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Currently, a variety of information retrieval systems are available to potential users. These services 
are provided by commercial enterprises (such as Dow Jones [6] and The Source [7]), while others are 
research efforts (the Boston Community Information System [S]). While in many cases these systems 
are accessed from personal computers, typically no advantage is taken of the computing resources of 
those machines (such as local processing and storage). In this paper we explore the possibility of 
using the user’s local storage capabilities to cache data at the user’s site. This would improve the 
response time of user queries albeit at the cost of incurring the overhead required in maintaining 
multiple copies. In order to reduce this overhead it may be appropriate to allow copies to diverge in 
a controlled fashion. This would not only make caching less costly, but would also make it possible 
to propagate updates to the copies more efficiently, for example, when the system is lightly loaded, 
when communication tariffs are lower, or by batching updates together. Just as importantly, it also 
makes it possible to access the copies even when the communication lines or the central site are 
down. Thus, we introduce the notion of quasi-copies, which embodies the ideas sketched above. We 
also define the types of deviations that seem useful, and discuss the available implementation 
strategies. 

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed 
Systems--distributed database; D.4.7 [Operating Systems]: Organization and Design--distributed 
systems; H.2.4 [Database Management]: Systems--distributed systems; H.3.5 [Information Stor- 
age and Retrieval]: On-Line Information Services--data bank sharing 

General Terms: Design, Management, Performance 

Additional Key Words and Phrases: Cache coherency, caching, data replication, data sharing, 
distributed data management, distributed systems, information retrieval systems 

1. INTRODUCTION 

In many of today’s information retrieval systems (IRSs) all the stored data (e.g., 
abstracts of journal articles, airline schedules) reside at a central node. This 
central site can be reached by a large number of remote terminals connected via 
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relatively slow communication lines. Users at these terminals do no local pro- 
cessing; they simply send their queries to the central machine and wait for replies. 
Data can be added or deleted at the central site, but in many cases it cannot be 
updated. 

A number of developments are slowly changing this IRS model. First, the 
number of users is growing rapidly. In our “information society” it is becoming 
increasingly important to have access to timely information. At the same time, 
the number of personal computers, at home and in the workplace, has grown 
tremendously, giving more people the hardware necessary to access IRSs. 

The first development implies that increased IRS services and requirements 
will tax both the processing and communication capacity of the central site. 
There are a number of potential solutions to this problem, but the one we will 
focus on in this paper is data caching. This solution is becoming feasible precisely 
because of the second development, that is, that an IRS is frequently accessed 
from personal or mini computers with substantial processing and storage capacity 
(for example, in 1984, Dow Jones estimated that about 125,000 of its 165,000 
customers used personal computers [6]). 

In principle, caching can improve system performance in two ways. First, it 
can eliminate multiple requests for the same data. For example, consider an 
automobile manufacturing plant where a number of people are interested in news 
wire stories on trade and protectionism. In this case, it makes sense to cache the 
relevant articles at the company’s local computer, eliminating redundant requests 
to the central IRS site. A second way in which caching can improve performance 
is by off-loading work to the remote sites. For instance, if a user is interested in 
chemical companies he may store the latest stock prices of those companies at 
his own computer. There he can run his own analysis programs on the data, 
without using any more central cycles. 

However, caching has an associated cost. Every time a cached value is updated 
at the central site, the new value must be propagated to the copies. Furthermore, 
the propagation must be done immediately if cache consistency (or coherency) is 
to be preserved. (A cached value for an object is consistent if it equals the value 
of the object at the central site.) This propagation cost can be significant. 

Caching has been successfully used in other environments, but there are some 
important differences in this case. In a computer hardware cache [16], it is not 
expensive to keep the cached and main memory data’ consistent. This is because 
updates are small (e.g., a byte is modified), the communication delays are short, 
and the number of copies is small (e.g., in snooping cache architectures typically 
there are less than 10 caches connected to a memory system). In an IRS, on the 
other hand, the communication costs can be much higher. For instance, users 
typically communicate over telephone lines. Also, the number of caches may be 
quite large. Finally, the updates can be extensive (e.g., the abstract of an article 
or the article itself can be added to a file). The idea of caching data in workstations 
has been also used in [9]. 

In light of these difficulties, it is important to explore strategies for making 
update propagation less costly while still retaining the inherent advantages of 
caching. In this paper we study two such strategies. Both involve taking advantage 
of the application semantics. The first idea is to let the user explicitly define the 
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information that is of interest and to cache only it. This obviously reduces the 
need to refresh data that is not going to be used. 

The second idea is to allow, whenever possible, a weaker type of consistency 
between the central data and its copies. For instance, the user interested in the 
stock prices of chemical companies may be satisfied if the prices at his computer 
are within five percent of the true prices. This makes it unnecessary to update 
the cached copy every single time a change occurs. When the deviation exceeds 
five percent, then a single update can bring the cached copy up-to-date. At a 
manufacturing company, users may tolerate a delay of one day in receiving 
articles of interest. If the system takes advantage of this, it can transmit all the 
articles during the night when communication tariffs are lower. If a communi- 
cation or central node failure occurs and its duration is less than 24 hours, then 
users can continue to access information that is correct by their standards. 

We call a cached value that is allowed to deviate from the central value in a 
controlled way a quasi-copy. The management of quasi-copies is called quasi- 
caching to differentiate from conventional caching where no data deviations are 
allowed. Quasi-copies have the potential to reduce update propagation overhead 
and to give the system flexibility for scheduling the propagation at convenient 
times. Note that the information flow in an IRS with quasi-copies is similar to 
the flow in many real organizations. The manager of a company is not told every 
time an employee is hired or leaves. The information is filtered so that he is only 
informed periodically of personnel changes or when an exceptional condition 
occurs (e.g., a mass exodus of employees). Hence, the manager’s view of the 
company (the cached data) deviates from the true state (the central value). 
Similarly, when a person desires news, he subscribes to magazines and newspa- 
pers. The news arrives periodically, and there is again a discrepancy between the 
local and “central” data. In human organizations, people have little control over 
this process, for example, Time magazine arrives every week and the New York 
Times every day, and there is no way to change this. In a computerized IRS, 
however, we can let users precisely define the limits of divergence of quasi-copies, 
and the system can take advantage of this to improve performance. 

We should point out that quasi-copies are not free either. The reductions in 
transmission costs are paid for by increases in processing time for bookkeeping, 
both in the central processor and in the workstations. Hopefully, trading off 
transmission time for processing time will pay off as workstations become more 
powerful while transmission costs remain fixed. We will quantify these tradeoffs 
further in Section 6. 

