
Data Caching Issues in an Information
Retrieval System

RAFAEL ALONSO, DANIEL BARBARA, and HECTOR GARCIA-MOLINA
Princeton University

Currently, a variety of information retrieval systems are available to potential users. These services
are provided by commercial enterprises (such as Dow Jones [6] and The Source [7]), while others are
research efforts (the Boston Community Information System [S]). While in many cases these systems
are accessed from personal computers, typically no advantage is taken of the computing resources of
those machines (such as local processing and storage). In this paper we explore the possibility of
using the user’s local storage capabilities to cache data at the user’s site. This would improve the
response time of user queries albeit at the cost of incurring the overhead required in maintaining
multiple copies. In order to reduce this overhead it may be appropriate to allow copies to diverge in
a controlled fashion. This would not only make caching less costly, but would also make it possible
to propagate updates to the copies more efficiently, for example, when the system is lightly loaded,
when communication tariffs are lower, or by batching updates together. Just as importantly, it also
makes it possible to access the copies even when the communication lines or the central site are
down. Thus, we introduce the notion of quasi-copies, which embodies the ideas sketched above. We
also define the types of deviations that seem useful, and discuss the available implementation
strategies.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems--distributed database; D.4.7 [Operating Systems]: Organization and Design--distributed
systems; H.2.4 [Database Management]: Systems--distributed systems; H.3.5 [Information Stor-
age and Retrieval]: On-Line Information Services--data bank sharing

General Terms: Design, Management, Performance

Additional Key Words and Phrases: Cache coherency, caching, data replication, data sharing,
distributed data management, distributed systems, information retrieval systems

1. INTRODUCTION

In many of today’s information retrieval systems (IRSs) all the stored data (e.g.,
abstracts of journal articles, airline schedules) reside at a central node. This
central site can be reached by a large number of remote terminals connected via

This research was supported by the DBfense Advanced Research Projects Agency of the Department
of Defense and by the Office of Naval Research under contracts N00014-85-C-0456 and N00014-85-
K-0465, by the National Science Foundation under Cooperative Agreement DCR-8420948, and the
New Jersey Governor’s Commission Award 85-990660-6, and also grants from IBM and SRI’s Sarnoff
Laboratory. The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the United States Government.
Authors’ address: Department of Computer Science, Princeton University, Princeton, NJ 08544.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0362-5915/90/0900-0359 $01.50

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990, Pages 359-384.

360 l Fi. Alonso et al.

relatively slow communication lines. Users at these terminals do no local pro-
cessing; they simply send their queries to the central machine and wait for replies.
Data can be added or deleted at the central site, but in many cases it cannot be
updated.

A number of developments are slowly changing this IRS model. First, the
number of users is growing rapidly. In our “information society” it is becoming
increasingly important to have access to timely information. At the same time,
the number of personal computers, at home and in the workplace, has grown
tremendously, giving more people the hardware necessary to access IRSs.

The first development implies that increased IRS services and requirements
will tax both the processing and communication capacity of the central site.
There are a number of potential solutions to this problem, but the one we will
focus on in this paper is data caching. This solution is becoming feasible precisely
because of the second development, that is, that an IRS is frequently accessed
from personal or mini computers with substantial processing and storage capacity
(for example, in 1984, Dow Jones estimated that about 125,000 of its 165,000
customers used personal computers [6]).

In principle, caching can improve system performance in two ways. First, it
can eliminate multiple requests for the same data. For example, consider an
automobile manufacturing plant where a number of people are interested in news
wire stories on trade and protectionism. In this case, it makes sense to cache the
relevant articles at the company’s local computer, eliminating redundant requests
to the central IRS site. A second way in which caching can improve performance
is by off-loading work to the remote sites. For instance, if a user is interested in
chemical companies he may store the latest stock prices of those companies at
his own computer. There he can run his own analysis programs on the data,
without using any more central cycles.

However, caching has an associated cost. Every time a cached value is updated
at the central site, the new value must be propagated to the copies. Furthermore,
the propagation must be done immediately if cache consistency (or coherency) is
to be preserved. (A cached value for an object is consistent if it equals the value
of the object at the central site.) This propagation cost can be significant.

Caching has been successfully used in other environments, but there are some
important differences in this case. In a computer hardware cache [16], it is not
expensive to keep the cached and main memory data’ consistent. This is because
updates are small (e.g., a byte is modified), the communication delays are short,
and the number of copies is small (e.g., in snooping cache architectures typically
there are less than 10 caches connected to a memory system). In an IRS, on the
other hand, the communication costs can be much higher. For instance, users
typically communicate over telephone lines. Also, the number of caches may be
quite large. Finally, the updates can be extensive (e.g., the abstract of an article
or the article itself can be added to a file). The idea of caching data in workstations
has been also used in [9].

In light of these difficulties, it is important to explore strategies for making
update propagation less costly while still retaining the inherent advantages of
caching. In this paper we study two such strategies. Both involve taking advantage
of the application semantics. The first idea is to let the user explicitly define the
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an Information Retrieval System 361

information that is of interest and to cache only it. This obviously reduces the
need to refresh data that is not going to be used.

The second idea is to allow, whenever possible, a weaker type of consistency
between the central data and its copies. For instance, the user interested in the
stock prices of chemical companies may be satisfied if the prices at his computer
are within five percent of the true prices. This makes it unnecessary to update
the cached copy every single time a change occurs. When the deviation exceeds
five percent, then a single update can bring the cached copy up-to-date. At a
manufacturing company, users may tolerate a delay of one day in receiving
articles of interest. If the system takes advantage of this, it can transmit all the
articles during the night when communication tariffs are lower. If a communi-
cation or central node failure occurs and its duration is less than 24 hours, then
users can continue to access information that is correct by their standards.

We call a cached value that is allowed to deviate from the central value in a
controlled way a quasi-copy. The management of quasi-copies is called quasi-
caching to differentiate from conventional caching where no data deviations are
allowed. Quasi-copies have the potential to reduce update propagation overhead
and to give the system flexibility for scheduling the propagation at convenient
times. Note that the information flow in an IRS with quasi-copies is similar to
the flow in many real organizations. The manager of a company is not told every
time an employee is hired or leaves. The information is filtered so that he is only
informed periodically of personnel changes or when an exceptional condition
occurs (e.g., a mass exodus of employees). Hence, the manager’s view of the
company (the cached data) deviates from the true state (the central value).
Similarly, when a person desires news, he subscribes to magazines and newspa-
pers. The news arrives periodically, and there is again a discrepancy between the
local and “central” data. In human organizations, people have little control over
this process, for example, Time magazine arrives every week and the New York
Times every day, and there is no way to change this. In a computerized IRS,
however, we can let users precisely define the limits of divergence of quasi-copies,
and the system can take advantage of this to improve performance.

We should point out that quasi-copies are not free either. The reductions in
transmission costs are paid for by increases in processing time for bookkeeping,
both in the central processor and in the workstations. Hopefully, trading off
transmission time for processing time will pay off as workstations become more
powerful while transmission costs remain fixed. We will quantify these tradeoffs
further in Section 6.

