finding an
optimal strategy for transporting and combining the
partial results produced by each participating H-Set.
The initial partitioning of the query is called H-Set

decomposition. One ramification of this decomposition
is that the data location algorithm need not refine the
locations of remotely owned relations beyond
identifying the relevant gateway N-Sets N,. This also
suggests that data location is an independent phase of
query processing that terminates within each H-Set
before evaluation of the local sub-query commences.
While this Section is predominantly concerned with the
data location algorithm, it is necessary to consider its
relationship to the larger query processing problem. An
operational basis for managing the generation,
evaluation and combination of the partial queries is
proposed below. The initiating site Sinit coordinates the
overall activity in this scenario and is responsible for:

1. performing the initial H-Set query decomposition,

2. distributing the partial queries to the gateway N-
Sets of the identified H-Sets,

3. determining the locations of each of the data
objects required for the local sub-query executable
within H,,

4. evaluating the local sub-query,

5. planning and executing a master schedule for
distributing and combining the partial results
produced within each H-Set. (This step could be
delegated to N,, to minimize interactions within
HP>

An example of H-Set decomposition in PIDDB query
processing is demonstrated in Figure 5. Messages
associated with data location and master schedule

Figure 5: H-Set Query Decomposition

299

coordination are not shown. Only gateway N-Sets are
identified; other N-Set boundaries within each H-Set are
ignored for simplicity. Dashed arcs represent the
optimal query evaluation sequences within each H-Set.
Solid arcs represent the master schedule and illustrate
the distribution and combination of the partial queries
and results respectively. The numbers on the arcs
indicate the chronological order of the messages.
Messages distinguished by lower case letters are issued
simultaneously.

The partial queries would typically be distributed
simultaneously (messages 2 in the Figure). Each H-Set
assisting Hi invokes the data location algorithm within
its local gateway N-Set to plan and then execute an
optimal schedule for evaluating the local sub-query.
This is represented by messages 3a to 7 and 3b to 6b in
the example. The partial results are then combined
according to the master schedule planned within Hi.
This would typically require exchanging additional
messages with Hr to report the cardinalities of the partial
results. (The master sequence cannot be completely
planned until this information becomes available. The
coordination messages reporting cardinalities and
returning instructions are omitted from the Figure for
clarity.) In the example scenario, it is assumed that the
partial result produced in H,,, is smaller than that
produced within H,,, and that the final result is
significantly smaller than either partial result. The
optimal strategy is therefore to send the result produced
in H,,, to H,, (message 8), and then to return the final
result to Hr (message 9). Message 10 relays the final
result t0 Sinit

4.2 Objectives of Data Location

The PIDDB query processing paradigm proposed above
provides a basis for defining the objectives of the data
location algorithm:

1. to identify the set of relevant fragments possessed
within Hr (i.e. fragments that are implicitly
referenced by the user’s global query),

2. to determine the specific storage sites and
cardinalities of each relevant fragment in Hr,

3. to determine which remote H-Sets contain sites
owning relevant relations3 that are not available
within Hr.

Many heuristic techniques for finding an acceptably
efficient4 query evaluation strategy are described in the
literature and are suitable for evaluating the partial

3. The set of relevant fragments implied by these relations are
determined by the instances of the data location algorithm in
the remote H-Sets.

4. It is typically necessary to employ acceptably efficient
schedules as discovery of an optimal solution is often
intractable.

queries within each H-Set. Early examples, based on
semi-join techniques [5,9], include the SDD-1 query
processor [lo] and the techniques developed by Hevner
et. al. [ll, 121. More recent developments were
described by Chiu and Ho [13], Chu and Hurley [141
and by Lafortune and Wong [15]. The fragment
cardinalities obtained during data location are required
by these techniques to plan an efficient schedule for
transferring partial results between sites within an H-Set.
This schedule cannot be planned until all of the required
locations and cardinalities have been determined. Data
location is therefore an independent and preliminary
phase of query processing that completes within each
H-Set before evaluation of the local sub-query
commences.

4.3 Phases of Data Location

The global query, denoted gq, explicitly references a set
of relations. Two refined representations of gq, namely
fq and aq, are proposed. The canonical fragmentation
query fq is derived by analysing the relevant
fragmentation schemas to replace each relation in gq by
an appropriate set of data fragments. The canonical
allocation query aq is derived by augmenting fq with
additional information that defines the cardinality and
location of each relevant fragment. The data location
problem can be phrased in this context as the task of
refining gq to fq and then refining fq to aq.

