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copy, as far as users can tell. We describe a new replica control protocol that allows the accessing of 
data in spite of site failures and network partitioning. This protocol provides the database designer 
with a large degree of flexibility in deciding the degree of data availability, as well as the cost of 
accessing data. 

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed 
Systems--distributed databases; D.4.3 [Operating Systems]: File Systems Management-distrib- 
uted file systems; D.4.5 [Operating Systems]: Reliability-fault-tolerance; D.4.7 [Operating Sys- 
tems]: Organization and Design--distributed systems; H.2.4 [Database Management]: Systems- 
concurrency; distributed systems; transaction processing 

General Terms: Algorithms, Management, Reliability 

Additional Key Words and Phrases: Concurrency control, partitioning failures, replica control, 
replicated databases, serializability theory 

1. INTRODUCTION 

The availability of data in distributed databases can be increased by replication. 
If the data is replicated on several sites, it may still be available after site failures. 
However, implementing an object with several copies residing on different sites 
may introduce inconsistencies between copies of the same object. To be consis- 
tent, a system should be one-copy equivalent; that is, it should behave as if each 
object has only one copy in so far as the user can tell. A replica control protocol 
is one that ensures that the database is one-copy equivalent. 
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A database system should also ensure serializability; that is, if operations of 
transactions are interleaved, the system behaves as if all the transactions were 
executed in some serial order. A concurrency control protocol is one that ensures 
serializability. Several such concurrency control protocols are known [ 11. 
A database system is correct if it is one-copy serializable; that is, it ensures 
serializability and is one-copy equivalent. 

We consider database systems that are prone to both site and link failures. 
Sites may fail by crashing or by failing to send or receive messages [21]. Links 
may fail by crashing, delaying, or failing to deliver messages. Several replica 
control protocols have been proposed that tolerate different types of failures. 

An example of a simple replica control protocol is one that requires a write 
operation to write all copies of an object, and a read operation to read any one 
copy. However, such a protocol does not allow write operations to be executed 
on objects with copies on failed sites. The Available Copies protocol [3, 151 
requires a write operation to write only copies on operational sites. Hence, with 
this protocol write operations can be executed even when sites fail. However, 
combinations of site and link failures may partition a database [8, 231. Sites in a 
partition can communicate with each other, but not with sites in other partitions. 
If partitioning occurs, the Available Copies protocol may cause inconsistencies 
in the database. 

In this paper we present a replica control protocol that allows the accessing of 
data even when the database is partitioned. It can be combined with any 
available concurrency control protocol to ensure the correctness of a database. 
Our approach draws on work by El Abbadi, Skeen, and Cristian [12], and is an 
extension of [ll]. In contrast to the method in [12], we do not require a separate 
protocol to coordinate the views that different sites have of the communication 
network. This results in a simpler and more efficient protocol. In contrast to [ll] 
and [12], our protocol allows transactions in more than one partition to write 
the same object. Furthermore, our protocol provides a higher degree of data 
availability, and greater flexibility in determining the costs of accessing data. 

In most previous replica control protocols that tolerate communication failures, 
the more available an object is to be, the more expensive are operations on it. 
For example, quorum-based protocols [9, 141 require that in order to allow the 
execution of write operations in the presence of failures, the cost of read 
operations must be increased (by accessing more copies of the object read). This 
may preclude their use in applications whose feasibility critically depends on 
efficient read operations. With our protocol, as in [ll] and [12] it is never 
necessary for a read operation to access more than one copy, even if the database 
partitions. The cost of a read operation is independent of the level of availability 
associated with read or write operations. In general, our protocol provides the 
database designer with a high degree of data availability, as well as a large degree 
of flexibility in deciding when operations may be executed on objects, as well as 
in deciding the costs of these operations. 

In the next section, we describe the formal database model and our correctness 
criteria. In Section 3, we propose a replica control protocol, and in Section 4 we 
prove it correct. In Section 5 we present several optimizations to the protocol. 
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A comparison with other replica control protocols and a discussion concludes 
the paper. 

