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ABSTRACT 

The problems inherent in managing a database 
distributed over a very large number of sites are 
considered. The applications of such databases to the 
provision of telecommunications and other public 
services are discussed. It is shown that the distribution 
and maintenance of the directory information describing 
object locations poses some fundamental problems. A 
new partially informed class of distributed databases is 
described which distributes the directory information on 
a “needs-to-know” basis. The class is described by 
models of the network topology, and by the knowledge 
available to each site. These proposals are suficiently 
general to support the partitioning of data relations into 
distribution fragments, and for those fragments to be 
replicated at multiple sites. 

1. INTRODUCTION 

Recent developments in computers and communication 
technologies are enabling a rich variety of advanced 
information-based and transaction processing services to 
be offered over public networks. Typical applications 
include electronic funds transfer, airline reservation 
systems and real estate listings. Sophisticated 
telecommunication services, such as on-line directory 
services, are also emerging. All of these applications 
rely on an underlying Distributed Database (DDB) 
technology. Most present day services make relatively 
modest demands of the DDB given that information is 
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distributed across a small number of sites (typically 20 
or less) so that the information processing demands are 
readily supported by existing commercial DDB systems 
(see [3,4] for example). It is, however, likely that 
applications will evolve requiring much higher degrees 
of distribution. New telephony services such as 
automatic call redirection could, for example, be 
established by incorporating a DDB site into each 
telephone exchange. Manufacturing and operational 
efficiencies may also be significantly improved by 
enabling direct communications between an enterprise’s 
databases (e.g. warehouse contents which may 
themselves be distributed) and those of its clients and 
suppliers. Applications such as these require DDBs 
distributed over a very large number of sites (possibly 
hundreds) so that new techniques must be found to 
assist in their management. 

Some of these applications will naturally require that 
data objects be partitioned into fragments [5], suitable 
for storage allocation at specific sites, and that some 
fragments be replicated at multiple sites. These 
requirements, together with the size and dynamic nature 
of the network, pose some fundamental problems in the 
design of the system’s internal data directory that 
associates fragments with storage sites. These problems 
are further compounded by the common requirement 
that the partitioning and distribution of objects be 
transparent to system users and application programs. 
Centralizing the directory to a special nominated site is 
undesirable because (1) failure of that site effectively 
prohibits any distributed transaction processing, and (2) 
an additional overhead of a directory interrogation is 
imposed on each transaction. The alternative 
arrangement of fully replicating the directory at every 
site is also undesirable as (1) an unreasonable storage 
burden is imposed on every site, and (2) an exorbitant 
amount of network traffic will result whenever data is 
relocated (i.e. every directory copy would have to be 
updated). 

These problems may be solved by partitioning and 
distributing the directory information on a “needs-to- 
know” basis. Each site has a restricted view of the rest 
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of the network and of the data objects stored by the 
visible sites. These proposals define a new class of 
Partially Informed Distributed Databases (PIDDB). In 
effect, this proposal partitions the directory information 
so that sites may need to communicate with other sites 
in the network to discover the identities and location of 
those fragments that are not described by the local 
knowledge. Despite the p= knowledge held at each 
site, these systems will allow any distributed data object 
to be located from any site. 

The following sections present an overview of the 
PIDDB class. A more complete description, involving 
non-trivial formalisms and algorithms, may be found in 
[ 1,2]. Models are presented in Section 2 that describe 
the logical network topology, and the knowledge 
available to any site. An extension of these models that 
supports distributed objects is outlined in Section 3. 
The objectives and overview of a distributed algorithm 
for dynamically determining data locations is presented 
in Section 4. The relationship of this algorithm to 
PIDDB query processing is also discussed. 

2. NETWORK TOPOLOGY 

A logical model of the network topology is proposed 
below that specifies what kind of information sites 
possess about the rest of the network and how this 
information is organized. This model anticipates the 
development of an efficient and distributed algorithm for 
dynamically determining data locations. The topology 
defines the meta-database known to each site. It is 
implicit in the definition of the PIDDB class that no site 
would know the entire meta-database. ‘The portion 
known to a site constitutes its local knowZedge view 
(LKV). The proposed topology does not require that 
sites store any data fragments in order to be able to 
initiate or execute queries (although their meta 
knowledge & subject to a series of constraints on the 
LKV). 