The fragmentation schemas required to produce fq may
not all be locally available at Shit. It is therefore
necessary to locate the required fragmentation schemas
before the locations of specific fragments can be
determined. There are therefore two logically distinct
and serial phases of data location:

l a preliminary knowledge acquisition phase (K-Phase)
during which the locations of the required
fragmentation schemas are determined, and

l a sites identification phase (S-Phase) during which
the identities, locations and cardinalities of the
relevant fragments are determined.

The K-Phase determines where the required
fragmentation schemas are possessed. It is implicitly
assumed by invoking the S-Phase at these sites that they
can identify and locate the required fragments. The
proposed data location algorithm relies on the
observation that sites capable of identifying any
fragments implied by gq must also be capable of
determining the locations and cardinalities of those
fragments. Theorem 1 states this observation more
formally. The knowledge and topological models
proposed in [l] are used to prove this theorem in [2].

300

Theorem 1: Refinement Capabilities

Suppose that, as a result of the K-Phase, Sinit determines
that S, possesses each of the fragmentation schemas
necessary to refine a subset gq’ of gq to fq’. Then if S,
is capable of refining gq’ to fq’ it must also be capable
of refining fq’ to aq’.

4.4 Query Taxonomy

A number of distinct query versions are appropriate as
data location proceeds. A total of 16 query versions in
four classes have been identified. This taxonomy
provides a precise basis for the development of the K-
Phase and S-Phase data location algorithms. The input
class contains a single member that is the user’s input
query. The next two classes cater for the requirements
of the data location algorithm: the knowledge and sites
queries cater for the K-Phase and S-Phase respectively.
The final evaluation class is concerned with H-Set
decomposition for query evaluation. An overview of the
various query versions is given in Table 1. All of these

queries are generated at Sinit, except fq: and aqf which
are generated at the sites refining gqf during the S-Phase
of data location.

The relationships between these queries are illustrated as
a directed graph in Figure 6 where each node represents
a specific query. The edges identify the specific
dependencies: the query at the head of an edge is
derived from and generated after the query at the tail.
gQ$t is, for example, a subset of gq” which in turn is
generated using the information contained in gq and gqk.

The fundamental objective of data location can be
restated in terms of this taxonomy as the task of
transforming the input query gq to the local allocation
schema sub-query aq’ and the remote global schema
sub-queries gq, that are sufficiently detailed to enable
planning an optimal execution strategy.

4.5 Overview of Data Location

Theorem 1 provides an operational basis for the data
location algorithm. A series of 14 conceptual

TABLE 1: PIDDB Query Taxonomy

ClilsS Query Content

Input gq The user’s input query defined on the global schema.

t?d K-Phase input version of gq identifying each relevant relation

Knowledge gq*
K-Phase output/S-Phase input identifying relations with N-Sets in the
locai H-Set Hr.

Pi= K-Phase output identifying relations with remote H-Sets Hr.

&lit The portion of gq” refinable by SiGt (i.e. each of the relevant
fragmentation schemas implied by gq& has been determined by the K-
Phase to be possessed by S&.

8$ The portion of gq” refinable by N-Set Nj E Hr (i.e. each of the relevant
fragmentation schemas implied by gqj” has been determined by the K-

Sites Phase to be possessed within Nj).
f& The partially refiied version of gq&.
fqi” The partially refined version of g#.
aq& The fully refined version of fq$,.
a$ The fully refined version of f4j”.

as” The aggregate of the a$ and a&t generated within Ht.

Ed The portion of gq such that each of the fragments implied by the
relations referenced in gq’ is possessed by some site in Hr.

gn’ The portion of gq such that each of the fragments implied by the

Evaluation
relations referenced in gq’ is possessed by a site within some remote
H-Set H,

m; The portion of gq’ refinable within remote H-Set Hr.

fs’ Partially refined version of gq’.

as’ Fully refined version of fq’.

301

Figure 6: Dependencies Between PIDDB Queries

algorithms that collectively constitute the data location
algorithm are presented in [21. A simplified overview
(incorporating both the K-Phase and S-Phase) is given
below.