2. THE MODEL 

We consider a set of sites connected by bidirectional links. Associated with each 
site is a unique site identifier. Site identifiers form a total order. A distributed 
database consists of a set of objects that may reside at different sites. A transaction 
ti is a partially ordered set (Si, <;), where Si is the set of all operations executed 
by ti, and Ci reflects the order in which they should be executed. We assume that 
a transaction reads and writes an object x at most once, and if ti reads and writes 
x, then it reads x before writing x. Read and write operations executed by 
transaction ti on object x are denoted r, [x] and wi[x]. The site at which a 
transaction is initiated is called its initiator. The execution of a transaction is 
atomic; that is, before a transaction terminates, it either commits or aborts all 
changes it made to the database. Skeen [23] proves that if a network partition 
occurs during the execution of a transaction, no atomic commit protocol can 
guarantee the termination of that transaction (as long as the partition persists); 
that is, partitions may prevent some transactions from terminating. For commit 
protocols in the presence of partition failures see [5], [6], and [23]. In this paper 
(as in other concurrency control protocols such as [18] and [25]) we do not 
address this problem. Rather, our goal is to increase the availability of data in 
the presence of site and communication failures, including network partitioning, 
and to consistently restore the database after recovery. 

In this section most of the definitions and correctness criteria are drawn from 
the model developed in [2] and [4]. Consider a set of transactions T = (tl, t2, . . . , 
t,). We augment T with two special transactions: an initial transaction tinit that 
initializes the database, and a final transaction tEnal that reads the final state 
of the database. Formally, tinit(tfinal) consists solely of write (read) operations, 
one for each object read or written by a transaction in T. The execution of 
the transactions in T is modeled by logs. Formally, a log L over T is a partial 
order (S, -+,), where S is the set of all operations executed by transactions in 
T U {tinit, tfinal ), and -+. reflects the order in which the operations were executed. 
We consider only logs L that start with the write operations of tinit followed 
by all the operations of transactions in T, and end with the read operations 
of hind WI. 

2.1 Correctness Criteria for Nonreplicated Databases 

We first consider nonreplicated databases where each object x resides on a single 
site. Let L be a log over a set of transactions T. Transaction tj reads-r-from 
transaction ti in L if 

(1) wi[x] and rj [x] are in L; 

(2) Wi[Xl CL rj[x]; 

(3) there is no w~[x] such that Wi[X] <L w~[x] <L rj[x]. 

TWO logs L, and L2 are equivalent if for all transactions ti, tj (including tinit 
and tcnal) and any object x, tj reads-x-from ti in Ll if and only if tj reads-x-from 
ti in L,. A serial log is a totally ordered log such that for every pair of transactions 
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ti and tj, either all operations executed by t; precede all operations executed by tj 
or vice versa. A log is serializable if it is equivalent to a serial log over the same 
set of transactions. Since a serial execution of transactions preserves the consis- 
tency of the database, we consider serializability to be our correctness criterion. 
The problem of determining whether an arbitrary log is serializable is NP- 
complete [20]; thus, it is unlikely that there exist efficient concurrency control 
protocols that allow all serializable logs. We therefore consider a class of concur- 
rency control protocols that allows a subset of the class of serializable logs, the 
W-serializable logs as defined below. 

Two operations conflict if they both operate on the same object, and one of 
them is a write. A log L is CP-serializable [17, 201 if there exists some serial 
log L, over the same set of transactions, such that if op, and op2 conflict and 
opl -+. op, then op, +., op,. Note that L is equivalent to L,, and since L, is serial, 
L is serializable. 

A serialization graph SG[L] of a log L is a directed graph whose nodes are 
transactions and whose edges are ( ti + tj ] 3 opi executed by t, and onj executed 
by tj such that opi conflicts with opj and opi <L op, ). L is CP-serializable if and 
only if SG[L] is acyclic [l3, 171. 

2.2 Correctness Criteria for Replicated Databases 

We now consider replicated databases where each object is implemented by a 
set of copies that reside on different sites. The copy of object x that resides on 
site p is denoted by x,. Each copy x, has a version number that is initialized by 
the initial transaction tinit (the initial transaction executes for each object x a 
write operation LOinit[X] that results in write operations on all copies of object IX). 
The set of all copies of object x is denoted copies[x], and the set of sites on which 
x resides is denoted sites[x]. The number of copies of x in the system is n[x] 
(n[x] = ( copies [x] I). In a nonreplicated database all objects are implemented by 
a single copy. 

An operation issued by a transaction on an object is called a logical operation. 
Such an operation is executed by a set of physical operations on the copies of the 
object. A logical write wi[X] (other than Winit [x]) is executed by 

(1) selecting a set of copies of z, 
(2) determining unmax, the maximum version number of the selected copies, 

and 
(3) writing all the selected copies with a version number greater than unmax. 

A logical read r;[x] is executed by 

(1) selecting a set of copies of x, 
(2) accessing all the selected copies to find the one with the highest version 

number, and 
(3) reading this copy. 

The read, access and write operations that are executed on a copy X~ by trans- 
action t, are denoted ri[x,], ai[xp], and w~[x,]. 