The topology partitions the network into sets of 
neighbours called N-Sets. All N-Sets contain at least 
one site and all sites are assigned to at least one N-Set. 
Sites in a common N-Set know of each others existence 
and may possess extensive descriptions of the data 
fragments possessed by each neighbour, although these 
descriptions may be incomplete or even null (subject to 
the constraints on the LKV). At least one site in each 
N-Set would be nominated as an entry point. These 
sites are distinguished by being known (i.e. name and 
network address) by sites in other N-Sets. All incoming 
data location or update requests from outside an N-set 
would be directed into an entry point site. These sites 
locally distribute the requests within the N-Set as 
appropriate. Sites assigned to multiple N-Sets define 
the overlapping articulation points between those sets. 
Articulation points would typically arise where a site 
makes frequent access to differing N-Sets so that 

membership of those sets becomes attractive. Groups of 
N-sets overlapping in this way define a neighbourhood. 
Articulation points would commonly be entry points to 
improve the efficiency of the data location procedure. 

A network would typically be partitioned into a number 
of disioint neighbourhoods. These neighbourhoods must 
however be connected in some fashion so that the 
location or existence of remote data can be determined. 
Hyper-Sets (H-Sets) of N-Sets are introduced to provide 
this connection. H-Sets define the mappings of 
fragment names onto the N-sets possessing replications 
of those fragments. H-Sets may contain any arbitrary 
collection of N-Sets and neighbourhoods, however 
neighbourhoods may not span H-Set boundaries. H-Sets 
may be nested, but other forms of overlap are not 
permitted. Nesting would typically be useful in lo% 
networks where groups of sites were administered by 
differing agencies; each H-Set would correspond to an 
autonomous management domain. Such complex 
networks require a global H-Set (HP) that encloses the 
entire network to ensure that disjoint partitions of 
knowledge do not occur. 
connectivity 

Since Hg provides 
between disjoint sub-networks, its 

definition must be known within every H-Set. 

The N-Set/H-Set model is suitable for modeling the 
network topologies commonly encountered in practice 
(e.g. star, ring, hierarchical). In many cases either N- or 
H-Sets can be used to model a part of the network. The 
specific design depends on factors such as the 
anticipated frequency of access between sets of sites, 
and on the desired degree of autonomy for such sets. 
As an example, consider the network of nine sites 
organized into the logical hierarchy of Figure 1. Many 
PIDDB representations of this network are possible. 
One topology, in which all sites are grouped into a 
single global H-Set H, is shown in Figure 2a. Sites and 
N-Sets are represented as solid circles and enclosing 
ellipses respectively. The articulation points at sites 2, 3 
and 5 link the entire network into a single 
neighbourhood. The N-Set boundaries group together 
those sites expected to frequently access one another. 

The constraints on the LKV require that at least one site 
in each N-Set possesses a description of the immediately 
enclosing H-Set. This ensures that all sites can locate 
each of the other sites in that H-Set. Extending the 
sample topology to very large networks is, however, 
problematic. Single H-Set topologies reduce N-Set 
autonomy as data or topological updates must be 
acknowledged by large numbers of sites. It is also 
likely that communications between sites in certain pairs 
of N-Sets would occur infrequently. These 
considerations provide the motivation for partitioning 
the network into multiple H-Sets. Such an arrangement 
minimizes the propagation domain of an update and 
reduces the amount of information that sites must 
possess about other portions (i.e. H-Sets) of the 
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Figure 1: Example of an Hierarchical Network 
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Figure 2: Representations of the Hierarchical Network of Figure 1 

network. As an example, a multiple H-Set 
representation of the network of Figure 1 is given in 
Figure 2b. This topology partitions the network into 5 
H-Sets, shown here as shaded regions. H-Sets at the 
same level of nesting (with respect to Hs) are shaded 
similarly. 