4.5.1 Simplified Algorithm

The algorithm demonstrates the application of part of
the proposed query taxonomy and is concerned with
identifying the local sub-query gq”’ and with locating the

302

fragments implied by it:

1. for each R, named in gqk such that
T@init F(R,), Spit uses its local knowledge view
to determine a set of candidate N-Sets possessing
the relevant fragmentation schemas:

(Nj E H1: 3 S” E Nj: ~” F(R,))

Hence refine gqk to gq”.

(4Sa)

2. decompose gqsl into a set of partial queries such
that each partial query can be fully refined within
one of the identified Nj:

Igqjs C &f’: tJj SSj” = iXs*l (4.5b)

on the basis that for every R, named in gq[

3 S, E Nj: 4” F(Rx) (4%)

3. distribute the partial queries gqf to their respective
N-Sets.

4. await the partial responses aq; and assemble the
final result aq’.

Step 1 identifies that portion of the global query
refinable within Hl. Step 2 defines an N-Set query
decomposition that identifies the portion of gq”’ refinable
by each Nj. The criteria for N-Set selection in given in
expression 4Sa. The constraint defined in expression
4.5b ensures that each relation in gqs* is represented in
some partial query; the constraint of expression 4.5~
reflects the N-Set selection criteria of expression 4.5a.

This algorithm assumes that Sinit has a sufficient local

knowledge view to complete the N-Set decomposition of
step 2. This is not necessarily true in general: it is the -

task of the preliminary K-Phase identified above to
collect sufficient knowledge before attempting N-Set
decomposition.

Sites in the selected N-Sets (Njl fully refine the
decomposed query gq/ by applying Theorem 1. An
overview of their algorithm is (note that “local” and Ht
are with respect to the site in Nj, not the originating
site):

1. use the locally held fragmentation schemas to
refine gqf to fq:.

2. refine fq! to aq; by determining the locations and
cardinalities of each RF named in fqf such that,

a. if c$’ A(R:) then, by definition, @(RF) and
IRFI are available; fq; may be refined to aq:

with respect to Rz.

b. if 7 $’ A (R,Q) then request A(RF) from
another site in Ht (using a description of H,
to identify the assisting site); fqj” may now
be refined to aq: with respect to RF.

3. return the partial result aq{ to Sini~

An example of the manner in which the complete data
location algorithm would explore the PIDDB topology is
given in Figure 7. Ni and Nj represent two typical N-
Sets 104 to Sinit If data location cannot be completed
within these N-Sets than the neighbourhoods within H,
are searched. NHt and NH, represent the local and
some other neighbourhood respectively within H,. If
these are aho found to be inadequate then a wider
domain search involving other H-Sets is invoked, II,,,

H-Set Level

Neighhonrhood Level

N-Set Level

Figure 7: Overview - Levels of Data Location Search

303

represents another typical H-Set that may be
investigated. Finally, if the available or acquired
knowledge proves inadequate then the global H-Set Hs
enables a systematic and exhaustive search of the entire
topology to be undertaken.

4.6 Overview of S-Phase Algorithms

A simplified overview of the S-Phase algorithms is
presented below. This overview develops steps 2 to 4
of the simplified data location algorithm for Spit:

1. initially decompose gq” into two components:

a. g&it c gq” such that for every Rx named
in g&it, ginit F(Rx)

b. gq’ such that gq’ = gqsl - g&- It
2. 1OCally refine gsi”,i, to aq&,

3. perform N-Set decomposition on gq’ to produce
blfl and distribute sub-queries to the
corresponding Nj

4. await aq{ responses, combine with aq&, and
assemble aq’. Delete the corresponding gq; from
(gqi} as each response is received

5. terminate when (gqf] = 0

Step la identifies those portions of gqsl refinable by
Sinit- Step lb finds the residue refinable by other Nj.
This residue is (N-Set) decomposed in step 3 into the
portions relevant to specific N-Sets. While many
partitions may be possible, it is implicit that the optimal
partitioning would be found. This minimizes the number
of N-Sets involved by selecting those containing several
relevant fragments in preference to those containing only
a single fragment.

5. CONCLUSION

A model for managing very large distributed databases
has been presented. This model involves restricting the
meta knowledge available to any site and defines a new
class of Partially Informed Distributed Databases
(PIDDB). This class is fully transparent with respect to
data fragmentation, location and replication. It is
inherently suitable for very large systems and preserves
the autonomy of sub-domains. No assumptions are made
regarding the initial or current allocation of data
fragments to sites so that replications may readily be
created or deleted within their owning domains.