The concept of quasi-copies is somewhat related to the idea of materialized
views. A materialized view is a stored relation whose data is derived from the
base relations by evaluating an expression constructed from any combination of
project, select, and join operations. As base relations are modified, the derived
relations may have to be refreshed. This can be done by reevaluating the
expression after every transaction that modifies the base relations. However, the
cost associated with this strategy would be unacceptable. In [2], techniques are
presented for detecting when an update to a base relation cannot affect a
materialized view, and for detecting when the derived relation can be updated
using its own data only. This last technique is particularly useful when the

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

362 l R. Alonso et al.

derived relation is stored in a remote site. Both strategies are based on a screening
algorithm to test each modification, insertion, and deletion made to the base
relations. The test, based in Boolean satisfiability, detects whether the new tuple
may cause the materialized view to change. A variant to this algorithm, in which
the updating of materialized data is deferred until just before it is used, is
presented in [ll]. The idea is also proposed in 1151 as a method of materializing
copies of views in remote workstations. Another technique of view maintenance
is called snapshot refreshing [141. A snapshot is a read-only table whose contents
are extracted from the base tables. The snapshots are periodically refreshed to
reflect the current state of the database. Snapshots were developed as a cost
effective substitute for replicated data in distributed applications. Effective
algorithms for refreshing snapshots are presented in [141.

The main difference between these techniques and quasi-copies is that our
concept allows the user to establish the degree of coherency of the cached copy.
By establishing how much the cached data can deviate from the central copy,
the user has control over the currency of the data used rather than having to
comply with a given degree of coherency (which, for instance, in the snapshot
technique is given by the frequency of the application of the refreshing algorithm).
In this way, the coherency can be adjusted to the needs of the application that is
to be run in the remote workstation. The degree of coherency can vary from a
perfect up-to-date copy to a simple “hint” of the data. We feel that this concept
is a powerful tool that encompasses a wide spectrum of choices. (A related notion
of letting users specify an “age threshold” for hint information has been studied
in [la].)

In this paper we assume that all information is controlled at a single central
site. This site executes all updates and hence has the most up-to-date version of
all data. Usually remote users only read data. If they want to modify something,
they may submit an update transaction to the central site. If the modifications
are based on data read from the IRS, the reads must occur at the central site at
the time the transaction runs, not at the remote node. To illustrate, let us
consider the following example. Suppose that a stock market information IRS
also allows users to purchase stock. If a user observes at his terminal that the
price of a certain stock price is favorable, he can submit a transaction to the
central site to purchase some amount of stock. However, the “real” price, that is,
the price at the central site, can differ from the value observed by the user when
he makes his decision. Hence, the user must either be willing to buy stock at
a “slightly” different price or must include in his update transaction code to
read the price once again and abort the operation if the price is no longer accept-
able. (Note that this is the way stocks are usually purchased in reality.) This
decision is similar to that faced by users of database browsers based on the idea
of portals [17].

Quasi-caching could easily be extended to a system with several central sites,
each controlling a fragment of the data, as long as modifications to a particular
datum can only take place at one computer. Fragmenting the database like this
is another way of reducing the workload at the central site, but for simplicity, we
continue to assume that there is a single central site.

Since allowing updates to a datum to originate at multiple sites (e.g., at
a user remote machine and at the central site) does complicate quasi-caching
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an Information Retrieval System l 363

substantially, it is not considered here. Central data control is essential to our
approach since it simplifies the types of inconsistencies that can occur in a
distributed system with replicated data. For a survey of distributed control
strategies for replicated data see [4].

Even though quasi-copies seem to be crucial for effective caching in an IRS,
very little is known about them. Hence, the objective of this paper is to study
quasi-caching and to attempt to answer some of the basic questions. What types
of quasi-copies are most useful? How can they be defined? How can conventional
data consistency constraints (e.g., a manager’s salary must be greater than
his/her employee’s salary) be enforced at the cached copies when the individual
values can fluctuate? Quasi-copies can be implemented in a variety of ways. For
instance, values that diverge too much can be invalidated or refreshed. Data sent
to the caches can include an automatic expiration time and date. The quasi-copy
requirements can be enforced at the central or at the remote sites. In this paper
we survey the various implementation strategies and their tradeoffs.

In the following section we define quasi-caching more precisely and introduce
some terminology. There are two types of conditions that can be specified for
quasi-data: selection and coherency. They are discussed in Sections 3 and 4. The
impact of transmission delays and failures, as well as other implementation
issues, is covered in Section 5. Performance issues are discussed in Section 6.
The final section offers our conclusions.

2. QUASI-CACHING

We start by defining more precisely quasi-caching and introducing notation that
will be used in the rest of the paper. The database is stored at the central node,
C, and consists of a set of objects 0. Each object x E 0 can have a number of
values (or fields) associated with it (e.g., object John has name, address, salary
values), but for simplicity we assume there is just one value. As is customary, we
use the same symbol x to represent both the object and its value. All updates
take place at the central site. As an object is modified, new versions are created.
We represent the latest version of object x by u(x). It will sometimes be necessary
to refer to the value of an object x at a time t. We represent this by x(t).
(Incidentally, we assume that all sites have accurate and synchronized clocks
P3l.J

A set of nodes (or workstations) N (C 4 N) may contain quasi copies of the
objects. (Several of our nodes may run on a single physical computer as separate
processes.) The quasi copy of object x E 0 at node j E N is xj and is called an
image of x. When the identity of node j is not important, we represent the image
as x’. The set of objects that have quasi-copies at node j are the objects cached
at j. Note that the quasi-caches at different nodes can have different objects, and
objects can be cached at 0, 1, 2, . . . or all nodes. In the rest of the paper we drop
the prefix “quasi” whenever it is clear we are referring to quasi-caching and
quasi-copies.

We do not specify the granularity of objects. Conceptually, objects can be small
(e.g., fields or records), or large (e.g., files). There are performance implications
to granularity, but these will be covered in Section 5.4.

Users at a node define how copies are managed by giving two types of
conditions: selection and coherency. The selection conditions specify which object

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

364 l R. Alonso et al.

images will be cached at the user’s site. The coherency conditions define the
allowable deviations between an object and its images. In our stock market
example, the user issues a selection condition to indicate that he wants copies of
the stock prices of chemical companies. His coherency condition would then state
that a five percent variation between the central site and his site is acceptable.
We discuss these types of conditions in the next two sections.

All users or application programs running at a node share the quasi-cache.
They refer to the objects by the same names they have at the central site. An
access to object x by a user or program will return the local image X’ if it exists.
If not, an access to the central site will be made. Users or programs must be
capable of coping with data that deviates from the central data, as specified by
the coherency conditions. If this is not the case, the user or program should not
be running at a node where a quasi-cache has been defined. (Another option
might be to allow each individual read to specify if the local quasi-cache can be
used.)

3. SELECTION CONDITIONS

In a computer hardware cache, the decision as to what to hold in the cache is
made automatically by the system. For example, the system might store every
word that is fetched. To make room for the word, it may purge the least-recently-
used (LRU) word from the cache. In an IRS, a better strategy might be to let the
user specify what data is to be cached. Selection conditions let the user do this.