A replicated database log L contains physical operations on the copies of objects. 
For each logical write w;[z], there is a set (x,, . . . , x,), the set of copies written, 
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such that L contains Uli[3tp], . . . , wi[x,J. For each logical read ri[x], there is 
a set (x,, . . . , Xj, . . . , x,), the set of copies accessed, such that L contains 
R[Xpl <L ri[x,l, . . . , ai[xjl CL C[xjl, . . . 7 ai[x,] <L ri[x,] (where Xj is the value read). 
Transaction tj reads-x-from ti if there is a copy x, of object x such that 

(1) UQ[X~] and rj[x,,] are in L; 

(2) Wi[X,l <L rj[Xpl; 
(3) there is no ZU~[X~] such that wi[x,] <L u)k[xp] <L rj[x,]. 

TWO logs L, and Lz are equivalent if for all ti, tj (including tinit and tcnal) and X, 

tj reads-x-from ti in L, if and only if tj reads-x-from ti in L,. A log is one-copy 
serializable [2] if it is equivalent to a serial log over the same set of transactions 
executed over a nonreplicated database. 

We extend the definition of conflict to both logical and physical operations. 
Two logical (physical) operations logically (physically) conflict if they both operate 
on the same object (copy) and one of them is a write. 

The serialization graph SG[L] of a replicated database log L is a directed 
graph whose nodes represent transactions, and whose edges are: (ti ---, tj ] 3 opi 
executed by t; and opj executed by tj such that opi physically conflicts with opj and 
op, cL opj). The graph SG[L] orders transactions that issue physically conflicting 
operations in L. However, two transactions may issue two logically conflicting 
operations that may not physically conflict, and hence are not ordered by SG[L]. 
To order transactions that issue logically conflicting operations, we extend SG[L] 
into a one-copy serialization graph, l-SG[L], by adding enough edges such that 

(1) for each object x, l-SG[L] embodies a total order +, on all transactions that 
write x; 

(2) for each object x and transactions ti, tj, tk such that tj reads-x-from ti and 
ti +X tk, l-SG[L] contains a path from tj to tk. 

Bernstein and Goodman [2] prove that a log L is one-copy serializable if L has 
an acyclic l-SG[L] graph. 

3. A REPLICA CONTROL PROTOCOL 

Our replica control protocol assumes two types of transactions: user transactions, 
issued by the users of the database, and update transactions, issued by the 
protocol. We assume that all transactions follow a conflict-preserving concur- 
rency control protocol, for example, two-phase locking [13]. Such a protocol 
ensures that logs are CP-serializable only at the level of copies (but not at the 
object level). In this section we present a replica control protocol that ensures 
that all logs are one-copy serializable, and hence that transactions are serializable 
at the object level. 

To describe the execution of transactions, we introduce the notion of a view 
[12]. Each site s maintains a set of sites called its uiew. Each site can indepen- 
dently decide which sites to include in its current view. For example, a site s may 
choose to include in its view all sites with which s assumes it can communicate. 
The correctness of our replica control protocol does not depend on this 
choice, but data availability and operation costs may be affected (in Section 3.3, 
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we describe several possible strategies that sites can use to choose their current 
view and the trade-offs involved). A user transaction t that is initiated at a site 
with view v is said to execute in v. Informally, view v determines which objects t 
can read and write, as well as which copies it can access or write. Views are 
totally ordered according to a unique view-id assigned to each view, and two 
sites are said to have the same view if they have identical view-ids. 

Our protocol ensures one-copy serializability by (1) ensuring that all transac- 
tions executed in one view are one-copy serializable, and (2) ensuring that all 
transactions executing in a “lower” view are serialized before transactions exe- 
cuting in a “higher” view. Satisfying conditions (1) and (2) enforces a serialization 
of all transactions executing in all views [lo]. 

3.1 Accessibility Thresholds, Quorums, and User Transactions 

With each object x, we associate read and write accessibility thresholds, A,[x] and 
A,,[x], respectively. An object x is read (write) accessible in a view only if 
A,[x](A,[x]) copies reside on sites in that view. The accessibility thresholds A,[x] 
and A,[x] must satisfy 

&[xl + &ix1 > n[xl. (1) 
This relationship ensures that a set of copies of x of size A,[x] has at least one 
copy in common with any set of copies of x of size Ar[x]. (In [ll] and [12], the 
write accessibility threshold has to satisfy the additional requirement that 
2A,,,[x] > n[x], and this requirement prevents transactions in more than one 
partition to concurrently write r.) 