2.1 Gateway N-Sets and the Knowledge Kernel 

Each H-Set includes a distinguished gateway N-Set N, 
through which all communications with other 
management domains (i.e. remote H-Sets) are directed. 
Gateways local to the immediately enclosing H-set (Ht) 
are denoted Nst; g ateways to a remote H-set (Hr) are 
denoted N,: 

N,l E Hl 

NgrEHr 

The three principal reasons for introducing gateways are: 
(1) the volume of traffic between H-Sets may be 
significantly reduced, (2) secure communications may be 

established between domains (i.e. authentication 
protocols can be employed between gateway N-Sets), 
and (3) the characteristics (e.g. speed, storage, 
communication channels etc.) of the gateway sites can 
be chosen to avoid communications bottlenecks. 

All sites within Ns possess a knowledge kernel. This 
contains information about: 

l the local (immediately enclosing) H-Set Ht, 

l the set of remote H-Sets knowing Ht, 

l the global H-Set Hs, 

2.2 Enclosure Hierarchy Trees 

The relationships and relative nestings between H-Sets 
may be described by an Enclosure Hierarchy Tree 
(EHT). Each node of an EHT represents a specific H- 
Set and indicates that it contains or OWI?S each of the 
descendant subtrees. N-Sets are not explicitly 
represented in EHTs. The EHT including Hg spans the 
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entire network and is called the Global Enclosure 
Hierarchy Tree (GEHT). The GEHT for the sample 
topology of Figure 2b is shown in Figure 3. 

Figure 3: Sample GEHT 
(Network of Figure 2b) 

It is unlikely that any site would know the GEHT. 
Instead each site possesses a Local Enclosure Hierarchy 
Tree (LEHT) describing only that portion of the 
topology known locally (i.e. the LEHT defines the 
LKV). The nodes of an LEHT represent knowledge 
abour H-Sets and define where this knowledge resides. 
The relative positions of nodes within an LEHT are 
consistent with the relative H-Set nestings defined by 
the GEHT. Individual sites could not otherwise deduce 
the relationships between the known H-Sets. This 
information is typically used when determining which 
remote H-Sets may be able to assist in the refinement of 
a query. It is also required when changes to the 
network topology alter the GEHT. Sites informed of 
the update could not otherwise infer the scope of the 
change. Eight types of LEHT nodes have been 
identified representing four different classes of 
knowledge. 

2.3 Network Topology Schemas 

The PIDDB topology proposed above is not yet 
complete enough for the development of operational 
procedures such as the data location algorithm. An 
overview of the conceptual schemas defining what 
information is associated with N-Sets and H-Sets, is 
given below. The schemas are expressed as sets of n- 
ary tuples of data elements; the ordering of tuples within 
sets and of elements within tuples is not significant. 
Underscored elements in the schema defizons indicate 
that the nume rather than the value of the object is 
referenced. Some of the parameters included in the 
schema definitions will not always be available (e.g. 
status of another site). These parameters are enclosed in 
square braces ([I) to indicate that their inclusion is 

dependent on their availability. 

2.3.1 Notation 

Before presenting the detailed schemas, some notation 
and knowledge operators are required. In addition to 
the usual structural and value instance information, an 
object in a PIDDB is not fully described without 
knowledge of its location. The boolean operator $ is 
useful for expressing or testing this knowledge: 

#‘OBJ is true if object OBJ is possessed by site S,. 

Another operator, a, is a macro that defines the set of 
sites possessing OBJ. 

@ (OBJ) = (S,: #‘OBJ} 

The relational data model [6,7] is assumed throughout 
this paper: fragment Q of relation x is denoted Rz. 
Two further definitions are required: 

F (Rx) The fragmentation schema defining the 
partitioning of relation R, into the set of 
fragments {RF), 

A(R,Q) The fragment aIiocation schema defining 
the assignment of fragment Rz to its set of 
storage sites #(RF). This schema also 
includes the cardinality lR!$ 

Queries may or may not be defined with respect to these 
schemas . Queries that are not refined with respect to 
either schema are completely unrefined. Those defined 
with respect to the fragmentation schema are partially 
refined. Queries that are also defined with respect to 
the allocation schema are fully refined. 

The allocation schema does not constitute a fragment 
directory in the sense descriG in 01. Rather, this 
schema fogether with the topological (i.e. N-Set and 
H-Set schemas) and knowledge models (i.e. LEHT) 
constitute the distributed directory. 