A selection condition consists of two parts: an identification clause that specifies
the objects to be cached (or dropped from the cache), and a set of one or more
modifiers that determines how the selection is going to operate. (The modifiers
are optional.)

The identification clause can explicitly list the objects involved in the selection
or can give an expression that evaluates to a set of objects. For example, if a
relational language [4] is used for the expression, then the condition:

SELECT NAME, PRICE
FROM STOCKS
WHERE TYPE = “Chemical Company”

can be used. It selects the NAME and PRICE attributes (or fields) of tuples (or
records) that represent chemical companies. In our terminology, each NAME or
PRICE value selected is an object that must be cached. There are many other
languages and models for selecting data or information [4], but since they are
well known, we do not cover them here. In our example objects are small, that
is, fields of records. As discussed earlier, caching and tracking small objects may
be more expensive, so the language may be restricted to deal with larger objects
such as files or relations. On the other hand, the techniques of Section 5 may
make it feasible to manage the small objects of our example.

The modifiers in a selection condition may include the following items:

(1) Add/Drop, This item specifies whether the selected objects are to be
added to the cache or removed from it. If “Drop” is specified, then the images at
the subscriber nodes are removed from the caches (if they existed).
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching issues in an Information Retrieval System 365

(2) Enforcement. A selection condition can be of two types: compulsory or
advisory. If it is compulsory, then the system must guarantee that the selected
objects are cached as requested. If it is advisory, then the caching is viewed
exclusively as a performance enhancement. In this case, the selection condition
is taken as a “hint,” and may or may not be followed by the system.

A query optimizer can take advantage of the knowledge that a selection is
compulsory. To illustrate, let us return to the STOCKS expression given earlier.
Suppose that it is compulsory and that the user searches for the stock price for
“Chemical” company “AJAX” at his computer. If the stock is not found locally,
then AJAX is not a chemical company. No other action is necessary since the
user is only interested in chemical companies. Similarly, a query to evaluate
the average stock price for chemical companies can be executed locally. If the
selection was advisory, then for both queries a check would have to be made at
the central site to see if there were additional companies satisfying the query.

The advantage of advisory selection is that it gives the system greater flexibil-
ity. If the central site is overloaded, the caching of objects can be delayed or
eliminated. Similarly, if storage space is limited at the remote site, data can be
purged.

In practice, a judicious combination of compulsory and advisory selections may
be best. For example, consider a legal IRS that contains summaries of court
cases. The system also has an inverted list index that is used to locate summaries
given a set of key words. In this case it may be advantageous to cache all objects
that make up the index in a compulsory fashion, and the most relevant summaries
in an advisory way. This way, queries can be processed locally yielding a list of
summary identifiers. Requests would only be made to the central site to fetch
summaries not found locally.

(3) Static/Dynamic. If the selection is static, then the objects are selected
once when the condition is issued by a user. If it is dynamic, then changes in the
data will continuously trigger-a reevaluation of the identification clause, and
objects will be added or dropped dynamically. For example, if the sample identi-
fication clause given earlier is static, no new stocks will be cached at the remote
site. If it is dynamic, then every time that a new stock is added at the central
site, a check will be made. If the stock is of a chemical company, then a copy will
be made. When a company changes its classification from chemical to something
else, its copy will be purged. Note that a dynamic selection will usually be of type
“Add,” and its enforcement of type “compulsory.”

Both statically and dynamically selected objects can have coherency conditions
specified. If an object was selected statically, its identification clause will not be
reevaluated. However, if it has coherency conditions, they will be checked
dynamically.

(4) Triggering Delay. When a dynamic selection is made, a change to the
central database may cause a new object to be added to (or dropped from) the
selection list. In some cases, it may be desirable to delay the addition (or deletion)
of the object. For example, if while using an abstract service IRS a user selects
abstracts on “compilers” and gives a 24-hour delay, then new abstracts on the

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

366 - R. Alonso et al.

topic can be batched together and sent more efficiently. In the case of a stock
market IRS, if a user selects stocks with prices less than 100 dollars, then a delay
of one hour can eliminate repeated additions and deletions of a stock whose price
is fluctuating close to 100 dollars.

When a user wants to give a triggering delay, he states the maximum allowable
delay A. The system is then free to add (or delete) an object to the selected set
any time between the time the triggering occurs and A seconds later.

Note that a triggering delay can be used with either compulsory or advisory
selections. If the selection is compulsory, then the cached data can be used for
query optimization, but the results may not include the latest information. Let
us return to the examples that were used to illustrate compulsory selections. Say
a user has selected stocks for chemical companies. He has specified a compulsory
selection and a triggering delay of one hour. Say he searches for the stock price
of company “AJAX” and it is not found in the cache. In this case it is not
necessary to look for company AJAX at the central site, even though it might
have been created there within the last hour. The user has indicated that he can
tolerate a delay of up to one hour for hearing about new chemical companies.
Hence, the search for company AJAX need not involve recently selected objects.

Incidentally, setting the triggering delay A too low might make it hard to
implement a compulsory selection. For instance, if sending a message from the
central to a remote site takes To seconds, then the system cannot guarantee that
the selected data will be at the remote site in less than TD seconds. We will
return to this issue in a later section.

4. COHERENCY CONDITIONS

Once an object has been selected for replication, the coherency condition(s)
specifies the allowable deviations of the image. Coherency conditions are enforced
only when an image exists.

Every image has a default condition that defines the allowable values that it
may contain, even if no other conditions are given. This default condition is
enforced by the system.

Default Coherency Condition. An image x: ’ must have a value previously held
by the object. That is,

V times t 2: 0 ilt,, suchthat 05tost
and x’(t) = x(t,J

Users may specify additional constraints. Actually, any constraint on the values
of the objects and images could be defined; however, our goal here is to identify
and understand the more useful ones. Four useful constraint types are:

(1) Delay Condition. This is similar to the selection triggering delay. It states
how much time an image may lag behind its object. For object x, an allowable
delay of CY is given by the condition

V times t 2 0 3k such that 0 % k 9 CY
and x’(t) = x(t - k)

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an Information Retrieval System 367

Since this defines a window of acceptable value, we use the notation W(X) = a:
to represent this condition.

Note that a delay condition is different from the triggering delay in a selection
condition. The triggering delay indicates the allowable time between issuing the
selection condition and having the object appear in the cache. During this time,
a delay condition is not applicable. Once the object appears in the cache, the
delay condition specifies how far behind that image can fall.