A mechanism has been described that permits
information providers to cooperate to define distributed
virtual objects using components of their individually
owned objects. These objects are instantiated and
distributed as snapshots.

The relationship of data location to PIDDB query
processing has been developed and a mechanism for

coordinating query evaluation has been proposed. It
was shown that differing versions of the initial global
query exist as data location proceeds. A descriptive
query taxonomy was introduced to provide a concrete
basis for the development of the data location algorithm.
A total of 16 different query versions have been
identified.

Data location has been found to consist of two distinct
and serial phases: a knowledge acquisition phase (K-
Phase) and a sites determination phase (S-Phase). The
K-Phase is concerned with determining which domains
(local N-Sets or remote H-Sets) contain sites possessing
the fragmentation schemas relevant to the global query.
The S-Phase is concerned with applying the knowledge
acquired during the K-Phase to identifying, locating and
determining the cardinalities of the relevant fragments.
Conceptual algorithms have been presented that define
the basis of the procedures required to develop a
prototype system.

6. ACKNOWLEDGEMENT

The support of Telecom Australia to undertake this
work is appreciated. The permission of the Director
Research, Telecom Australia to publish this paper is
acknowledged. Thanks are also due to Dr Ken J.
McDonell, Department of Computer Science, Monash
University, for his numerous constructive suggestions
during the preparation of this paper.

7.

1.

2.

3.

4.

5.

6.

REFERENCES

M. Blakey, Partially Informed Distributed Databases:
Conceptual Framework And Knowledge Model,
Tech. Rep. 80, Dept. of Comp. Science, Monash
Univ., Melbourne, Australia, Dec., 1986.

M. Blakey, Partially Informed Distributed Databases:
Data Location Algorithm, Tech. Rep. 87/85, Dept. of
Comp. Science, Monash Univ., Melbourne,
Australia, May, 1987.

C. Mohan, B. Lindsay and R. Obermarck,
Transaction Management in the R* Distributed Data
Base Management System, Report RJ 5037, IBM
Thomas J. Watson Research Center, Yorktown
Heights, New York, Feb., 1986.

J. B. Rothnie, Jr., P. A. Bernstein, S. Fox, N.
Goodman, M. Hammer, T. A. Landers, C. Reeve, D.
W. Shipman and E. Wong, Introduction to a System
for Distributed Databases (SDD-I), ACM Trans. on
Database Sys. 5 , 1, (1980), l-17.

S. Ceri and G. Pelagatti, Distributed Databases:
Principles and Systems, McGraw-Hill, New York,
1985.

E. F. Codd, A Relational Model of Data for Large
Shared Data Banks, Comm. ACM 13 , 6, (1970),
377-387.

304

7.

8.

9.

C. J. Date, An Introduction to Database Systems,
Volume 1, 4th Edition, Addison-Wesley, Reading,
Massachusetts, 1986.

J. D. Ullman, Principles of Database Systems,
Comp. Science Press, Rockville, Maryland, 1982.

P. A. Bernstein and D. M. Chiu, Using Semi-joins
to Solve Relational Queries, J. ACM 28 , 1, (Jan.
1981), 25-40.

10. P. A. Bernstein, N. Goodman, E. Wong, C. L.
Reeve and J. B. J. Rothnie, Query Processing in a
System for Distributed Databases (SDD-I), ACM
Trans. on Database Sys. 6 , 4, (1981), 602-625.

11. A. Hevner and S. B. Yao, Query Processing in
Distributed Database Systems, iEEE Trans. on
Software Eng. SE-5 , 3, (May 1979), 177-187.

12. P. M. G. Apcrs, A. R. Hevner and S. B. Yao,
Optimization Algorithm for Distributed Queries,
IEEE Trans. on Software Eng. SE-9 , 6, (Jan.
1983), 57-68, IEEE.

13. D. M. Chiu and Y. C. Ho, A Methodology for
Interpreting Tree Queries Into Optimal Semi-join
Expressions, Proc. ACM SlGMOD International
Conf on Management of Data, Ann Arbor,
Michigan, ACM, New York, Apr., 1980, 169-178.

14. W. Chu and P. Hurley, Optimal Query Processing
for Distributed Database Systems, IEEE Trans. on
Computers C-31 , 9, (Sep. 1982), 835-850.

15. S. Lafortune and E. Wong, A State Transition Model
for Distributed Query Processing, ACM Trans. on
Database Sys. 11 , 3, (Sep. 1986), 294-322.

305