2.3.2 N-Set Schema 

Sites possess extensive knowledge about their 
neighbours, limited knowledge about certain other N- 
Sets, and no knowledge about any other site. Each site 
S, in N-Set Nt would typically be described by its 
communication parameters C,, usage costs U,, current 
status D,, the set of fragmentation and allocation 
schemas held by S, (Fa and A, respectively), and 
boolean indicators Pn and E, that are true if S, is an 
articulation point and/or an N-Set entry point 
respectively. Another boolean N, associated with each 
N-Set is true if Ni is a gateway N-Set. These 
parameters constitute the schema: 

Ni = K&P Ng, N,> 

where Hi identifies the N-Set and N, describes the set of 
sites participating in Ni: 

N, = I<&, P,,, En, IF,], [AnI, Gl, RJ,l, D,l>l 
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where 2, identifies’ a specific site. F, and A, simplify 
the data location process within an N-Set as all sites 
know what data their neighbours possess. It is not 
therefore necessary to explore the local N-Sets dmG 
query processing when these elements are available. 
The policy adopted for inclusion and maintenance of 
these elements is local to each N-Set and may vary 
between N-Sets. 

2.3.3 H-Set Schema 

The fundamental purpose of the H-Set schema is to 
express the mappings of data fragments onto their 
containing N-Sets. The H-Set schema therefore contains 
mapping tuples expressing facts such as fragment RF 
resides in N-Set Nk: 

<g, &> 

The H-Set schema also includes parameters to ensure 
that the network is both navigatable and maintainable. 
For example, sites require knowledge of the identities of 
at least one ancestor! H-Set, and each of the descendant 
H-Sets. The names of these H-Sets are represented by 
the sets & and I& respectively. Two further parameters 
complete the H-Set schema. Ci is a boolean that is true 
if Hi is the local H-Set HI. Nh identifies the set of N- 
Sets participating in Hi and is required to distribute 
updates of the H-Set schema or extension. The 
complete H-set schema is expressed by the tuple: 

Hi = < &, Fi, Ci, &, &, Nh > 

where I3i identifies the H-Set, and Fi is the set of tuples 
associating fragments with their storage N-Sets in Hi- 

3. DISTRIBUTED OBJECTS 

Large database systems often serve as repositories of 
information relevant to a number of applications. It is 
unlikely that all users of such systems would be 
interested in all of the available data. The view concept 
[7,8] simplifies the apparent structure and contents of 
the database to include only those portions relevant to 
an application or a users interest. A view is a 
description of a virtual object that identifies the 
components of the fundamental base objects (e.g. 
relations) included in the view, and defines how these 
components are combined to instantiate a virtual object. 

Distributed systems introduce additional complexity into 
the view management problem as view components may 
be both logically and physically distributed across a 
computer network. An application of the view concept 
arises in the PIDDB context as a mechanism for 
modelling distributed virtual objects. A distributed 

1. It is implicit that the site name s is sufficient to uniquely 
identify a specific network address. 

2. An ancestor H-Set encloses Hi. Similarly, a descendant H-Set 
is nested within Hi. 

object is an instantiation of a virtual object whose 
components reside at differing locations. This concept 
permits- agencies to cooperate to “provide” services to 
the rest of the network. A telecommunications 
administration may, for example, wish to define virtual 
objects combining parts of, say, its telephony and 
electronic mail directories. Users may then directly 
interrogate the integrated directory without knowledge 
of its structure or distribution. The base objects of such 
integrated services may be owned by diflerent 
administrations. This class of view is commercially 
significant as it permits information providers to 
“repackage” their individual information pools into a 
number of distinct service offerings that would typically 
be used and tariffed quite differently. 

The network is partitioned into two types of domains 
with respect to each distributed object: 

1. Service Provider Domains (PDs) which own some 
component(s) of the object, and 

2. Subscriber Domains (SDS) which know of or 
possess an instantiation of the distributed object. 

Distributed objects are indistinguishable from other base 
objects within the SDS and may be represented via 
LEHTs in the usual way. 