In each view v, every object x is assigned a read and write quorum, q,[x, v] and 
qW[x, v]: These specify how many physical access and write operations are needed 
to read and write an object x in view v. Let n[x, v] be the number of copies of x 
that reside on sites in view u (formally, n[x, v] = 1 sites[x] II v I). For each view 
v, the quorums of object z must satisfy the following relations: 

ab, 4 + qJx, ~1 > nix, ~1, (2) 

%&, 4 > nb, 4, (3) 

1 5 q,[x, ~1 5 nb, ~1, (4) 

&Lx1 5 q,[x, VI 5 n[x, VI. (5) 
These relations ensure that, in a view v, a set of copies of x of size qW[x, v] has at 
least one copy in common with any set of copies of x of size q,[x, v], q,,,[x, v], 
and A,[x]. 

Read operations use the version numbers associated with each copy to identify 
(and read) the most “up-to-date” copy accessed (as defined in Section 2.2). In 
our protocol, version numbers consist of two fields (v-id, k). Intuitively, if a 
copy has version number (v-id, k), then this copy was last written by a 
transaction t executing in a view v with view-id v-id, and t is the kth transaction 
to write x in view v. A version number (VI-id, kl ) is less than ( vz-id, k2), 
if v,-id < v%-id, or v,-id = up-id and k, < k,. Initially, sites have a common 
view v. with view-id vo-id, and all copies have version number (vo-id, 0). We 
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now describe how user transactions execute read and write operations according 
to our protocol. 

A user transaction t executing in view v can read (write) an object x only if x 
is read (write) accessible in view v. (Note that a site can determine whether an 
object is read or write accessible from its local view only, i.e., without accessing 
any copies.) Furthermore, t can only access, read or write copies of x that reside 
on sites with view v (this restriction is relaxed in Section 5.1). If object x is read 
accessible in view v, t executes the logical operation r[x] by 

(1) physically accessing g,.[x, v] copies of x residing on sites in v (with view v), 
(2) determining vrzmax, the maximum version number of the selected copies, 

and 
(3) reading the accessed copy with version number vnmax. 

If object x is write accessible in view v, with view-id v-id, t executes the logical 
operation w[x] by 

(1) selecting qW[x, v] copies of x residing on sites in v (with view u), 
(2) determining unmax, the maximum version number of the selected copies, 

and 
(3) writing all the selected copies and updating their version numbers to 

(v-id, L), where 1 1 1 is the smallest integer such that (u-id, 1) is greater 
than vnmax. 

If a user transaction tries to access a copy that resides on a site with a view 
different from the view of the site where the issuing transaction is initiated, that 
transaction is aborted. 

Quorum relations (2) and (3) ensure that all logically conflicting operations 
issued by user transactions executing in the same view, also physically conflict. 
Furthermore, since all transactions use version numbers and a conflict-preserving 
concurrency control protocol, one can show that all transactions executing in the 
same view are one-copy serializable. 

The use of accessibility thresholds in conjunction with quorums and the fact 
that each view can independently define its own quorums for each object gives 
the database designer an unusual degree of flexibility. This can be used to achieve 
the desired cost/availability trade-off of read and write operations. There are 
several such trade-offs. For example, one can increase the read availability of an 
object by decreasing the read accessibility threshold, A,[x]-at the cost of increas- 
ing A,[x]-that is, decreasing the write availability of the object. In some 
applications, read operations on some object x outnumber write operations, and in 
this case it is advantageous to allow inexpensive read operations for x. By using 
quorums this can be easily achieved with q,[x, v] = 1, and q,,,[x, v] = n[x, v]. A 
more detailed discussion of the possible trade-offs in choosing the accessibility 
thresholds and quorums is presented in Sections 3.3, 5.1.2, and 5.2. 

3.2 Update Transactions 

Views change during system execution. For example, a site may want to change 
its view when it notices a discrepancy between its current view and the sites it 
can actually communicate with (again, this is not necessary for correctness, 
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/* initiates and installs a view with view-id greater than current-uiew-id */ 
initiate_new_uieu(current_uiew_id) 
new-uiew := (set of sites) /* choose a new view */ 
new-view-id := increment (current-uiew-id) 
if install_uiew(new_uiew, new-uiew-id) is aborted /* install the new view */ 

-+ irtitiate-new_uiew(new_view_id) 
fi 

Fig. 1. initiate-new-uiew procedure executed at site s to initiate a new view. 

but may affect performance). A site s may change its view in two different ways. 
Site s may decide on the members of a new view u based on its own information, 
in which case s is called the initiator of v. (Policies for determining when to 
initialize a new view, and which sites to include in the new view are discussed in 
the next section.) Site s may also decide to adopt a view v initiated by another 
site, in which case we say s inherits view v. Whenever a site s changes its view to 
a new view v, either by initiating that view or by inheriting it, s must execute an 
update transaction that updates the local copies residing on site s. Views are 
considered objects; therefore, a transaction that executes an operation on a view 
must follow the concurrency control protocol. 