The concept of quasi-copies is somewhat related to the idea of materialized 
views. A materialized view is a stored relation whose data is derived from the 
base relations by evaluating an expression constructed from any combination of 
project, select, and join operations. As base relations are modified, the derived 
relations may have to be refreshed. This can be done by reevaluating the 
expression after every transaction that modifies the base relations. However, the 
cost associated with this strategy would be unacceptable. In [2], techniques are 
presented for detecting when an update to a base relation cannot affect a 
materialized view, and for detecting when the derived relation can be updated 
using its own data only. This last technique is particularly useful when the 

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990. 



362 l R. Alonso et al. 

derived relation is stored in a remote site. Both strategies are based on a screening 
algorithm to test each modification, insertion, and deletion made to the base 
relations. The test, based in Boolean satisfiability, detects whether the new tuple 
may cause the materialized view to change. A variant to this algorithm, in which 
the updating of materialized data is deferred until just before it is used, is 
presented in [ll]. The idea is also proposed in 1151 as a method of materializing 
copies of views in remote workstations. Another technique of view maintenance 
is called snapshot refreshing [ 141. A snapshot is a read-only table whose contents 
are extracted from the base tables. The snapshots are periodically refreshed to 
reflect the current state of the database. Snapshots were developed as a cost 
effective substitute for replicated data in distributed applications. Effective 
algorithms for refreshing snapshots are presented in [ 141. 

The main difference between these techniques and quasi-copies is that our 
concept allows the user to establish the degree of coherency of the cached copy. 
By establishing how much the cached data can deviate from the central copy, 
the user has control over the currency of the data used rather than having to 
comply with a given degree of coherency (which, for instance, in the snapshot 
technique is given by the frequency of the application of the refreshing algorithm). 
In this way, the coherency can be adjusted to the needs of the application that is 
to be run in the remote workstation. The degree of coherency can vary from a 
perfect up-to-date copy to a simple “hint” of the data. We feel that this concept 
is a powerful tool that encompasses a wide spectrum of choices. (A related notion 
of letting users specify an “age threshold” for hint information has been studied 
in [la].) 

In this paper we assume that all information is controlled at a single central 
site. This site executes all updates and hence has the most up-to-date version of 
all data. Usually remote users only read data. If they want to modify something, 
they may submit an update transaction to the central site. If the modifications 
are based on data read from the IRS, the reads must occur at the central site at 
the time the transaction runs, not at the remote node. To illustrate, let us 
consider the following example. Suppose that a stock market information IRS 
also allows users to purchase stock. If a user observes at his terminal that the 
price of a certain stock price is favorable, he can submit a transaction to the 
central site to purchase some amount of stock. However, the “real” price, that is, 
the price at the central site, can differ from the value observed by the user when 
he makes his decision. Hence, the user must either be willing to buy stock at 
a “slightly” different price or must include in his update transaction code to 
read the price once again and abort the operation if the price is no longer accept- 
able. (Note that this is the way stocks are usually purchased in reality.) This 
decision is similar to that faced by users of database browsers based on the idea 
of portals [17]. 

Quasi-caching could easily be extended to a system with several central sites, 
each controlling a fragment of the data, as long as modifications to a particular 
datum can only take place at one computer. Fragmenting the database like this 
is another way of reducing the workload at the central site, but for simplicity, we 
continue to assume that there is a single central site. 

Since allowing updates to a datum to originate at multiple sites (e.g., at 
a user remote machine and at the central site) does complicate quasi-caching 
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substantially, it is not considered here. Central data control is essential to our 
approach since it simplifies the types of inconsistencies that can occur in a 
distributed system with replicated data. For a survey of distributed control 
strategies for replicated data see [4]. 

Even though quasi-copies seem to be crucial for effective caching in an IRS, 
very little is known about them. Hence, the objective of this paper is to study 
quasi-caching and to attempt to answer some of the basic questions. What types 
of quasi-copies are most useful? How can they be defined? How can conventional 
data consistency constraints (e.g., a manager’s salary must be greater than 
his/her employee’s salary) be enforced at the cached copies when the individual 
values can fluctuate? Quasi-copies can be implemented in a variety of ways. For 
instance, values that diverge too much can be invalidated or refreshed. Data sent 
to the caches can include an automatic expiration time and date. The quasi-copy 
requirements can be enforced at the central or at the remote sites. In this paper 
we survey the various implementation strategies and their tradeoffs. 

In the following section we define quasi-caching more precisely and introduce 
some terminology. There are two types of conditions that can be specified for 
quasi-data: selection and coherency. They are discussed in Sections 3 and 4. The 
impact of transmission delays and failures, as well as other implementation 
issues, is covered in Section 5. Performance issues are discussed in Section 6. 
The final section offers our conclusions. 

2. QUASI-CACHING 

We start by defining more precisely quasi-caching and introducing notation that 
will be used in the rest of the paper. The database is stored at the central node, 
C, and consists of a set of objects 0. Each object x E 0 can have a number of 
values (or fields) associated with it (e.g., object John has name, address, salary 
values), but for simplicity we assume there is just one value. As is customary, we 
use the same symbol x to represent both the object and its value. All updates 
take place at the central site. As an object is modified, new versions are created. 
We represent the latest version of object x by u(x). It will sometimes be necessary 
to refer to the value of an object x at a time t. We represent this by x(t). 
(Incidentally, we assume that all sites have accurate and synchronized clocks 
P3l.J 

A set of nodes (or workstations) N (C 4 N) may contain quasi copies of the 
objects. (Several of our nodes may run on a single physical computer as separate 
processes.) The quasi copy of object x E 0 at node j E N is xj and is called an 
image of x. When the identity of node j is not important, we represent the image 
as x’. The set of objects that have quasi-copies at node j are the objects cached 
at j. Note that the quasi-caches at different nodes can have different objects, and 
objects can be cached at 0, 1, 2, . . . or all nodes. In the rest of the paper we drop 
the prefix “quasi” whenever it is clear we are referring to quasi-caching and 
quasi-copies. 

We do not specify the granularity of objects. Conceptually, objects can be small 
(e.g., fields or records), or large (e.g., files). There are performance implications 
to granularity, but these will be covered in Section 5.4. 

Users at a node define how copies are managed by giving two types of 
conditions: selection and coherency. The selection conditions specify which object 
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images will be cached at the user’s site. The coherency conditions define the 
allowable deviations between an object and its images. In our stock market 
example, the user issues a selection condition to indicate that he wants copies of 
the stock prices of chemical companies. His coherency condition would then state 
that a five percent variation between the central site and his site is acceptable. 
We discuss these types of conditions in the next two sections. 

All users or application programs running at a node share the quasi-cache. 
They refer to the objects by the same names they have at the central site. An 
access to object x by a user or program will return the local image X’ if it exists. 
If not, an access to the central site will be made. Users or programs must be 
capable of coping with data that deviates from the central data, as specified by 
the coherency conditions. If this is not the case, the user or program should not 
be running at a node where a quasi-cache has been defined. (Another option 
might be to allow each individual read to specify if the local quasi-cache can be 
used.) 