The view defining a distributed object may be arbitrarily 
complex and may contain O&X views as 
subcomponents. The structure of these views is defined 
by a dependency or view graph. View graphs are both 
directed and acyclic. The direction of the edges 
indicates the nature of the dependencies (i.e. arrow 
heads point towards the more basic objects). Cycles in 
this graph would represent recursive view definitions 
that could not be instantiated. An example of a view 
graph for a distributed object is given in Figure 4. R,, 
Rt, and R, are base relations which may reside at 
differing sites. R, is a view on these relations (e.g. a 
natural join following projection or selection over each 
component). Rabcd is another view defined in terms of 
R, and R,. Two nodes in this graph are dependent on 
R, illustrating why a tree description would be 
inadequate. 

Figure 4: Sample View Graph 
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The PDs are responsible for ensuring that each of the 
SDS receive updates whenever (1) a change in a base 
object causes a resultant change in a distributed object, 
or (2) the view definition is altered resulting in changes 
to the distributed object. 

4. PIDDB QUERY PROCESSING 

The special nature and requirements of PIDDB query 
processing are identified below by developing the 
ramifications of the conceptual framework proposed 
above. The distribution of responsibility for evaluating 
and combining portions of the input query, and the 
requirements of the data location algorithm to support it 
are presented. 

4.1 H-Set Decomposition 

The PIDDB framework imposes the constraint that all 
communications between H-Sets must be via their 
gateway N-Sets, and that these N-Sets are the only ones 
known to other H-Sets. It is also implicit that sites can 
access fragments in remote H-Sets without knowing 
their specific storage locations. It is therefore a natural 
extension of these principles to partition queries 
involving multiple H-Sets into sub-queries that can be 
independently evaluated within each H-Set. The 
gateway sites are then responsible for locating and 
accessing fragments within their local H-Set on behalf 
of sites in other H-Sets. Query evaluation therefore 
requires a master schedule concerned with finding an 
optimal strategy for transporting and combining the 
partial results produced by each participating H-Set. 
The initial partitioning of the query is called H-Set 

decomposition. One ramification of this decomposition 
is that the data location algorithm need not refine the 
locations of remotely owned relations beyond 
identifying the relevant gateway N-Sets N,. This also 
suggests that data location is an independent phase of 
query processing that terminates within each H-Set 
before evaluation of the local sub-query commences. 
While this Section is predominantly concerned with the 
data location algorithm, it is necessary to consider its 
relationship to the larger query processing problem. An 
operational basis for managing the generation, 
evaluation and combination of the partial queries is 
proposed below. The initiating site Sinit coordinates the 
overall activity in this scenario and is responsible for: 

1. performing the initial H-Set query decomposition, 

2. distributing the partial queries to the gateway N- 
Sets of the identified H-Sets, 

3. determining the locations of each of the data 
objects required for the local sub-query executable 
within H,, 

4. evaluating the local sub-query, 

5. planning and executing a master schedule for 
distributing and combining the partial results 
produced within each H-Set. (This step could be 
delegated to N,, to minimize interactions within 
HP> 

An example of H-Set decomposition in PIDDB query 
processing is demonstrated in Figure 5. Messages 
associated with data location and master schedule 

Figure 5: H-Set Query Decomposition 
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coordination are not shown. Only gateway N-Sets are 
identified; other N-Set boundaries within each H-Set are 
ignored for simplicity. Dashed arcs represent the 
optimal query evaluation sequences within each H-Set. 
Solid arcs represent the master schedule and illustrate 
the distribution and combination of the partial queries 
and results respectively. The numbers on the arcs 
indicate the chronological order of the messages. 
Messages distinguished by lower case letters are issued 
simultaneously. 

The partial queries would typically be distributed 
simultaneously (messages 2 in the Figure). Each H-Set 
assisting Hi invokes the data location algorithm within 
its local gateway N-Set to plan and then execute an 
optimal schedule for evaluating the local sub-query. 
This is represented by messages 3a to 7 and 3b to 6b in 
the example. The partial results are then combined 
according to the master schedule planned within Hi. 
This would typically require exchanging additional 
messages with Hr to report the cardinalities of the partial 
results. (The master sequence cannot be completely 
planned until this information becomes available. The 
coordination messages reporting cardinalities and 
returning instructions are omitted from the Figure for 
clarity.) In the example scenario, it is assumed that the 
partial result produced in H,,, is smaller than that 
produced within H,,, and that the final result is 
significantly smaller than either partial result. The 
optimal strategy is therefore to send the result produced 
in H,,, to H,, (message 8), and then to return the final 
result to Hr (message 9). Message 10 relays the final 
result t0 Sinit 