(2) Version Condition. A user may want to specify a window of allowable
values, not in terms of time, but of versions. For example, if an object represents
a VLSI circuit, it may be useful to require a copy that is at most two versions
old. We represent this condition as V(x) = fi, where x is the object and p the
maximum version difference. That is, V(x) = p is the condition

V times t 2 0 Elk, to such that 0 5 k 5 p
and 0 5 to 5 t
and u(x(t)) = u(x(t,J) + k
and x’(t) = x(&J

(3) Periodic Condition. With a periodic condition a user indicates that the
image must be refreshed periodically. For instance, a user may desire stock prices
every day when the market closes. The condition P(x) = (Y, p states that the
image of x must match the object at time CY, and must be refreshed every /3
seconds thereafter. In other words, P(x) = a, p is the condition

V times t h 0 3n such that n 2 0
and CY + n@ c: t < a + (n + l)@
and x’(t) = X(LY + n/3)

(4) Arithmetic Condition. If the value of an object is numeric, the deviations
can be limited by the difference between the values of the object and its image.
That is, we may state that

V times t 2 0 Ix’(t) -x(t)/ <t

or that

V times t Z 0 x’(t) - x(t)
x(t)

1oo = t %

We represent the first condition by A(x) = E; the second one by A(x) = E %.

Yet more conditions can be built out of the three elementary ones we have
listed by connecting them with logical “OR, ” “AND,” and “NOT” operators. For
example, the condition

W(x) = 1 hour AND V(r) = 2

specifies that x ’ can lag at most one hour behind x, unless x has been modified
more than two times within this hour. The condition

W(x) = 1 hour OR V(x) = 2
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

368 ’ R. Alonso et al.

means that x ’ can always lag behind x by an hour. It can even lag longer if the
image is still within 2 versions of x.

It may also be useful to allow the parameters of the coherency conditions to
vary over time. For example, if a user is planning an important financial operation
in 30 days, he may want his data to have a smaller window as the day of the
transaction approaches. Thus, he may define W(x) = (12 - 30) minutes, where 12
is the day and x is an object of interest.

As a final point, we should mention that so far we have only discussed
constraints on a single object and its image. However, there can also be con-
straints among objects (usually called consistency constraints). For example, if
Xl, x2, . . . , x, are stock prices in an IRS, and Z is their average, then we have the
constraint x’ = average (x1, x2, . . . , x,). A user that reads the images of the stock
prices and their average cached at his workstation would like to see the condition
hold.

To illustrate some of the difficulties involved in maintaining consistency
constraints consider two objects x, y and the constraint x + y 5 10. Say that x’s
image has the coherency condition A(x) = 3 and y has A(y) = 1 (see condition 4
above). Initially, we have the following situation:

x=7 XI=7
y=3 yf = 3

An update transaction decreases x by 2 at the central site. Since A(x) = 3, the
image does not have to be updated:

x=5 XI = 7
y=3 y’ = 3

Note that the multiobject constraint holds at both sites: x + y I 10 and x’ -t y’
I 10. Next, a second update increases y by 2. Since A(y) = 1, this change does
not have to be propagated. The situation is now:

x=5 x’ = 7
y=5 y’ = 5

Although the multiobject constraint holds at the central site, it does not hold at
the copy site.

We give the user that desires multiobject consistency two choices. The first is
explicitly to give the system the constraints that must be satisfied. When a
constraint is violated, then the missing updates must be propagated. A second
option is to state that a group of objects x1, . . . , xn has constraints but not to
give them explicitly. This option is useful when the users cannot list all their
constraints or when it is too expensive to check them. In this case the system
must ensure that updates to x1, . . . , x,, are applied in order at the copies. That
is, let To be the last update transaction whose modifications were applied to
one or more of x;, . . . , x;. Let Tl . . . , T,,, be other updates to one or more of
Xl, * * * , x,, that were not propagated because they did not violate any single object
coherency conditions. Finally, let T,,,,, be an update that does modify one or
more of xi, x, and does have to be propagated. Then all the updates of
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an Information Retrieval System 369

T,,..., T,,,, T,,, must be made on the images 3~; , . . . , x;, to avoid violating any
constraints at the remote site.

5. IMPLEMENTATION

In this section we consider a number of issues that arise in the implementation
of quasi-copies.

5.1 Transmission Delays and Failures

We now address two complications that may make it difficult to enforce the
conditions given by a user: transmission delays and failures. To illustrate,
consider the condition A(x) = t and assume that an increment of more than 2t
is about to occur at the central site. The condition indicates that the difference
between x and x’ should “never” be larger than E, and hence the update to the
image must be performed “at the same time” as the object is changed. Strictly
speaking, this is not possible. The problem due to failures is similar. For example,
if the central site fails just after the 2~ increment is made but before the change
is propagated to x’, then the condition A(x) = E will be violated.

Although a 2-phase commit protocol (or similar strategy) could be used, the
update overhead and temporary inaccessibility of data are potential drawbacks.
Thus, we propose the following solution. The central site, when operational, will
make sure that each remote site receives a message at least every 6 seconds. This
means that if the central site notices that no message has gone out to a site in
6 - To seconds, where To is the maximum message delay, then it will send a
“null” message. Null messages are numbered just like regular messages, and all
messages must be received in order. When a site j notices that 6 seconds go by
without a message from the central site, it declares the central site failed, and
sets a local variable C-FAILED(j) to true.

Then we interpret every condition C(X) on object x: set by a user at node j as

C(x) V W(r) = 6 V C-FAILED(j)

(Condition W is defined in Section 4.) This means that all conditions have an
implicit delay window of 6 and do not have to be enforced if the central site is
down. With this approach, the user can display C-FAILED at the same time he
displays his data, and interpret it accordingly.

5.2 What to Propagate

There are several types of messages that the central site can use when it wishes
to inform remote sites of an update. Each of these types has a different data size.
The selection of the message type will definitely influence the performance of
the system. The message types are the following:

(a) Data Message. A data message contains the new values. These values should
overwrite those found in caches.

(b) Invalidation Message. An invalidation message identifies the objects that
have changed, but does not contain the new values. An invalidation message
usually causes the remote node to purge from its cache the referenced images.

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

370 - FL Alonso et al.

(c) Version Number Message. This message identifies the objects and provides
their new version numbers. The new data values are not included. (The time
of update could be included instead of, or in addition to, the version number.
However, this information can sometimes be inferred from the message
arrival time.) The remote node uses the version number to decide if it should
purge an image.

(d) Implicit Invalidation. In this last case, the central node sends no message.
Instead, images are automatically invalidated after a certain time (i.e., they
are aged). That is, when a copy is made, it is sent with a time limit. The
remote node then guarantees that it will, at the latest, purge the image when
the limit expires.

In some applications, propagating updates is a reasonable approach. However,
in many cases, some of the other approaches may be useful. Implicit invalidation
incurs the least overhead and is especially attractive if objects are large or
communications faulty. For example, train schedules can be issued, as they are
in reality, with an expiration date. When the schedule expires, a new copy must
be requested explicitly if there is still interest.

Invalidation and version number messages also have reduced communication
overhead, but more than implicit invalidation. They are especially attractive for
broadcast environments, where the central node can inform everyone of changes;
only those that actually need the new data request it. One application that
already uses this strategy is catalogs for department stores. When a new catalog
appears, all customers are mailed a postcard informing them of its availability.
Interested customers must then pick up their copy at the store. Version number
messages are desirable when version coherency conditions have been specified.
If version number messages are broadcast, the work of checking versions can be
off-loaded to the remote site. Each remote site can check its own conditions and
decide what data must be purged.