Informally, sites change their views as follows. When a site s decides to initiate 
a new view, it first assigns to the new view a unique view-id new -view-id that is 
larger than any other the initiator has encountered (uniqueness can be achieved 
by appending the initiator’s site identifier to the view-id). Site s then executes 
an update transaction to update all its local copies. For each object x that is read 
accessible in the new view, this update transaction accesses enough copies of x 
to have at least one copy in common with the copies written by write operations 
executed in previous views (sites with a view-id greater than new-view-id reject 
these access operations). The update transaction reads the value of the accessed 
copy of x with the highest version number, and writes it to the local copy x,. If 
the update transaction is terminated successfully, then s installs the new view, 
and user transactions may execute in the new view and access or write copies 
residing on s. All sites successfully accessed by the update transaction either have 
the same new view or they immediately try to inherit this view by executing an 
update transaction. We now present in more detail the process of changing views. 

Let s be a site whose current view has view-id current-view-id. To ini- 
tiate a new view, s atomically executes the procedure initiate-new-view 
(current-view-id) illustrated in Figure 1. Site s chooses a new view, new-view, 
and determines an associated view-id, new-view-id, higher than the current 
view-id. Then s tries to install this new view by executing install-view(new- 
view, new-view-id). If it fails, it initiates a new view with a higher view-id by 
calling initiate- new -view recursively. 

Procedure install-view (see Figure 2) executes an update transaction to update 
local copies of objects. If the update transaction is successful, s installs new-view 
by updating current-view and current-view-id to new-view and new-view-id, 
respectively. If the update transaction fails, install-view is aborted. Once 
new-view is installed at a site s, user transactions initiated at s are allowed to 
execute in new-view. 

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989. 



272 - A. El Abbadi and S. Toueg 

/” tries to install new-view with new-uiew-id */ 
installLuiew(new-uiew, new-uiew-id) 
execute update_transaction(new_uiew, new-uiew-id) 
if update-transaction is not aborted 

-3 current-uiew := new-uiew 
current-uiew-id := new-view-id 

0 update-transaction is aborted 
+ abort install-uiew 

fi 

/* install new-view */ 

Fig. 2. install-view procedure executed at site s to install a view. 

/* tries to update the local copies of all read accessible objects in new-uiew */ 
update-transaction(new-uiew, new-uiew-id) 
for all read accessible objects n in new-uiew with a copy in site s do 

select a set of A,[x] copies of x including X, 
for all selected copies IC, execute access(x,, new-uiew, new-uiew-id) 
if no access operation aborted 

+ read accessed copy of x with highest version number unmax 
write rS with the value read and version number (new-uiew-id, 1) 

where 1~ 0 is the smallest integer such that (new-uiew-id, 1) 2 unma.x 
II some access operation aborted 

+ abort update transaction 
fi 

od 

Fig. 3. update-transaction executed at site s to update its local copies according 
to new-uiew. 

Update transactions ensure that local copies of read accessible objects are up- 
to-date (see Figure 3). Update-transaction(new-view, new-view-id) executed at 
site s updates all the local copies of objects that are read accessible in new-view. 
For each object x that is read accessible in new-view, it first accesses Ar[x] copies 
of x (including LX,) and determines unmax, the maximum version number of the 
selected copies. It then reads the copy associated with unmax and writes it into 
x, with version number (new-uiew-id, 1), where 1 2 0 is the smallest integer so 
that (new-view-id, Z) is greater than or equal to vnmax. 

We associate with each access operation new-view and new-view-id. The 
access of copy x, is aborted if s cannot communicate with p, or if p has a view 
whose view-id is higher than new-view-id. If any access operation aborts, the 
update transaction is also aborted. 