3. SELECTION CONDITIONS 

In a computer hardware cache, the decision as to what to hold in the cache is 
made automatically by the system. For example, the system might store every 
word that is fetched. To make room for the word, it may purge the least-recently- 
used (LRU) word from the cache. In an IRS, a better strategy might be to let the 
user specify what data is to be cached. Selection conditions let the user do this. 

A selection condition consists of two parts: an identification clause that specifies 
the objects to be cached (or dropped from the cache), and a set of one or more 
modifiers that determines how the selection is going to operate. (The modifiers 
are optional.) 

The identification clause can explicitly list the objects involved in the selection 
or can give an expression that evaluates to a set of objects. For example, if a 
relational language [4] is used for the expression, then the condition: 

SELECT NAME, PRICE 
FROM STOCKS 
WHERE TYPE = “Chemical Company” 

can be used. It selects the NAME and PRICE attributes (or fields) of tuples (or 
records) that represent chemical companies. In our terminology, each NAME or 
PRICE value selected is an object that must be cached. There are many other 
languages and models for selecting data or information [4], but since they are 
well known, we do not cover them here. In our example objects are small, that 
is, fields of records. As discussed earlier, caching and tracking small objects may 
be more expensive, so the language may be restricted to deal with larger objects 
such as files or relations. On the other hand, the techniques of Section 5 may 
make it feasible to manage the small objects of our example. 

The modifiers in a selection condition may include the following items: 

(1) Add/Drop, This item specifies whether the selected objects are to be 
added to the cache or removed from it. If “Drop” is specified, then the images at 
the subscriber nodes are removed from the caches (if they existed). 
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(2) Enforcement. A selection condition can be of two types: compulsory or 
advisory. If it is compulsory, then the system must guarantee that the selected 
objects are cached as requested. If it is advisory, then the caching is viewed 
exclusively as a performance enhancement. In this case, the selection condition 
is taken as a “hint,” and may or may not be followed by the system. 

A query optimizer can take advantage of the knowledge that a selection is 
compulsory. To illustrate, let us return to the STOCKS expression given earlier. 
Suppose that it is compulsory and that the user searches for the stock price for 
“Chemical” company “AJAX” at his computer. If the stock is not found locally, 
then AJAX is not a chemical company. No other action is necessary since the 
user is only interested in chemical companies. Similarly, a query to evaluate 
the average stock price for chemical companies can be executed locally. If the 
selection was advisory, then for both queries a check would have to be made at 
the central site to see if there were additional companies satisfying the query. 

The advantage of advisory selection is that it gives the system greater flexibil- 
ity. If the central site is overloaded, the caching of objects can be delayed or 
eliminated. Similarly, if storage space is limited at the remote site, data can be 
purged. 

In practice, a judicious combination of compulsory and advisory selections may 
be best. For example, consider a legal IRS that contains summaries of court 
cases. The system also has an inverted list index that is used to locate summaries 
given a set of key words. In this case it may be advantageous to cache all objects 
that make up the index in a compulsory fashion, and the most relevant summaries 
in an advisory way. This way, queries can be processed locally yielding a list of 
summary identifiers. Requests would only be made to the central site to fetch 
summaries not found locally. 

(3) Static/Dynamic. If the selection is static, then the objects are selected 
once when the condition is issued by a user. If it is dynamic, then changes in the 
data will continuously trigger-a reevaluation of the identification clause, and 
objects will be added or dropped dynamically. For example, if the sample identi- 
fication clause given earlier is static, no new stocks will be cached at the remote 
site. If it is dynamic, then every time that a new stock is added at the central 
site, a check will be made. If the stock is of a chemical company, then a copy will 
be made. When a company changes its classification from chemical to something 
else, its copy will be purged. Note that a dynamic selection will usually be of type 
“Add,” and its enforcement of type “compulsory.” 

Both statically and dynamically selected objects can have coherency conditions 
specified. If an object was selected statically, its identification clause will not be 
reevaluated. However, if it has coherency conditions, they will be checked 
dynamically. 

(4) Triggering Delay. When a dynamic selection is made, a change to the 
central database may cause a new object to be added to (or dropped from) the 
selection list. In some cases, it may be desirable to delay the addition (or deletion) 
of the object. For example, if while using an abstract service IRS a user selects 
abstracts on “compilers” and gives a 24-hour delay, then new abstracts on the 
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topic can be batched together and sent more efficiently. In the case of a stock 
market IRS, if a user selects stocks with prices less than 100 dollars, then a delay 
of one hour can eliminate repeated additions and deletions of a stock whose price 
is fluctuating close to 100 dollars. 

When a user wants to give a triggering delay, he states the maximum allowable 
delay A. The system is then free to add (or delete) an object to the selected set 
any time between the time the triggering occurs and A seconds later. 

Note that a triggering delay can be used with either compulsory or advisory 
selections. If the selection is compulsory, then the cached data can be used for 
query optimization, but the results may not include the latest information. Let 
us return to the examples that were used to illustrate compulsory selections. Say 
a user has selected stocks for chemical companies. He has specified a compulsory 
selection and a triggering delay of one hour. Say he searches for the stock price 
of company “AJAX” and it is not found in the cache. In this case it is not 
necessary to look for company AJAX at the central site, even though it might 
have been created there within the last hour. The user has indicated that he can 
tolerate a delay of up to one hour for hearing about new chemical companies. 
Hence, the search for company AJAX need not involve recently selected objects. 

Incidentally, setting the triggering delay A too low might make it hard to 
implement a compulsory selection. For instance, if sending a message from the 
central to a remote site takes To seconds, then the system cannot guarantee that 
the selected data will be at the remote site in less than TD seconds. We will 
return to this issue in a later section. 

4. COHERENCY CONDITIONS 

Once an object has been selected for replication, the coherency condition(s) 
specifies the allowable deviations of the image. Coherency conditions are enforced 
only when an image exists. 

Every image has a default condition that defines the allowable values that it 
may contain, even if no other conditions are given. This default condition is 
enforced by the system. 

Default Coherency Condition. An image x: ’ must have a value previously held 
by the object. That is, 

V times t 2: 0 ilt,, suchthat 05tost 
and x’(t) = x(t,J 

Users may specify additional constraints. Actually, any constraint on the values 
of the objects and images could be defined; however, our goal here is to identify 
and understand the more useful ones. Four useful constraint types are: 

(1) Delay Condition. This is similar to the selection triggering delay. It states 
how much time an image may lag behind its object. For object x, an allowable 
delay of CY is given by the condition 

V times t 2 0 3k such that 0 % k 9 CY 
and x’(t) = x(t - k) 
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Since this defines a window of acceptable value, we use the notation W(X) = a: 
to represent this condition. 