5.3 When to Propagate

When an update arrives at the central site, it does not have to be propagated
immediately. As a matter of fact, there are several choices:

(a) Last Minute. The updates can be delayed up to the point where a coherency
or selection condition is about to be violated.

(b) Immediately. Updates could be propagated as soon as they occur.
(c) Early. Updates can also be propagated at any other time after they arrive

but before a condition is violated.
(d) Delayed Update. A last choice is to delay the installation of an update at the

central site. If the update is not installed, the conditions cannot be violated,
and the propagation can be delayed.

For example, consider the condition A(x) = 5, and the original value of x to be
10, with the cached copy x’ = 10. Assume that updates begin to increase the
value of x to, say 11, 12,13, 14, l&16. Under last minute propagation, the central
site would broadcast the new value of x as soon as the x = 16 update comes in.’

1 Recall that, as explained in Section 4, there is an implicit window of 6 that makes the condition
true while the new value is being transmitted.

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an Information Retrieval System 371

Under immediate propagation, every new value of x results in a broadcast.
Under early propagation we could schedule a transmission when x = 13, for
example. And finally, for delayed update, x = 16 will not be installed until it is
convenient.

Immediate propagation should only be used when the selection and coherency
conditions require it, or when evaluating the conditions is too expensive. Last
minute propagation has the greatest potential for reducing communication costs
since it allows as many as possible updates to be “batched” together. However,
sometimes early propagation can take advantage of lower communication tariffs
or processor idle time. For example, telephone calls are usually more expensive
from 8:00 AM to 500 PM. Suppose that a delay condition W(X) = 5 hours has
been defined, and that updates to x have taken place at 7:00 AM. If the telephone
is going to be used, it is clearly better not to use last minute propagation (at
12:00 Noon), and to transmit the new data just before 8:00 AM.

Delayed update gives us even greater flexibility and potential for batching
together even more updates. However, delaying updates at the central site is an
inconvenience since the database there is made to diverge from the “real world.”
Hence, late propagation is only an option when the applications can tolerate
such divergence.

Conceptually, delaying updates at the central site is akin to increasing the
delay window W(X) of the objects. However, the advantage of delayed updates is
that it can make implicit invalidation work more efficiently. When a remote node
requests a copy of object x, the central site can respond with an expiration time
t, in the future. Now, if updates can be put off until time te, the copy will not
have to be explicitly invalidated.

5.4 Collapsing Conditions

One of the major drawbacks of using quasi-copies may be the cost of checking
coherency conditions at the central node. There are two aspects to this cost:
processing and storage. If an object has n coherency conditions, then updating it
will require checking all conditions, an O(n) effort. To check each condition, the
central site may need to know the value of the image at each workstation. For
instance, consider an arithmetic condition A(x) = 2, when x is currently 5. An
update x = 6 arrives. To know if the condition is violated, the central node must
know the value of x’. If x’ = 5, then the condition still holds; if x’ = 3 it does
not. Thus, if the database holds m objects, each with n coherency conditions, the
central site may have to store O(mn) values.

Incidentally, note that checking coherency conditions is similar to the problem
of checking whether an update violates an integrity constraint [3, lo]. These
techniques could be applied to the problem of checking coherency conditions in
a straightforward manner, so we will not discuss them here any further. It is the
number of constraints that may be a problem, and this is the issue we address
here.

The number of constraints that have to be checked at the central node can be
reduced in several ways. One obvious way is to allow only conditions on large
granules like relations or files (this reduces m). Another way is to limit the
number of conditions (control n). For instance, quasi-copies may only be allowed
at a few computers such as the major corporate clients of the IRS. If these clients

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

372 9 R. Alonso et al.

contribute a large fraction of the queries, then quasi-copies can still be beneficial.
The corporate computers can in turn institute a quasi-copy mechanism with their
local workstations. In addition to these obvious solutions, we can try to auto-
matically collapse constraints or to shed some of the load to the workstations.
The first of these ideas is discussed in the rest of this section; the other is
presented in the next section.

In many cases it is possible to collapse several coherency constraints (from
different workstations) on the same object into one. The collapsed constraint is
chosen so that it triggers whenever any of the individual constraints would have
triggered. The collapsed constraint may not be as effective as the original ones,
but it will probably be better than having no constraints at all.

We illustrate this idea with a simple arithmetic condition, although it can be
used with the other types of coherency conditions we have presented. Say
workstation W, defines A(x) = 5. Later on, a second workstation W, requests a
quasi-copy with A(r) = 4. At this point, the central node sends the value of X to
W,, and also to W, to ensure that both workstations have the same state. Both
conditions are collapsed into A(x) = 4. If x changes by more than 4, both
workstations are refreshed, even though WI may not require the update yet.

It is also possible to automatically collapse constraints on different objects. To
illustrate consider two records x and y in some file F. Suppose that x has a delay
constraint of 1 hour from workstation WI, and y of 2 hours from W,. The two
constraints are collapsed into a delay constraint on file F of 1 hour (the minimum
of the two individual delays). Say 1 hour has gone by since F was modified last
and the copies have not been refreshed. Then both records are propagated, x to
W, and y to W,. The central site only checks the constraint on F, not on the
individual records. The price to pay is that extra messages are sent (such as the
one to W,) that could have been postponed.

5.5 Load Balancing

Another alternative for reducing the amount of work at the central site is to
partially off-load the enforcement of coherency constraints to the workstations.
Some coherency conditions are easy to check at the remote nodes, without
imposing any processing or storage overhead at the central processor. An example
is a delay condition in which the value x ’ is only valid for a window of time.
After a period of time, the workstation simply purges the value from its cache,
forcing the next request to be directed to the central node. Another type of check
that is especially well-suited for the remote nodes is the multiobject one. In this
case, a constraint such as “number of reservations is less than or equal to the
number of available seats” must be enforced. As updates arrive at a remote site,
these checks can be made. Missing updates can be requested (or data can be
purged) if the constraints are violated.

Although for most other types of conditions some work must be done centrally,
there are ways the workstations may help. Consider the following scheme for
load balancing while collapsing arithmetic conditions. Each time the ith work-
station receives a new (and obviously current) value for an item x: from the
central site, it computes and returns to the central site a pair of values, x&,
Xi&h. These values represent the lowest and highest values that x can reach in
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an Information Retrieval System 373

the central node, without the need to send an update to the ith workstation (note
that these may be computed locally by examining the individual coherency
conditions as well as the current value of x). We define Ai = [xfow, xki,h] as the
tolerance interval for x at workstation i. And now, the central station need only
store the global tolerance interval A, = [zhighest-low, Xlowest-high], defined as the
intersection of the individual tolerance intervals for the workstations. Whenever
an update of x sets the value of x outside of A,., the central site will broadcast
the new value (or an invalidation message) to all the workstations holding a copy
of x in their cache. The central station updates A, upon receipt of any pair x;~,,
x&h by computing

A, = A: n A,

This method only requires storing one pair of values per item cached (at a cost
of O(m) storage locations) and eliminates the need to store the predicates in
the central site, thereby off-loading the associated predicate computation to the
workstations. Notice that, as an added advantage, the users may change the
predicates as frequently as they wish, without having to communicate the changes
to the central site. Furthermore, the predicate may be as complex as the user
desires; the complexity of evaluating it does not affect the overall performance
of the central database.