4.2 Objectives of Data Location 

The PIDDB query processing paradigm proposed above 
provides a basis for defining the objectives of the data 
location algorithm: 

1. to identify the set of relevant fragments possessed 
within Hr (i.e. fragments that are implicitly 
referenced by the user’s global query), 

2. to determine the specific storage sites and 
cardinalities of each relevant fragment in Hr, 

3. to determine which remote H-Sets contain sites 
owning relevant relations3 that are not available 
within Hr. 

Many heuristic techniques for finding an acceptably 
efficient4 query evaluation strategy are described in the 
literature and are suitable for evaluating the partial 

3. The set of relevant fragments implied by these relations are 
determined by the instances of the data location algorithm in 
the remote H-Sets. 

4. It is typically necessary to employ acceptably efficient 
schedules as discovery of an optimal solution is often 
intractable. 

queries within each H-Set. Early examples, based on 
semi-join techniques [5,9], include the SDD-1 query 
processor [lo] and the techniques developed by Hevner 
et. al. [ll, 121. More recent developments were 
described by Chiu and Ho [13], Chu and Hurley [141 
and by Lafortune and Wong [15]. The fragment 
cardinalities obtained during data location are required 
by these techniques to plan an efficient schedule for 
transferring partial results between sites within an H-Set. 
This schedule cannot be planned until all of the required 
locations and cardinalities have been determined. Data 
location is therefore an independent and preliminary 
phase of query processing that completes within each 
H-Set before evaluation of the local sub-query 
commences. 

4.3 Phases of Data Location 

The global query, denoted gq, explicitly references a set 
of relations. Two refined representations of gq, namely 
fq and aq, are proposed. The canonical fragmentation 
query fq is derived by analysing the relevant 
fragmentation schemas to replace each relation in gq by 
an appropriate set of data fragments. The canonical 
allocation query aq is derived by augmenting fq with 
additional information that defines the cardinality and 
location of each relevant fragment. The data location 
problem can be phrased in this context as the task of 
refining gq to fq and then refining fq to aq. 

The fragmentation schemas required to produce fq may 
not all be locally available at Shit. It is therefore 
necessary to locate the required fragmentation schemas 
before the locations of specific fragments can be 
determined. There are therefore two logically distinct 
and serial phases of data location: 

l a preliminary knowledge acquisition phase (K-Phase) 
during which the locations of the required 
fragmentation schemas are determined, and 

l a sites identification phase (S-Phase) during which 
the identities, locations and cardinalities of the 
relevant fragments are determined. 

The K-Phase determines where the required 
fragmentation schemas are possessed. It is implicitly 
assumed by invoking the S-Phase at these sites that they 
can identify and locate the required fragments. The 
proposed data location algorithm relies on the 
observation that sites capable of identifying any 
fragments implied by gq must also be capable of 
determining the locations and cardinalities of those 
fragments. Theorem 1 states this observation more 
formally. The knowledge and topological models 
proposed in [l] are used to prove this theorem in [2]. 
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Theorem 1: Refinement Capabilities 

Suppose that, as a result of the K-Phase, Sinit determines 
that S, possesses each of the fragmentation schemas 
necessary to refine a subset gq’ of gq to fq’. Then if S, 
is capable of refining gq’ to fq’ it must also be capable 
of refining fq’ to aq’. 

4.4 Query Taxonomy 

A number of distinct query versions are appropriate as 
data location proceeds. A total of 16 query versions in 
four classes have been identified. This taxonomy 
provides a precise basis for the development of the K- 
Phase and S-Phase data location algorithms. The input 
class contains a single member that is the user’s input 
query. The next two classes cater for the requirements 
of the data location algorithm: the knowledge and sites 
queries cater for the K-Phase and S-Phase respectively. 
The final evaluation class is concerned with H-Set 
decomposition for query evaluation. An overview of the 
various query versions is given in Table 1. All of these 

queries are generated at Sinit, except fq: and aqf which 
are generated at the sites refining gqf during the S-Phase 
of data location. 