When a site p receives a request to access x, from s, it can take three possible 
actions depending on new-view-id, the view-id associated with the request, and 
current-view-id, the view-id associated withp’s current view (see Figure 4, where 
each branch of the if statement is atomically executed). If current-uiew-id is 
less than new-view-id, then p executes the access operation, and immediately 
attempts to inherit new-view. No other user transaction can access or write 
xP before p terminates the inherit procedure. If current-view-id is equal to 
new _ view _ id, then p executes the access operation. If current-view-id is greater 
than new-view-id, then p aborts the access operation. 
ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989. 
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/* process an access operation requested by an update transaction initiated at site s */ 
access(x,,, new-view, new-view-id) 
if current-uiew-id < new-uiew-id + access zP and return version number of z,, to s 

ifpZs-3 
execute inherit-view(new-view, new-view-id) 

Cl current-view-id = new-view-id + access X, and return version number of X, to s 
0 current-uiew-id > new-view-id + abort access operation 

fi 

Fig. 4. Response of site p with view current-view and view-id current-view-id to a 
request access&,, new-uiew, new-uiew-id) by site s. 

/* inherits and installs view or initiates a new view with a higher view-id */ 
inherit-uiew(view, view-id) 
if instaLuiew(view, view-id) is aborted 

+ initiate-new-uiew(uiew-id) 
fi 

Fig. 5. inherit-uiew procedure executed at site s to inherit a view. 

To inherit a view view with view-id view-id, site s atomically executes the 
procedure inherit-view(view, view-id) illustrated in Figure 5. In this procedure, 
site s tries to install view. If it fails, then it executes initiate-new-view(view-id) 
to initiate a view with a higher view-id than view-id. Note that when a site 
initiates or inherits a view, the corresponding view-id is always greater than any 
previous view-ids at that site. 

3.3 Policies for Changing Views 

The protocol described in Figures 1, 2, 3, 4, and 5 includes all the basic steps 
necessary for ensuring one-copy serializability. However, it does not include 
several possible optimizations or options for implementation. In the next section, 
we prove that this basic protocol ensures one-copy serializability, and then in 
Section 5, we describe several optimizations that can be incorporated into our 
protocol. As we mentioned before, perfect knowledge of a site’s communication 
capabilities is not necessary for determining which sites are in its view. Further- 
more, the protocol’s correctness depends neither on when a view is changed nor 
on which sites to include in a new view. In this section we present an example 
that illustrates some of the options for changing views, and the trade-offs 
involved. We then discuss some possible tracking policies: These determine when 
a site should change its view, and which sites to include in the new view. 

Consider a database with four sites sl, s2, s 3, and .sq, where object x has three 
copies residing on sites s,, sp, and sn, and object y has three copies residing 
on sites s2, sg, and sq. Assume that all accessibility thresholds are equal to 2; 
that is, A,[x] = A,,[x] = A,[y] = AW[y] = 2. Initially all sites have the same view 
v. = {s,, sq, s3, sq) with read quorums q,.[x, uo] = qr[y, vo] = 1 and write quorums 
qw[x, uol = 4uJY, uol = 3. 

Assume that the network partitions into P1 = (sl, sqJ, and PZ = (s3, s4]. Sites s1 
and sa in partition PI have two options. If they install a new view v1 = Is,, s2J 
(with read quorum q,[x, v,] = 1, and qu,[x, u,] = 2) to reflect the partitioning 

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989. 



274 - A. El Abbadi and S. Toueg 

of the network, then x will remain read and write accessible. But since A,[y] = 
A,[y] = 2 and there is only one copy of y in ul, y will not be read nor write 
accessible in this new view. If s1 and sa keep their old view v. = (sl , sq, s3, s4} and 
their old quorums (even though they cannot communicate with s3 and s4), then 
transactions initiated in PI can still read both x and y. Note that even though 
x and y are also write accessible in u. (by definition), no transaction initiated 
in partition P, will be able to write 1c or y since qW[x, uo] = qW[y, uo] = 3 and 
this requires the writing of three copies of x or y. In summary, if sites in PI in- 
stall the new view (in accordance with their new communication capabilities), 
they will retain the ability to read and write X, but will lose the ability to read or 
write y. If they keep their old view, however, they will retain the ability to read 
x and y, but will lose the ability to write X. 

Hence, the database designer has several tracking strategies to choose from. 
Views could track changes in the network topology as closely as possible, thus 
reducing the risk of aborting transactions that read or write objects that are (by 
definition) accessible in the current view. This strategy was called aggressive 
trucking in [7]. (In our example above, this strategy would lead sites s1 and s2 to 
install the new view u1 .> Another approach is to change a view only if some high- 
priority objects are read accessible in the new view. A variation of this strategy 
is called lazy trucking in [7]. Our protocol with lazy tracking ensures optimal 
availability according to an availability measure proposed in [7]. A third approach 
is to change a view only when some high-priority transactions can no longer 
execute in the old view, but would be able to execute in the new view. We call 
this approach demand trucking. Thus, our protocol accommodates several strat- 
egies for changing views, and the database designer may dynamically choose the 
strategy used according to the immediate objectives and needs of the specific 
database being considered. 