Moreover, it should be pointed out that the technique just described may also
be applied to versions. Instead of sending a tolerance version interval, the
workstation simply sends the maximum version number that the central site can
reach without updating the cache. However, this load balancing technique cannot
be applied to delay and periodic conditions; in these cases, it is best to use
collapsing alone, as discussed in the previous section.

The drawback of this approach is that the frequency of update propagation
might be increased by taking the intersection of the intervals. This may happen
for one of two reasons. If a particular user sets a very narrow interval, it can
force the update propagation to every workstation holding that item in its cache
for almost every update in the central site. (This problem also arises with
constraint collapsing.) This problem might be corrected by clustering together
workstations with similar coherency demands. A second cause of unnecessary
updates occurs when individual workstations start to cache items at different
times. For example, assume that most workstations cache the value of x when
x = 50, with replication condition A(x) = 10. Then AX = [41, 591 is the global
tolerance interval. Suppose now that the value of x becomes 59, and a new
workstation begins to cache x (with the same replication condition A(x) = 10).
Now the new global tolerance interval is the intersection of Ai = [50, 681 and
the old global tolerance interval, giving A, = [50, 591, is much tighter (in effect,
a window of size 5) than most users need. This tighter constraint may quickly
cause future updates to generate a broadcast. However, the problem is self-
correcting, since as soon as that broadcast is done, all the workstations will
compute their local tolerance intervals centered around the same value.

Lastly, a few comments about static and dynamic selection conditions. As we
explained in Section 3, users select the items to be cached at their workstation.
If static caching is chosen, the identification clause is only checked once.

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

374 8 FL Alonso et al.

However, if dynamic caching is specified, the central site must store the identi-
fication clause and any addition of an object that satisfies the clause should be
transmitted to the cache. Similarly, a deletion of an object cached at the
workstation should cause the invalidation of the cache entry. Clearly, dynamic
selection conditions should be used sparingly, since they cause added storage
overhead, as well as force the central site to check every object insertion and
deletion to determine whether all dynamic selection predicates are satisfied.

6. A PERFORMANCE MODEL

An IRS with data caching and quasi copies is a complex system. The performance
improvements provided by caching quasi copies, if any, are determined by many
factors, including processor capacities, transmission speeds, query reference
patterns, and update reference patterns.

In an attempt to illustrate the tradeoffs involved, we will present a simple
performance model and some results. We emphasize that our goal is not to predict
the performance of some actual system; rather, it is to exemplify under what
circumstances gains can be achieved and what their magnitude might be.

In our model, the central site contains the main database copy and receives all
updates to it. Update arrivals form a Poisson process with average arrival rate
X,. We assume that a fraction h of the database is cached at each workstation.
Thus, with probability h an arriving update refers to data replicated at a particular
workstation and should be forwarded. However, quasi-copies may reduce the
number of updates that are actually forwarded. We let q represent the fraction
of the updates that are actually sent out. That is, an update will be sent to a
workstation with probability hq.

Queries arrive at each of the n workstations at an average rate X,. If the data
required by a query were random, the probability that a query could be processed
at a workstation would be h. However, we assume that cached data is more likely
to be accessed by a query. We use the parameter f to denote how much more
likely is the access of “hot spots” in the database. That is, a query can be
processed locally with probability hf; with probability 1 - hf it is forwarded to
the central site. Note that 0 I f 5 l/h.

Table I contains a summary list of all the parameters, including some we will
define shortly. In addition, the table gives the base parameter settings used in our
evaluation. For each parameter there is a wide range of reasonable values; the
base settings represent a particular set of choices within reasonable ranges that
best illustrate the effect of quasi-copies. (We study later the effect of varying
these base settings.)

We model the central and workstation nodes as M/G/l servers. The average
service times for the various types of requests (all exponentially distributed) can
be determined from,the following parameters:

t w. 9’ the processing time for a query executed at a workstation.
t w. CL- the time to install an update at a workstation.
t c. 4’ query processing time at central node (20 times faster than a workstation).
t:: update installation time at central node.
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an Information Retrieval System - 375

Table I. Model Parameters

Description

Arrival rate
Fraction of DB cached
Coherency index
Query arrival rate
Hot spot factor
Number of workstations
Query processing time at workstation
Update processing time at workstation
Query processing time at central site
Update processing time at central site
Propagation overhead
Transmission time
Number of concentrators
Concentrator service time

Value

20 updates/set.
ranges from 0 to 0.2
ranges from 0 to 1
1 query per sec. per station
5
150
0.1 sec.
0.2 sec.
0.005 sec.
0.01 sec.
0.0007 sec.
0.3 sec.
10 concentrators
.02 sec.

tg: overhead time at central site to propagate an update to a single worksta-
tion. If the update is sent to x workstations, the time is xtf,. (The base
setting for tg, 0.0007 seconds, is chosen such that ntg is the same order of
magnitude as the other times at the central site.)

Since in our model we only have a single server per node, these processing
times can be considered CPU times. For example, t: is the CPU time used in
processing a query at the central site. In reality there may be additional I/O time.
However, we have ignored I/O time for simplicity. Although including I/O times
in the model is not a difficult task, we feel that increasing the number of
parameters would only make the results more difficult to interpret. Besides, one
could model the effect of the I/O by changing t;. Moreover, since any realistic
central server will have lots of memory to serve as a cache, we would expect the
amount of actual disk I/O to be relatively small. In each M/G/l server, all
requests are processed with the same priority on a first-come, first-served basis.
For the time being we are assuming that the cost of checking coherency conditions
is negligible compared to the cost of performing an update. We return to this
issue shortly.

Initially, let us assume that the network transmission time is a constant t, (we
are assuming that workstations will communicate with the central database over
phone lines; the 0.3 second setting we have chosen for this parameter is approx-
imately the time required to transmit a 40 character message over a 1200 baud
line). Since we have no queuing delays at the network, we are assuming, for the
time being, that the processors, and not the network, are the potential bottle-
necks. (Later on we consider a queuing model for the network.)

The average query response time is given by the expression

R = hf[w, + tg”] + (1 - hf)[2t, + w, + t;],

where w, and w, are the average queue wait times at a workstation and at the
central site. The first term in the equation covers the case where the query is
processed at the workstation (probability hf); the second covers processing the

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

376 l R. Alonso et al.

query at the central site (probability 1 - hf). We now describe how the wait
times can be computed.