Note that a delay condition is different from the triggering delay in a selection 
condition. The triggering delay indicates the allowable time between issuing the 
selection condition and having the object appear in the cache. During this time, 
a delay condition is not applicable. Once the object appears in the cache, the 
delay condition specifies how far behind that image can fall. 

(2) Version Condition. A user may want to specify a window of allowable 
values, not in terms of time, but of versions. For example, if an object represents 
a VLSI circuit, it may be useful to require a copy that is at most two versions 
old. We represent this condition as V(x) = fi, where x is the object and p the 
maximum version difference. That is, V(x) = p is the condition 

V times t 2 0 Elk, to such that 0 5 k 5 p 
and 0 5 to 5 t 
and u(x(t)) = u(x(t,J) + k 
and x’(t) = x(&J 

(3) Periodic Condition. With a periodic condition a user indicates that the 
image must be refreshed periodically. For instance, a user may desire stock prices 
every day when the market closes. The condition P(x) = (Y, p states that the 
image of x must match the object at time CY, and must be refreshed every /3 
seconds thereafter. In other words, P(x) = a, p is the condition 

V times t h 0 3n such that n 2 0 
and CY + n@ c: t < a + (n + l)@ 
and x’(t) = X(LY + n/3) 

(4) Arithmetic Condition. If the value of an object is numeric, the deviations 
can be limited by the difference between the values of the object and its image. 
That is, we may state that 

V times t 2 0 Ix’(t) -x(t)/ <t 

or that 

V times t Z 0 x’(t) - x(t) 
x(t) 

1oo = t % 

We represent the first condition by A(x) = E; the second one by A(x) = E %. 

Yet more conditions can be built out of the three elementary ones we have 
listed by connecting them with logical “OR, ” “AND,” and “NOT” operators. For 
example, the condition 

W(x) = 1 hour AND V(r) = 2 

specifies that x ’ can lag at most one hour behind x, unless x has been modified 
more than two times within this hour. The condition 

W(x) = 1 hour OR V(x) = 2 
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means that x ’ can always lag behind x by an hour. It can even lag longer if the 
image is still within 2 versions of x. 

It may also be useful to allow the parameters of the coherency conditions to 
vary over time. For example, if a user is planning an important financial operation 
in 30 days, he may want his data to have a smaller window as the day of the 
transaction approaches. Thus, he may define W(x) = (12 - 30) minutes, where 12 
is the day and x is an object of interest. 

As a final point, we should mention that so far we have only discussed 
constraints on a single object and its image. However, there can also be con- 
straints among objects (usually called consistency constraints). For example, if 
Xl, x2, . . . , x, are stock prices in an IRS, and Z is their average, then we have the 
constraint x’ = average (x1, x2, . . . , x,). A user that reads the images of the stock 
prices and their average cached at his workstation would like to see the condition 
hold. 

To illustrate some of the difficulties involved in maintaining consistency 
constraints consider two objects x, y and the constraint x + y 5 10. Say that x’s 
image has the coherency condition A(x) = 3 and y has A(y) = 1 (see condition 4 
above). Initially, we have the following situation: 

x=7 XI=7 
y=3 yf = 3 

An update transaction decreases x by 2 at the central site. Since A(x) = 3, the 
image does not have to be updated: 

x=5 XI = 7 
y=3 y’ = 3 

Note that the multiobject constraint holds at both sites: x + y I 10 and x’ -t y’ 
I 10. Next, a second update increases y by 2. Since A(y) = 1, this change does 
not have to be propagated. The situation is now: 

x=5 x’ = 7 
y=5 y’ = 5 

Although the multiobject constraint holds at the central site, it does not hold at 
the copy site. 

We give the user that desires multiobject consistency two choices. The first is 
explicitly to give the system the constraints that must be satisfied. When a 
constraint is violated, then the missing updates must be propagated. A second 
option is to state that a group of objects x1, . . . , xn has constraints but not to 
give them explicitly. This option is useful when the users cannot list all their 
constraints or when it is too expensive to check them. In this case the system 
must ensure that updates to x1, . . . , x,, are applied in order at the copies. That 
is, let To be the last update transaction whose modifications were applied to 
one or more of x;, . . . , x;. Let Tl . . . , T,,, be other updates to one or more of 
Xl, * * * , x,, that were not propagated because they did not violate any single object 
coherency conditions. Finally, let T,,,,, be an update that does modify one or 
more of xi, . . . . x, and does have to be propagated. Then all the updates of 
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T,,..., T,,,, T,,, must be made on the images 3~; , . . . , x;, to avoid violating any 
constraints at the remote site. 

5. IMPLEMENTATION 

In this section we consider a number of issues that arise in the implementation 
of quasi-copies. 

5.1 Transmission Delays and Failures 

We now address two complications that may make it difficult to enforce the 
conditions given by a user: transmission delays and failures. To illustrate, 
consider the condition A(x) = t and assume that an increment of more than 2t 
is about to occur at the central site. The condition indicates that the difference 
between x and x’ should “never” be larger than E, and hence the update to the 
image must be performed “at the same time” as the object is changed. Strictly 
speaking, this is not possible. The problem due to failures is similar. For example, 
if the central site fails just after the 2~ increment is made but before the change 
is propagated to x’, then the condition A(x) = E will be violated. 

Although a 2-phase commit protocol (or similar strategy) could be used, the 
update overhead and temporary inaccessibility of data are potential drawbacks. 
Thus, we propose the following solution. The central site, when operational, will 
make sure that each remote site receives a message at least every 6 seconds. This 
means that if the central site notices that no message has gone out to a site in 
6 - To seconds, where To is the maximum message delay, then it will send a 
“null” message. Null messages are numbered just like regular messages, and all 
messages must be received in order. When a site j notices that 6 seconds go by 
without a message from the central site, it declares the central site failed, and 
sets a local variable C-FAILED(j) to true. 

Then we interpret every condition C(X) on object x: set by a user at node j as 

C(x) V W(r) = 6 V C-FAILED(j) 

(Condition W is defined in Section 4.) This means that all conditions have an 
implicit delay window of 6 and do not have to be enforced if the central site is 
down. With this approach, the user can display C-FAILED at the same time he 
displays his data, and interpret it accordingly. 

5.2 What to Propagate 

There are several types of messages that the central site can use when it wishes 
to inform remote sites of an update. Each of these types has a different data size. 
The selection of the message type will definitely influence the performance of 
the system. The message types are the following: 

(a) Data Message. A data message contains the new values. These values should 
overwrite those found in caches. 