The relationships between these queries are illustrated as 
a directed graph in Figure 6 where each node represents 
a specific query. The edges identify the specific 
dependencies: the query at the head of an edge is 
derived from and generated after the query at the tail. 
gQ$t is, for example, a subset of gq” which in turn is 
generated using the information contained in gq and gqk. 

The fundamental objective of data location can be 
restated in terms of this taxonomy as the task of 
transforming the input query gq to the local allocation 
schema sub-query aq’ and the remote global schema 
sub-queries gq, that are sufficiently detailed to enable 
planning an optimal execution strategy. 

4.5 Overview of Data Location 

Theorem 1 provides an operational basis for the data 
location algorithm. A series of 14 conceptual 

TABLE 1: PIDDB Query Taxonomy 

ClilsS Query Content 

Input gq The user’s input query defined on the global schema. 

t?d K-Phase input version of gq identifying each relevant relation 

Knowledge gq* 
K-Phase output/S-Phase input identifying relations with N-Sets in the 
locai H-Set Hr. 

Pi= K-Phase output identifying relations with remote H-Sets Hr. 

&lit The portion of gq” refinable by SiGt (i.e. each of the relevant 
fragmentation schemas implied by gq& has been determined by the K- 
Phase to be possessed by S&. 

8$ The portion of gq” refinable by N-Set Nj E Hr (i.e. each of the relevant 
fragmentation schemas implied by gqj” has been determined by the K- 

Sites Phase to be possessed within Nj). 
f& The partially refiied version of gq&. 
fqi” The partially refined version of g#. 
aq& The fully refined version of fq$,. 
a$ The fully refined version of f4j”. 

as” The aggregate of the a$ and a&t generated within Ht. 

Ed The portion of gq such that each of the fragments implied by the 
relations referenced in gq’ is possessed by some site in Hr. 

gn’ The portion of gq such that each of the fragments implied by the 

Evaluation 
relations referenced in gq’ is possessed by a site within some remote 
H-Set H, 

m; The portion of gq’ refinable within remote H-Set Hr. 

fs’ Partially refined version of gq’. 

as’ Fully refined version of fq’. 
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Figure 6: Dependencies Between PIDDB Queries 

algorithms that collectively constitute the data location 
algorithm are presented in [21. A simplified overview 
(incorporating both the K-Phase and S-Phase) is given 
below. 

4.5.1 Simplified Algorithm 

The algorithm demonstrates the application of part of 
the proposed query taxonomy and is concerned with 
identifying the local sub-query gq”’ and with locating the 
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fragments implied by it: 

1. for each R, named in gqk such that 
T@init F(R,), Spit uses its local knowledge view 
to determine a set of candidate N-Sets possessing 
the relevant fragmentation schemas: 

(Nj E H1: 3 S” E Nj: ~” F(R,)) 

Hence refine gqk to gq”. 

(4Sa) 

2. decompose gqsl into a set of partial queries such 
that each partial query can be fully refined within 
one of the identified Nj: 

Igqjs C &f’: tJj SSj” = iXs*l (4.5b) 

on the basis that for every R, named in gq[ 

3 S, E Nj: 4” F(Rx) (4%) 

3. distribute the partial queries gqf to their respective 
N-Sets. 

4. await the partial responses aq; and assemble the 
final result aq’. 

Step 1 identifies that portion of the global query 
refinable within Hl. Step 2 defines an N-Set query 
decomposition that identifies the portion of gq”’ refinable 
by each Nj. The criteria for N-Set selection in given in 
expression 4Sa. The constraint defined in expression 
4.5b ensures that each relation in gqs* is represented in 
some partial query; the constraint of expression 4.5~ 
reflects the N-Set selection criteria of expression 4.5a. 

This algorithm assumes that Sinit has a sufficient local 

knowledge view to complete the N-Set decomposition of 
step 2. This is not necessarily true in general: it is the - 

task of the preliminary K-Phase identified above to 
collect sufficient knowledge before attempting N-Set 
decomposition. 