At a workstation there are two types of requests. Queries arrive at a rate of
hf X, and require ty service time; updates have an arrival rate of hq X, and require
t: seconds. Let us call the two arrival rates X, and XZ; the two average service
times 19~ and &. The combined flow of requests also forms a Poisson process with
arrival rate X = X1 + XZ. The service time of the combined flow, X, is no longer
exponentially distributed, but its mean and second moment are

WV = (wG4 + (ww,
E[X2] = (h,/X)se: + (X,/X)28&

(Recall that the second moment of a simple exponential distribution with mean
0 is 2d2.) The wait time at a workstation can now be computed with the Pollaczek-
Khinchin formula [121.

wx21 ww =
2(1 - XE[X]) *

The wait time at the central node is computed in a similar fashion, except that
there are three types of requests. Updates are installed at a rate of X, and have
an average service time of t”,. Propagations to the workstations occur at a rate of
hqX, and each has a combined load (over all workstations) of ntg. Queries arrive
at a rate of n(l - hf) X, and take t; each.

Figure 1 shows the response time R as a function of h, the fraction of the
database at each workstation, for several values of q, the “coherency” index.
(Recall that when h is 0, the workstations have no data and all queries are
processed at the central site. When h is 0.2, each workstation holds 20 percent
of the database. Given our f value of 5, this means that all queries are processed
locally.) When q = 1 all copies must track the central site closely. In this case
caching is not very helpful (for the parameters we selected). As data is cached
and h increases from 0 to 0.2, query processing work is off-loaded to the
workstations. Unfortunately, the savings at the central node are offset by the
increased effort of keeping the copies up-to-date. As h approaches 0.2, the
workstations also become saturated with work since they not only must process
the queries but must also execute the updates forwarded to them.

As q decreases, the situation changes dramatically. Copies can diverge from
the central value, so not every update must be propagated. The effort in update
propagation is reduced and all computers can process the queries more quickly.
When q is 0.75, a fourth of the updates are not propagated. In this case, the best
response time occurs when about 14 percent of the database is cached. The
central site has shed enough load to make it operate more efficiently, but not
enough to overload the workstations. With values of q of 0.5 or less, the
workstations never become overloaded, so it becomes feasible to perform all
queries locally (h = 0.2) and save the transmission costs.

The total expected number of messages transmitted per second is given by the
expression

M = 2n(l - fh)X, + nhqX,.
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

1.8

1.6

1.4

1.2

Average
I

Response
Time
(se4 0.8

Data Caching Issues in an Information Retrieval System . 377

. ..*...........i..*.*..

i ,i ; q =0.50

.& .08 .1:2 .i6

h
Fraction of DB at Workstation

.20

Fig. 1. Basic model.

The first term corresponds to query messages; the second term to update traffic.
Figure 2 displays the message rate M as a function of h and q. Here again, caching
can increase the network load. Quasi copies (q less than 1) can reduce the
network traffic and can even make it less than in the no caching case.

Our model so far assumes that there are no queuing delays in the network.
What would happen if there were ? To answer this question, we extended the
model to include a limited network capacity. Suppose that the lines from the
workstations arrive at concentrators or communication controllers. Say there are
n, concentrators, each handling n/n% lines. We model each concentrator as an
M/M/l server with service time of t,. The arrival rate at each concentrator is

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

378 l FL Alonso et al.

Network
Traffic

(messages / sec.) 3oE

h h
Fraction of DB at Workstation Fraction of DB at Workstation

Fig. 2. Basic model. Fig. 2. Basic model.

M/n,, assuming that messages in either direction are equivalent. The expected
total transmission delay for one message is given by

D = t, + xx + w,,

where w, is the expected wait time at a concentrator. (Each queue is independent.)
Note that t, is now the transmission time from workstation to concentrator; we
still assume this component is a constant.

If we substitute the above expression for t, appearing in the R equation given
earlier, we obtain the query response time for the new model. This response time
is shown in Figure 3 for a value of t, of 0.2 seconds. Comparing this figure to
Figure 1, we observe that only the case for q = 1 is substantially different. When
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

1

1

1

I

Average
Response

Time
(sec.)

I

.8,-

.6 ..

.A ‘.

1.2 ..

1 .

3.8

3.6 f

Data Caching issues in an Information Retrieval System

.:>.

I .d8 .1:2 ./6 .lo

h
Fraction of DB at Workstation

Fig. 3. Extended network model.

q = 1 the network traffic is sufficiently high to cause the network to saturate at
about h = 0.13. As this limit is approached, the query response time grows without
bound. For the other values of 4, there is little change. The reason is as follows.
When h is 0, the network is handling 300 messages a second yielding a delay D
of 0.25 seconds (compared to 0.3 seconds in Figure 1). As h increases, the number
of messages decreases and the delay shrinks to D = 0.2. However, as h increases,
the impact of D on the average response time decreases (fewer queries must be
transmitted), so that the impact of the transmission time savings is not notice-
able.

Up to now we have assumed that the cost of checking coherency conditions is
negligible compared to the cost of installing an update, t”,. This may be true in

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

380 l R. Alonso et al.

some cases (see Section 5), but what happens in those cases where it is not? Let
t:+ck be the combined cost of installing an update and checking any coherency
conditions involved. Our performance model and equations are identical, except
that tk+& replaces t”,. The value oft:+& will be larger than t’,, but estimating how
much larger is difficult. It depends on the type of coherency conditions and their
number.

Instead, let us compute how much larger t E+& would have to be so that the
gains obtained from quasi-caching are lost. In other words, let R. be the response
time when no caching, conventional or otherwise, is used. (In Figure 3, R. is 0.62
seconds.) With quasi-caching, the response time will be R, a function of t;+ck and
the rest of the parameters. We can numerically search for the value of t:+,k that
makes R equal to Ro.

This value of ti+ck is shown in Figure 4 as a function of q, for h = 0.12 (using
the extended network model). The area under the curve represents the values of
tt+ek where quasi caching performs better than no caching. For example, when
q = 0.75, tL+ck must be more than twice as large as t”, so that both response times
are equal. (Recall that the time to install an update, t:, is 0.01.) This means that
if the overhead of checking coherency conditions is less than the cost of actually
installing the update, then quasi copies will have a better response time. This is
very encouraging since it is much more likely that the cost of checking coherency
will be a fraction of the installation cost, as opposed to a multiple of it. And even
if the cost of checking equaled that of installing, there will be no gain in response
time but we would still be sending many fewer messages.

For values of q less than or equal to 0.85 it is clear that we can afford to spend
a substantial amount of time checking coherency constraints without endangering
our gains. However, as q gets close to 1, t:+ck drops to zero. This is to be expected:
Quasi-copies are not buying us anything, so we cannot afford to spend any time
checking coherency conditions. Although we do not show it here, we have the
same problem if h, the fraction of the database that is cached at a workstation,
approaches zero.

Finally, we have also studied the sensitivity of the results to our choice of base
parameter settings. Before showing some of our results, let us define

6 = R(q = 1, h = 0.16) - R(q = 0.5, h = 0.16).

The value 6 gives the savings in response time when we go to quasi-caching (with
q = 0.5), as compared to a system with conventional caching, for the case when
we have 16 percent of the database cached at each workstation. From Figure 1
we see that with our base settings 6 is roughly 0.31. In other words, quasi-copies
“buy us” a savings of 0.31 seconds in query response time. Of course, there are
the savings in just one case, but let us study what happens to these savings if we
change the base parameter values.