(b) Invalidation Message. An invalidation message identifies the objects that 
have changed, but does not contain the new values. An invalidation message 
usually causes the remote node to purge from its cache the referenced images. 
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(c) Version Number Message. This message identifies the objects and provides 
their new version numbers. The new data values are not included. (The time 
of update could be included instead of, or in addition to, the version number. 
However, this information can sometimes be inferred from the message 
arrival time.) The remote node uses the version number to decide if it should 
purge an image. 

(d) Implicit Invalidation. In this last case, the central node sends no message. 
Instead, images are automatically invalidated after a certain time (i.e., they 
are aged). That is, when a copy is made, it is sent with a time limit. The 
remote node then guarantees that it will, at the latest, purge the image when 
the limit expires. 

In some applications, propagating updates is a reasonable approach. However, 
in many cases, some of the other approaches may be useful. Implicit invalidation 
incurs the least overhead and is especially attractive if objects are large or 
communications faulty. For example, train schedules can be issued, as they are 
in reality, with an expiration date. When the schedule expires, a new copy must 
be requested explicitly if there is still interest. 

Invalidation and version number messages also have reduced communication 
overhead, but more than implicit invalidation. They are especially attractive for 
broadcast environments, where the central node can inform everyone of changes; 
only those that actually need the new data request it. One application that 
already uses this strategy is catalogs for department stores. When a new catalog 
appears, all customers are mailed a postcard informing them of its availability. 
Interested customers must then pick up their copy at the store. Version number 
messages are desirable when version coherency conditions have been specified. 
If version number messages are broadcast, the work of checking versions can be 
off-loaded to the remote site. Each remote site can check its own conditions and 
decide what data must be purged. 

5.3 When to Propagate 

When an update arrives at the central site, it does not have to be propagated 
immediately. As a matter of fact, there are several choices: 

(a) Last Minute. The updates can be delayed up to the point where a coherency 
or selection condition is about to be violated. 

(b) Immediately. Updates could be propagated as soon as they occur. 
(c) Early. Updates can also be propagated at any other time after they arrive 

but before a condition is violated. 
(d) Delayed Update. A last choice is to delay the installation of an update at the 

central site. If the update is not installed, the conditions cannot be violated, 
and the propagation can be delayed. 

For example, consider the condition A(x) = 5, and the original value of x to be 
10, with the cached copy x’ = 10. Assume that updates begin to increase the 
value of x to, say 11, 12,13, 14, l&16. Under last minute propagation, the central 
site would broadcast the new value of x as soon as the x = 16 update comes in.’ 

1 Recall that, as explained in Section 4, there is an implicit window of 6 that makes the condition 
true while the new value is being transmitted. 
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Under immediate propagation, every new value of x results in a broadcast. 
Under early propagation we could schedule a transmission when x = 13, for 
example. And finally, for delayed update, x = 16 will not be installed until it is 
convenient. 

Immediate propagation should only be used when the selection and coherency 
conditions require it, or when evaluating the conditions is too expensive. Last 
minute propagation has the greatest potential for reducing communication costs 
since it allows as many as possible updates to be “batched” together. However, 
sometimes early propagation can take advantage of lower communication tariffs 
or processor idle time. For example, telephone calls are usually more expensive 
from 8:00 AM to 500 PM. Suppose that a delay condition W(X) = 5 hours has 
been defined, and that updates to x have taken place at 7:00 AM. If the telephone 
is going to be used, it is clearly better not to use last minute propagation (at 
12:00 Noon), and to transmit the new data just before 8:00 AM. 

Delayed update gives us even greater flexibility and potential for batching 
together even more updates. However, delaying updates at the central site is an 
inconvenience since the database there is made to diverge from the “real world.” 
Hence, late propagation is only an option when the applications can tolerate 
such divergence. 

Conceptually, delaying updates at the central site is akin to increasing the 
delay window W(X) of the objects. However, the advantage of delayed updates is 
that it can make implicit invalidation work more efficiently. When a remote node 
requests a copy of object x, the central site can respond with an expiration time 
t, in the future. Now, if updates can be put off until time te, the copy will not 
have to be explicitly invalidated. 

5.4 Collapsing Conditions 

One of the major drawbacks of using quasi-copies may be the cost of checking 
coherency conditions at the central node. There are two aspects to this cost: 
processing and storage. If an object has n coherency conditions, then updating it 
will require checking all conditions, an O(n) effort. To check each condition, the 
central site may need to know the value of the image at each workstation. For 
instance, consider an arithmetic condition A(x) = 2, when x is currently 5. An 
update x = 6 arrives. To know if the condition is violated, the central node must 
know the value of x’. If x’ = 5, then the condition still holds; if x’ = 3 it does 
not. Thus, if the database holds m objects, each with n coherency conditions, the 
central site may have to store O(mn) values. 

Incidentally, note that checking coherency conditions is similar to the problem 
of checking whether an update violates an integrity constraint [3, lo]. These 
techniques could be applied to the problem of checking coherency conditions in 
a straightforward manner, so we will not discuss them here any further. It is the 
number of constraints that may be a problem, and this is the issue we address 
here. 

The number of constraints that have to be checked at the central node can be 
reduced in several ways. One obvious way is to allow only conditions on large 
granules like relations or files (this reduces m). Another way is to limit the 
number of conditions (control n). For instance, quasi-copies may only be allowed 
at a few computers such as the major corporate clients of the IRS. If these clients 
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contribute a large fraction of the queries, then quasi-copies can still be beneficial. 
The corporate computers can in turn institute a quasi-copy mechanism with their 
local workstations. In addition to these obvious solutions, we can try to auto- 
matically collapse constraints or to shed some of the load to the workstations. 
The first of these ideas is discussed in the rest of this section; the other is 
presented in the next section. 

In many cases it is possible to collapse several coherency constraints (from 
different workstations) on the same object into one. The collapsed constraint is 
chosen so that it triggers whenever any of the individual constraints would have 
triggered. The collapsed constraint may not be as effective as the original ones, 
but it will probably be better than having no constraints at all. 

We illustrate this idea with a simple arithmetic condition, although it can be 
used with the other types of coherency conditions we have presented. Say 
workstation W, defines A(x) = 5. Later on, a second workstation W, requests a 
quasi-copy with A(r) = 4. At this point, the central node sends the value of X to 
W,, and also to W, to ensure that both workstations have the same state. Both 
conditions are collapsed into A(x) = 4. If x changes by more than 4, both 
workstations are refreshed, even though WI may not require the update yet. 