4. PROOF OF CORRECTNESS 

In this section we prove that the basic protocol described in the previous section 
ensures one-copy serializability. Before proceeding to prove the correctness of 
the protocol, we extend the standard serializability theory to include both user 
and update transactions. 

4.1 Extensions to the Standard Serializability Theory 

The standard serializability theory presented in Section 2 assumed that only user 
transactions were executed in the system. In this section, we extend the theory 
to include both update and user transactions. We redefine reads-x-from rela- 
tions, serialization graphs and one-copy serialization graphs. 

We first extend the reads-x-from relation to include update transactions. Let 
L be a log over a set of transactions T. For any two (user or update) transactions 
ti and t, and object x, t, directly reads-x-from ti in L if there is a copy x, such 
that 

(1) Ui[3tp] and r,[x,] are in L; 

(2) wi[xpl <L r, [X,1; 
(3) there is no lok[xP] such that wi[x,] CL w~[x~] <L rj[x,]. 
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Let t, be an update transaction, executed by site s, that updates the values of 
a copy x5. If t, directly reads-x-from ti, then t, reads the value of x written by ti 
and writes it into x,. Now, if tj directly reads-x-from t,, then tj reads the value 
of x written by t,. Since this value was originally written by ti, t, indirectly reads 
the value written by ti. 

We formalize this concept by extending the definition of reads-from. Let t,,, 
t . . . ) t,, be a sequence of update transactions and ti and tj be two user 
tznsactions. We say tj indirectly reads-x-from ti if t,, directly reads-x-from ti, 
t,, directly reads-x-from t,, , . . . , and tj directly reads-x-from t,“. We hence- 
forth refer to both directly and indirectly reads-x-from relations simply as 
reads-x-from. 

The serialization graph SG[L] for the log L is a directed graph whose nodes 
are all user and update transactions and where edges capture physical conflicts 
between transactions. Formally, the edges of SG[L] are (ti + tj ( 3 opi exe- 
cuted by t, and opj executed by tj such that op, physically conflicts with opj and 
opi -+ opj). We redefine l-SG[L] to ensure that it has a path between any two 
transactions issuing logically conflicting operations. l-SG[L] must have enough 
edges so that 

(1) For each object X, l-SG[L] embodies a total order dX on all user transactions 
that write x. 

(2) For any two user transactions ti and tj, if tj reads-x-from ti (directly or 
indirectly), then l-SG[L] has a path from t, to tje 

(3) For any three user transactions ti, tj, and th, and tj reads-x-from ti (directly 
or indirectly) and ti ax tk, then l-SG[L] has a path from t, to tk. 

The proof of Theorem 2 in [2] still holds with the extensions we have made: If 
the graph l-SG[L] is acyclic, the log L is one-copy serializable. 

4.2 The Proof 
Given a log L of transactions executed using our replica control protocol, we first 
show how to construct a corresponding l-SG[L] graph. Then we show that 
l-SG[L] is acyclic, and hence L is one-copy serializable. 

4.2.1 Construction of l-SG[L]. Let L be a log over a set of user and update 
transactions executed using our replica control protocol in conjunction with a 
protocol ensuring CP-serializability at the level of copies. Let SG[L] be the 
corresponding serialization graph. Note that CP-serializability ensures the acy- 
clicity of SG[L] [13, 171. We now show how to extend SG[L] into a l-SG[L] by 
adding enough edges to satisfy the three requirements described in Section 4.1. 
The next lemma proves that SG[L] already satisfies the second of these three 
requirements. 

LEMMA 1. For any two user transactions ti and tj if t, reads-x-from ti, then 
SG[L] has a path from t; to tj. 

PROOF. If tj directly reads-x-from ti, then (by definition) there is a copy X, 
that ti writes and is subsequently read by t;. Hence, SG[L] has an edge from t, to 
tj. If tj indirectly reads-x-from ti, then there is a sequence of update transactions 
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t U1’ L,, . . . , tun such that t,, directly reads-n-from ti, tU1 directly reads-x-from 
t t. directly reads-x-from tU,. Therefore, SG[L] has an edge from t, to t,,, *e-7 , 
fZm t,, to t,,, . . . , and from t,,” to tje 0 

We now define an order +, on all transactions that write x as follows: 

ti dX tj where ti and tj write x, if and only if the version number ti assigns to 
x is less than the one tj assigns to x. 