Sites in the selected N-Sets (Njl fully refine the 
decomposed query gq/ by applying Theorem 1. An 
overview of their algorithm is (note that “local” and Ht 
are with respect to the site in Nj, not the originating 
site): 

1. use the locally held fragmentation schemas to 
refine gqf to fq:. 

2. refine fq! to aq; by determining the locations and 
cardinalities of each RF named in fqf such that, 

a. if c$’ A(R:) then, by definition, @(RF) and 
IRFI are available; fq; may be refined to aq: 

with respect to Rz. 

b. if 7 $’ A (R,Q) then request A(RF) from 
another site in Ht (using a description of H, 
to identify the assisting site); fqj” may now 
be refined to aq: with respect to RF. 

3. return the partial result aq{ to Sini~ 

An example of the manner in which the complete data 
location algorithm would explore the PIDDB topology is 
given in Figure 7. Ni and Nj represent two typical N- 
Sets 104 to Sinit If data location cannot be completed 
within these N-Sets than the neighbourhoods within H, 
are searched. NHt and NH, represent the local and 
some other neighbourhood respectively within H,. If 
these are aho found to be inadequate then a wider 
domain search involving other H-Sets is invoked, II,,, 

H-Set Level 

Neighhonrhood Level 

N-Set Level 

Figure 7: Overview - Levels of Data Location Search 
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represents another typical H-Set that may be 
investigated. Finally, if the available or acquired 
knowledge proves inadequate then the global H-Set Hs 
enables a systematic and exhaustive search of the entire 
topology to be undertaken. 

4.6 Overview of S-Phase Algorithms 

A simplified overview of the S-Phase algorithms is 
presented below. This overview develops steps 2 to 4 
of the simplified data location algorithm for Spit: 

1. initially decompose gq” into two components: 

a. g&it c gq” such that for every Rx named 
in g&it, ginit F(Rx) 

b. gq’ such that gq’ = gqsl - g&- It 
2. 1OCally refine gsi”,i, to aq&, 

3. perform N-Set decomposition on gq’ to produce 
blfl and distribute sub-queries to the 
corresponding Nj 

4. await aq{ responses, combine with aq&, and 
assemble aq’. Delete the corresponding gq; from 
(gqi} as each response is received 

5. terminate when (gqf] = 0 

Step la identifies those portions of gqsl refinable by 
Sinit- Step lb finds the residue refinable by other Nj. 
This residue is (N-Set) decomposed in step 3 into the 
portions relevant to specific N-Sets. While many 
partitions may be possible, it is implicit that the optimal 
partitioning would be found. This minimizes the number 
of N-Sets involved by selecting those containing several 
relevant fragments in preference to those containing only 
a single fragment. 

5. CONCLUSION 

A model for managing very large distributed databases 
has been presented. This model involves restricting the 
meta knowledge available to any site and defines a new 
class of Partially Informed Distributed Databases 
(PIDDB). This class is fully transparent with respect to 
data fragmentation, location and replication. It is 
inherently suitable for very large systems and preserves 
the autonomy of sub-domains. No assumptions are made 
regarding the initial or current allocation of data 
fragments to sites so that replications may readily be 
created or deleted within their owning domains. 

A mechanism has been described that permits 
information providers to cooperate to define distributed 
virtual objects using components of their individually 
owned objects. These objects are instantiated and 
distributed as snapshots. 

The relationship of data location to PIDDB query 
processing has been developed and a mechanism for 

coordinating query evaluation has been proposed. It 
was shown that differing versions of the initial global 
query exist as data location proceeds. A descriptive 
query taxonomy was introduced to provide a concrete 
basis for the development of the data location algorithm. 
A total of 16 different query versions have been 
identified. 

Data location has been found to consist of two distinct 
and serial phases: a knowledge acquisition phase (K- 
Phase) and a sites determination phase (S-Phase). The 
K-Phase is concerned with determining which domains 
(local N-Sets or remote H-Sets) contain sites possessing 
the fragmentation schemas relevant to the global query. 
The S-Phase is concerned with applying the knowledge 
acquired during the K-Phase to identifying, locating and 
determining the cardinalities of the relevant fragments. 
Conceptual algorithms have been presented that define 
the basis of the procedures required to develop a 
prototype system. 
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