It is also possible to automatically collapse constraints on different objects. To 
illustrate consider two records x and y in some file F. Suppose that x has a delay 
constraint of 1 hour from workstation WI, and y of 2 hours from W,. The two 
constraints are collapsed into a delay constraint on file F of 1 hour (the minimum 
of the two individual delays). Say 1 hour has gone by since F was modified last 
and the copies have not been refreshed. Then both records are propagated, x to 
W, and y to W,. The central site only checks the constraint on F, not on the 
individual records. The price to pay is that extra messages are sent (such as the 
one to W,) that could have been postponed. 

5.5 Load Balancing 

Another alternative for reducing the amount of work at the central site is to 
partially off-load the enforcement of coherency constraints to the workstations. 
Some coherency conditions are easy to check at the remote nodes, without 
imposing any processing or storage overhead at the central processor. An example 
is a delay condition in which the value x ’ is only valid for a window of time. 
After a period of time, the workstation simply purges the value from its cache, 
forcing the next request to be directed to the central node. Another type of check 
that is especially well-suited for the remote nodes is the multiobject one. In this 
case, a constraint such as “number of reservations is less than or equal to the 
number of available seats” must be enforced. As updates arrive at a remote site, 
these checks can be made. Missing updates can be requested (or data can be 
purged) if the constraints are violated. 

Although for most other types of conditions some work must be done centrally, 
there are ways the workstations may help. Consider the following scheme for 
load balancing while collapsing arithmetic conditions. Each time the ith work- 
station receives a new (and obviously current) value for an item x: from the 
central site, it computes and returns to the central site a pair of values, x&, 
Xi&h. These values represent the lowest and highest values that x can reach in 
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the central node, without the need to send an update to the ith workstation (note 
that these may be computed locally by examining the individual coherency 
conditions as well as the current value of x). We define Ai = [xfow, xki,h] as the 
tolerance interval for x at workstation i. And now, the central station need only 
store the global tolerance interval A, = [zhighest-low, Xlowest-high], defined as the 
intersection of the individual tolerance intervals for the workstations. Whenever 
an update of x sets the value of x outside of A,., the central site will broadcast 
the new value (or an invalidation message) to all the workstations holding a copy 
of x in their cache. The central station updates A, upon receipt of any pair x;~,, 
x&h by computing 

A, = A: n A, 

This method only requires storing one pair of values per item cached (at a cost 
of O(m) storage locations) and eliminates the need to store the predicates in 
the central site, thereby off-loading the associated predicate computation to the 
workstations. Notice that, as an added advantage, the users may change the 
predicates as frequently as they wish, without having to communicate the changes 
to the central site. Furthermore, the predicate may be as complex as the user 
desires; the complexity of evaluating it does not affect the overall performance 
of the central database. 

Moreover, it should be pointed out that the technique just described may also 
be applied to versions. Instead of sending a tolerance version interval, the 
workstation simply sends the maximum version number that the central site can 
reach without updating the cache. However, this load balancing technique cannot 
be applied to delay and periodic conditions; in these cases, it is best to use 
collapsing alone, as discussed in the previous section. 

The drawback of this approach is that the frequency of update propagation 
might be increased by taking the intersection of the intervals. This may happen 
for one of two reasons. If a particular user sets a very narrow interval, it can 
force the update propagation to every workstation holding that item in its cache 
for almost every update in the central site. (This problem also arises with 
constraint collapsing.) This problem might be corrected by clustering together 
workstations with similar coherency demands. A second cause of unnecessary 
updates occurs when individual workstations start to cache items at different 
times. For example, assume that most workstations cache the value of x when 
x = 50, with replication condition A(x) = 10. Then AX = [41, 591 is the global 
tolerance interval. Suppose now that the value of x becomes 59, and a new 
workstation begins to cache x (with the same replication condition A(x) = 10). 
Now the new global tolerance interval is the intersection of Ai = [50, 681 and 
the old global tolerance interval, giving A, = [50, 591, is much tighter (in effect, 
a window of size 5) than most users need. This tighter constraint may quickly 
cause future updates to generate a broadcast. However, the problem is self- 
correcting, since as soon as that broadcast is done, all the workstations will 
compute their local tolerance intervals centered around the same value. 

Lastly, a few comments about static and dynamic selection conditions. As we 
explained in Section 3, users select the items to be cached at their workstation. 
If static caching is chosen, the identification clause is only checked once. 
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However, if dynamic caching is specified, the central site must store the identi- 
fication clause and any addition of an object that satisfies the clause should be 
transmitted to the cache. Similarly, a deletion of an object cached at the 
workstation should cause the invalidation of the cache entry. Clearly, dynamic 
selection conditions should be used sparingly, since they cause added storage 
overhead, as well as force the central site to check every object insertion and 
deletion to determine whether all dynamic selection predicates are satisfied. 

6. A PERFORMANCE MODEL 

An IRS with data caching and quasi copies is a complex system. The performance 
improvements provided by caching quasi copies, if any, are determined by many 
factors, including processor capacities, transmission speeds, query reference 
patterns, and update reference patterns. 

In an attempt to illustrate the tradeoffs involved, we will present a simple 
performance model and some results. We emphasize that our goal is not to predict 
the performance of some actual system; rather, it is to exemplify under what 
circumstances gains can be achieved and what their magnitude might be. 

In our model, the central site contains the main database copy and receives all 
updates to it. Update arrivals form a Poisson process with average arrival rate 
X,. We assume that a fraction h of the database is cached at each workstation. 
Thus, with probability h an arriving update refers to data replicated at a particular 
workstation and should be forwarded. However, quasi-copies may reduce the 
number of updates that are actually forwarded. We let q represent the fraction 
of the updates that are actually sent out. That is, an update will be sent to a 
workstation with probability hq. 

Queries arrive at each of the n workstations at an average rate X,. If the data 
required by a query were random, the probability that a query could be processed 
at a workstation would be h. However, we assume that cached data is more likely 
to be accessed by a query. We use the parameter f to denote how much more 
likely is the access of “hot spots” in the database. That is, a query can be 
processed locally with probability hf; with probability 1 - hf it is forwarded to 
the central site. Note that 0 I f 5 l/h. 

Table I contains a summary list of all the parameters, including some we will 
define shortly. In addition, the table gives the base parameter settings used in our 
evaluation. For each parameter there is a wide range of reasonable values; the 
base settings represent a particular set of choices within reasonable ranges that 
best illustrate the effect of quasi-copies. (We study later the effect of varying 
these base settings.) 