Figure 5 shows the value of 6 as some of our parameters are individually
changed. (For simplicity we once again ignore network queuing delays and the
overhead of checking coherency conditions.) On the horizontal axis we plot the
percentage deviation from a base setting. For example, if the value off were 25
percent smaller than the value given in Table I (5 * 0.75), quasi copies would
only reduce the query response time by about 0.27 seconds. On the other hand,
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an information Retrieval System 381

* .:

4i

. .:

..i

1
3.5

4

Fig. 4. Basic model.

if f were 25 percent larger (5 * 1.25), the savings would be 0.40 seconds. The
parameters not shown in Figure 5 behave very similar to t”,. The parameters do
affect response time, but variations in their value have minimal impact on the
difference between R at q = 1 and at q = 0.5.

What is interesting to note in Figure 5 is that with the exception of t:,
decreases in 6 are very gradual, while the increases can be abrupt. This, we think,
is good news for quasi-copies. In other words, suppose that we have analyzed a
particular system and have estimated that quasi-copies are beneficial. If our
estimates were slightly pessimistic, then quasi-copies could be much more useful
than we had anticipated. However, if our estimates were optimistic, then quasi-
copies are slightly less advantageous but will not be drastically counter-productive
(unless of course our parameter estimates were way off). When tZ decreases, the
drop in 6 is more significant, but even with a 50 percent change, 6 is still positive,
that is, quasi-copies are still advantageous.

In summary, the objective of conventional caching is to distribute the query
processing load. However, conventional caching may be counterproductive be-
cause of updates: Updates to cached data generate more messages and processing

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

382 l R. Alonso et al.

0.1 -

0.t

Response
Time

Savings 03

6 (sec.)

.i...........

[f

‘n

I#i..........

: Y

,........,..........,..........

i +50

Percent Deviation
From Base Setting

Fig. 5. Sensitivity analysis.

load. Fortunately, quasi-caching reduces the cost of update propagation and may
make caching feasible and very worthwhile. Our performance model has helped
us identify these situations.

We have studied other extensions to our basic model but we do not discuss
them here. In essence, ZI more detailed model may cause saturation points and
values to change, but we believe it does not change the basic tradeoffs we have
shown.

7. CONCLUSIONS

In practice, quasi-copies are already in use for all types of information and data.
However, they are mostly used in an ad-hoc fashion, outside of computer systems,
ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

Data Caching Issues in an Information Retrieval System 383

and without any validity guarantees. In this paper we have suggested that quasi-
caching can be useful in a computerized IRS, reducing substantially the overhead
of managing replicated data and making data available during failure periods.
We have defined the notion of quasi-copy, presented the types of conditions it
can satisfy, and discussed the mechanisms with which a system can take advan-
tage of the added flexibility.

As we have shown in Section 6, quasi-caching can potentially improve perfor-
mance and availability. However, there are also potential problems. This may be
so if (1) a large fraction of the updates have to be propagated to the user
workstations, that is, q is close to 1.0; and (2) the selection and coherency
conditions are complex. In this instance, the overhead of the bookkeeping (large
tecck) may outweigh the savings. This must be kept in mind when considering
quasi-caching as an alternative.

To illustrate the use of the various concepts and mechanisms we have discussed,
we have described two extensive examples in [11. The first one illustrates how to
implement the Boston Community Information System [8] using the concepts of
quasi-caching. The second is a distributed calendar service for a hypothetical
large corporation, which could be accessed from a large number of minicomputers
located at various departments and branch offices.

Quasi-caching also raises a number of challenging questions: How much data
should be cached? Which of the mechanisms we have outlined is better suited
for a particular application? How does the choice of when to propagate updates
affect the performance of the system ? What are the breakpoints that make
caching and quasi-copies worthwhile? At the user end, there are also open
questions: What language is used to define conditions? How does a user determine
the delays or deviations that are best suited for him? We are currently imple-
menting a testbed to empirically answer these and other questions.

REFERENCES

1. ALONSO, R., BARBARA, D., AND GARCIA-M• LINA, H. Quasi copies: Efficient data sharing for
information retrieval systems. Tech. Rep. CS-TR-101-87, Princeton Univ., June 1989.

2. BLAKELEY, J. A., COBURN, N., AND LARSON, P. A. Updating derived relations: Detecting
irrelevant and autonomously computable updates. In Proceedings of the 12th International
Conference on Very Large Databases (Kyoto, Aug. 1986). 457-466.

3. BUNEMAN, P. O., AND CLEMONS, E. K. Efficiently monitoring relational databases. ACM
Trans. Database Syst. 4,3 (Sept. 1979), 368-382.

4. DATE, C. J. An Introduction to Database Systems. Addison-Wesley, Reading, Mass., 1975.
5. DAVIDSON, S., GARCIA-M• LINA, H., AND SKEEN, D. Consistency in partitioned networks. ACM

Comput. Suru. 17, 3 (Sept. 1985).
6. DUNN, B. Bill Dunn of Dow Jones: The data merchant. Pers. Comput. (Dec. 1984), 162-176.
7. EDELHART, M., AND DAVIES, 0. OMNZ Online Database Dictionary. Collier MacMillan, 1983.
8. GIFFORD, D., LUCASSEN, J. M., AND BERLIN, S. T. The application of digital broadcast

communication to large scale information systems. IEEE J. Selected Areas Commun. (May 1985).
9. GLADNEY, H. A model for distributed information networks. Res. Rep. RJ5220, IBM Research

Laboratory, San Jose, Calif., July 1986.
10. HAMMER, M., AND SARIN, S. K. Efficient monitoring of database assertions. In Supplement

Proceedings of the ACM SZGMOD International Conference on Management of Data, 1978.
11. HANSON, E. A performance analysis of view materialization strategies. In Proceedings of the

International Conference on Management of Data, 1987,440-453.
12. KLEINROCK, L. Queueing Systems, Vol. I: Theory. Wiley-Interscience, New York, 1975.

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

384 l R. Alonso et al.

13. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21,7 (July 1978), 558-565.

14. LINDSAY, B., HAAS, L., MOHAN, C., PIRAHESH, H., AND WILMS, P. A snapshot differential
refresh algorithm. In Proceedings of the ACM SZGMOD International Conference on Management
of Data (Washington, D.C., May 1986). 53-60.

15. ROUSSOPOULOS, N., AND KANG, H. Principles and techniques in the design of ADMS+/-.
Computer (Dec. 1986).

16. SMITH, A. Cache memories. ACM Comput. Suru. 14,3 (Sept. 1982).
17. STONEBRAKER, M., AND ROWE, L. Database portals: A new application program interface.

Electronics Res. Laboratory Rep. UCB/ERL M82/80, Univ. of California at Berkeley, Berkeley,
Nov. 2, 1982.

18. TERRY, D. B. Caching hints in distributed systems. IEEE Trans. Softw. Eng. (Jan. 1987).

Received March 1988; revised October 1988; accepted June 1989

ACM Transactions on Database Systems, Vol. 15, No. 3, September 1990.