We model the central and workstation nodes as M/G/l servers. The average 
service times for the various types of requests (all exponentially distributed) can 
be determined from,the following parameters: 

t w. 9’ the processing time for a query executed at a workstation. 
t w. CL- the time to install an update at a workstation. 
t c. 4’ query processing time at central node (20 times faster than a workstation). 
t:: update installation time at central node. 
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Table I. Model Parameters 

Description 

Arrival rate 
Fraction of DB cached 
Coherency index 
Query arrival rate 
Hot spot factor 
Number of workstations 
Query processing time at workstation 
Update processing time at workstation 
Query processing time at central site 
Update processing time at central site 
Propagation overhead 
Transmission time 
Number of concentrators 
Concentrator service time 

Value 

20 updates/set. 
ranges from 0 to 0.2 
ranges from 0 to 1 
1 query per sec. per station 
5 
150 
0.1 sec. 
0.2 sec. 
0.005 sec. 
0.01 sec. 
0.0007 sec. 
0.3 sec. 
10 concentrators 
.02 sec. 

tg: overhead time at central site to propagate an update to a single worksta- 
tion. If the update is sent to x workstations, the time is xtf,. (The base 
setting for tg, 0.0007 seconds, is chosen such that ntg is the same order of 
magnitude as the other times at the central site.) 

Since in our model we only have a single server per node, these processing 
times can be considered CPU times. For example, t: is the CPU time used in 
processing a query at the central site. In reality there may be additional I/O time. 
However, we have ignored I/O time for simplicity. Although including I/O times 
in the model is not a difficult task, we feel that increasing the number of 
parameters would only make the results more difficult to interpret. Besides, one 
could model the effect of the I/O by changing t;. Moreover, since any realistic 
central server will have lots of memory to serve as a cache, we would expect the 
amount of actual disk I/O to be relatively small. In each M/G/l server, all 
requests are processed with the same priority on a first-come, first-served basis. 
For the time being we are assuming that the cost of checking coherency conditions 
is negligible compared to the cost of performing an update. We return to this 
issue shortly. 

Initially, let us assume that the network transmission time is a constant t, (we 
are assuming that workstations will communicate with the central database over 
phone lines; the 0.3 second setting we have chosen for this parameter is approx- 
imately the time required to transmit a 40 character message over a 1200 baud 
line). Since we have no queuing delays at the network, we are assuming, for the 
time being, that the processors, and not the network, are the potential bottle- 
necks. (Later on we consider a queuing model for the network.) 

The average query response time is given by the expression 

R = hf[w, + tg”] + (1 - hf)[2t, + w, + t;], 

where w, and w, are the average queue wait times at a workstation and at the 
central site. The first term in the equation covers the case where the query is 
processed at the workstation (probability hf); the second covers processing the 
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query at the central site (probability 1 - hf ). We now describe how the wait 
times can be computed. 

At a workstation there are two types of requests. Queries arrive at a rate of 
hf X, and require ty service time; updates have an arrival rate of hq X, and require 
t: seconds. Let us call the two arrival rates X, and XZ; the two average service 
times 19~ and &. The combined flow of requests also forms a Poisson process with 
arrival rate X = X1 + XZ. The service time of the combined flow, X, is no longer 
exponentially distributed, but its mean and second moment are 

WV = (wG4 + ( ww, 
E[X2] = (h,/X)se: + (X,/X)28& 

(Recall that the second moment of a simple exponential distribution with mean 
0 is 2d2.) The wait time at a workstation can now be computed with the Pollaczek- 
Khinchin formula [ 121. 

wx21 ww = 
2(1 - XE[X]) * 

The wait time at the central node is computed in a similar fashion, except that 
there are three types of requests. Updates are installed at a rate of X, and have 
an average service time of t”,. Propagations to the workstations occur at a rate of 
hqX, and each has a combined load (over all workstations) of ntg. Queries arrive 
at a rate of n(l - hf) X, and take t; each. 

Figure 1 shows the response time R as a function of h, the fraction of the 
database at each workstation, for several values of q, the “coherency” index. 
(Recall that when h is 0, the workstations have no data and all queries are 
processed at the central site. When h is 0.2, each workstation holds 20 percent 
of the database. Given our f value of 5, this means that all queries are processed 
locally.) When q = 1 all copies must track the central site closely. In this case 
caching is not very helpful (for the parameters we selected). As data is cached 
and h increases from 0 to 0.2, query processing work is off-loaded to the 
workstations. Unfortunately, the savings at the central node are offset by the 
increased effort of keeping the copies up-to-date. As h approaches 0.2, the 
workstations also become saturated with work since they not only must process 
the queries but must also execute the updates forwarded to them. 

As q decreases, the situation changes dramatically. Copies can diverge from 
the central value, so not every update must be propagated. The effort in update 
propagation is reduced and all computers can process the queries more quickly. 
When q is 0.75, a fourth of the updates are not propagated. In this case, the best 
response time occurs when about 14 percent of the database is cached. The 
central site has shed enough load to make it operate more efficiently, but not 
enough to overload the workstations. With values of q of 0.5 or less, the 
workstations never become overloaded, so it becomes feasible to perform all 
queries locally (h = 0.2) and save the transmission costs. 

The total expected number of messages transmitted per second is given by the 
expression 

M = 2n(l - fh)X, + nhqX,. 
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990. 



1.8 

1.6 

1.4 

1.2 

Average 
I 

Response 
Time 
(se4 0.8 

Data Caching Issues in an Information Retrieval System . 377 

. ..*...........i..*.*.. 

i ,i ; q =0.50 

.& .08 .1:2 .i6 

h 
Fraction of DB at Workstation 

.20 

Fig. 1. Basic model. 

The first term corresponds to query messages; the second term to update traffic. 
Figure 2 displays the message rate M as a function of h and q. Here again, caching 
can increase the network load. Quasi copies (q less than 1) can reduce the 
network traffic and can even make it less than in the no caching case. 

Our model so far assumes that there are no queuing delays in the network. 
What would happen if there were ? To answer this question, we extended the 
model to include a limited network capacity. Suppose that the lines from the 
workstations arrive at concentrators or communication controllers. Say there are 
n, concentrators, each handling n/n% lines. We model each concentrator as an 
M/M/l server with service time of t,. The arrival rate at each concentrator is 
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Network 
Traffic 

(messages / sec.) 3oE 

h h 
Fraction of DB at Workstation Fraction of DB at Workstation 

Fig. 2. Basic model. Fig. 2. Basic model. 

M/n,, assuming that messages in either direction are equivalent. The expected 
total transmission delay for one message is given by 

D = t, + xx + w,, 

where w, is the expected wait time at a concentrator. (Each queue is independent.) 
Note that t, is now the transmission time from workstation to concentrator; we 
still assume this component is a constant. 

If we substitute the above expression for t, appearing in the R equation given 
earlier, we obtain the query response time for the new model. This response time 
is shown in Figure 3 for a value of t, of 0.2 seconds. Comparing this figure to 
Figure 1, we observe that only the case for q = 1 is substantially different. When 
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Fig. 3. Extended network model. 

q = 1 the network traffic is sufficiently high to cause the network to saturate at 
about h = 0.13. As this limit is approached, the query response time grows without 
bound. For the other values of 4, there is little change. The reason is as follows. 
When h is 0, the network is handling 300 messages a second yielding a delay D 
of 0.25 seconds (compared to 0.3 seconds in Figure 1). As h increases, the number 
of messages decreases and the delay shrinks to D = 0.2. However, as h increases, 
the impact of D on the average response time decreases (fewer queries must be 
transmitted), so that the impact of the transmission time savings is not notice- 
able. 

Up to now we have assumed that the cost of checking coherency conditions is 
negligible compared to the cost of installing an update, t”,. This may be true in 
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some cases (see Section 5), but what happens in those cases where it is not? Let 
t:+ck be the combined cost of installing an update and checking any coherency 
conditions involved. Our performance model and equations are identical, except 
that tk+& replaces t”,. The value oft:+& will be larger than t’,, but estimating how 
much larger is difficult. It depends on the type of coherency conditions and their 
number. 

Instead, let us compute how much larger t E+& would have to be so that the 
gains obtained from quasi-caching are lost. In other words, let R. be the response 
time when no caching, conventional or otherwise, is used. (In Figure 3, R. is 0.62 
seconds.) With quasi-caching, the response time will be R, a function of t;+ck and 
the rest of the parameters. We can numerically search for the value of t:+,k that 
makes R equal to Ro. 

This value of ti+ck is shown in Figure 4 as a function of q, for h = 0.12 (using 
the extended network model). The area under the curve represents the values of 
tt+ek where quasi caching performs better than no caching. For example, when 
q = 0.75, tL+ck must be more than twice as large as t”, so that both response times 
are equal. (Recall that the time to install an update, t:, is 0.01.) This means that 
if the overhead of checking coherency conditions is less than the cost of actually 
installing the update, then quasi copies will have a better response time. This is 
very encouraging since it is much more likely that the cost of checking coherency 
will be a fraction of the installation cost, as opposed to a multiple of it. And even 
if the cost of checking equaled that of installing, there will be no gain in response 
time but we would still be sending many fewer messages. 

For values of q less than or equal to 0.85 it is clear that we can afford to spend 
a substantial amount of time checking coherency constraints without endangering 
our gains. However, as q gets close to 1, t:+ck drops to zero. This is to be expected: 
Quasi-copies are not buying us anything, so we cannot afford to spend any time 
checking coherency conditions. Although we do not show it here, we have the 
same problem if h, the fraction of the database that is cached at a workstation, 
approaches zero. 

Finally, we have also studied the sensitivity of the results to our choice of base 
parameter settings. Before showing some of our results, let us define 

6 = R(q = 1, h = 0.16) - R(q = 0.5, h = 0.16). 

The value 6 gives the savings in response time when we go to quasi-caching (with 
q = 0.5), as compared to a system with conventional caching, for the case when 
we have 16 percent of the database cached at each workstation. From Figure 1 
we see that with our base settings 6 is roughly 0.31. In other words, quasi-copies 
“buy us” a savings of 0.31 seconds in query response time. Of course, there are 
the savings in just one case, but let us study what happens to these savings if we 
change the base parameter values. 

Figure 5 shows the value of 6 as some of our parameters are individually 
changed. (For simplicity we once again ignore network queuing delays and the 
overhead of checking coherency conditions.) On the horizontal axis we plot the 
percentage deviation from a base setting. For example, if the value off were 25 
percent smaller than the value given in Table I (5 * 0.75), quasi copies would 
only reduce the query response time by about 0.27 seconds. On the other hand, 
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Fig. 4. Basic model. 

if f were 25 percent larger (5 * 1.25), the savings would be 0.40 seconds. The 
parameters not shown in Figure 5 behave very similar to t”,. The parameters do 
affect response time, but variations in their value have minimal impact on the 
difference between R at q = 1 and at q = 0.5. 

What is interesting to note in Figure 5 is that with the exception of t:, 
decreases in 6 are very gradual, while the increases can be abrupt. This, we think, 
is good news for quasi-copies. In other words, suppose that we have analyzed a 
particular system and have estimated that quasi-copies are beneficial. If our 
estimates were slightly pessimistic, then quasi-copies could be much more useful 
than we had anticipated. However, if our estimates were optimistic, then quasi- 
copies are slightly less advantageous but will not be drastically counter-productive 
(unless of course our parameter estimates were way off). When tZ decreases, the 
drop in 6 is more significant, but even with a 50 percent change, 6 is still positive, 
that is, quasi-copies are still advantageous. 

In summary, the objective of conventional caching is to distribute the query 
processing load. However, conventional caching may be counterproductive be- 
cause of updates: Updates to cached data generate more messages and processing 
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Fig. 5. Sensitivity analysis. 

load. Fortunately, quasi-caching reduces the cost of update propagation and may 
make caching feasible and very worthwhile. Our performance model has helped 
us identify these situations. 

We have studied other extensions to our basic model but we do not discuss 
them here. In essence, ZI more detailed model may cause saturation points and 
values to change, but we believe it does not change the basic tradeoffs we have 
shown. 

7. CONCLUSIONS 

In practice, quasi-copies are already in use for all types of information and data. 
However, they are mostly used in an ad-hoc fashion, outside of computer systems, 
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and without any validity guarantees. In this paper we have suggested that quasi- 
caching can be useful in a computerized IRS, reducing substantially the overhead 
of managing replicated data and making data available during failure periods. 
We have defined the notion of quasi-copy, presented the types of conditions it 
can satisfy, and discussed the mechanisms with which a system can take advan- 
tage of the added flexibility. 

As we have shown in Section 6, quasi-caching can potentially improve perfor- 
mance and availability. However, there are also potential problems. This may be 
so if (1) a large fraction of the updates have to be propagated to the user 
workstations, that is, q is close to 1.0; and (2) the selection and coherency 
conditions are complex. In this instance, the overhead of the bookkeeping (large 
tecck) may outweigh the savings. This must be kept in mind when considering 
quasi-caching as an alternative. 

To illustrate the use of the various concepts and mechanisms we have discussed, 
we have described two extensive examples in [ 11. The first one illustrates how to 
implement the Boston Community Information System [8] using the concepts of 
quasi-caching. The second is a distributed calendar service for a hypothetical 
large corporation, which could be accessed from a large number of minicomputers 
located at various departments and branch offices. 

Quasi-caching also raises a number of challenging questions: How much data 
should be cached? Which of the mechanisms we have outlined is better suited 
for a particular application? How does the choice of when to propagate updates 
affect the performance of the system ? What are the breakpoints that make 
caching and quasi-copies worthwhile? At the user end, there are also open 
questions: What language is used to define conditions? How does a user determine 
the delays or deviations that are best suited for him? We are currently imple- 
menting a testbed to empirically answer these and other questions. 
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