To show that +x defines a total order on all user transactions that write x we 
need the following technical lemma. 

LEMMA 2. The version number of a copy never decreases. 

PROOF. The version number of a copy x, is changed only by a user transaction 
or an update transaction. In the first case, our write rule for user transactions 
ensures that the version number of X, increases. In the second case, our rule for 
update transactions ensures that the version number of x, does not decrease. 0 

LEMMA 3. If ti and tj are distinct user transactions that write x, then ti assigns 
to x a different version number than tj (and thus, either ti ax tj or tj ax ti). 

PROOF. There are two cases to consider. If ti and t, execute in the same view 
U, then both ti and tj write qw[x, u] copies of x in U. Since 2q,[x, u] > n[x, u], there 
must be at least one copy x, in u that both ti and tj write. Without loss of 
generality assume ti writes x, before tj does. By Lemma 2, and our write rule, tj 

must write x with a higher version number than ti. If t, and tj execute in different 
views, then by definition the first field of the version numbers they assign to x 
must be different. 0 

Lemma 1 shows that SG[L] already satisfies the second requirement of a 
l-SG[L]. We now prove that SG[L] partially satisfies the first requirement 
as well, with respect to the total order =sX defined above. 

LEMMA 4. If ti ax tj, and ti and t, are two user transactions executing in the 
same view, then SG[L] has an edge from t; to t,. 

PROOF. Suppose ti and tj execute in view u. Thus, both ti and tj write qW[x, u] 
copies of x: in u. Since 2q,[x, u] > n[x, u], there must be at least one copy x, in u 
that both t; and tj write. Since ti aX tj , ti writes x, with a smaller version number 
than tj. Thus, from our rules for write operations it is clear that ti writes x,? before 
t, does. Hence, by definition SG[L] contains an edge from t, to tj . 0 

To prove that SG[L] partially satisfies the third requirement of l-SG[L], we 
first need the following technical lemma. To simplify the presentation, we define 
u[t] as follows. If t is a user transaction, then u[t] is the view in which t was 
executed. If t is an update transaction, then u[t] is the view whose installation 
caused the execution oft. Let u-id[t] be the view-id of u[t]. 

LEMMA 5. If an update transaction t, reads-x-from ti and t, J, tk, where tk is 
a user transaction, then t, +X tk. 
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PROOF. There are two cases to consider: 

(1) Suppose that t, directly reads-x-from ti. We first show that there is a copy 
X, that is first accessed by t, and later written by tk. Update transaction t, 

accesses A,[x] copies of x and user transaction tk writes qw[x, u] I A,,[x] copies 
of x: (for some u). Since A,[x] + A,[x] > rz[x] (the total number of copies of 
x), there must be at least one common copy x, that t, accesses and tk writes. 
Since t, ax tk, then, by the definition of Jo, the copies of x that t, writes 
have a smaller version number than the copies written by tk. By Lemma 2, 
the version number of a copy never decreases. Since t, directly reads-r-from 
ti and not from tk, it must be that t, accesses x, before tk writes it. 

We claim that tk assigns a greater version number to x than t, does (hence, 
t, ax tk). Since t, directly reads the value of x written by ti, then t, reads a 
copy with version number vnmax = (v-id[t;J, h), where v-id[ti] 5 v-id[t,] 
and k 2 0. Suppose that u-id[t,] = u-id[ti]. In this case, the update 
transaction t, writes x with version number (v-id[&], k), the same version 
number that t; assigned to x. Thus, since ti 4x tk, we also have t, ax tk. Now 
suppose that u-id [ti] < u-id[t,]. In this case, t, writes x with version number 
(u-id[t,], 0). We now show that tk writes x with version number (U-id[tk], 
l), where u-id[t,] 1 u-id[t,] and 1~ 1. Recall that there is a copy x, that .5,‘ 
accesses before tk writes it. When t, accesses x,, site s must have a view whose 
view-id is less than or equal to u-id[t,]. In the former case, s must immedi- 
ately execute inherit-uiew(u[t,], v-id[t,]). Thus, in both cases, by the time 
tk writes x,, site s must have a view with view-id U-id[&] L u-id[t,]. Thus, 
tk writes x with version number (u-id[tk], I) for some 1 2 1, which is greater 
than (u-id [t,J, 0), the version number assigned by t,. Hence, t, dX tk. 

(2) Suppose that t, indirectly reads-r-from ti. There must be a sequence of 
update transactions t,, , t,,, . . . , t,,-, such that t, directly reads-x-from 
t u”-,, * . . , t,, directly reads-x-from t,,, t,, directly reads-x-from ti. Since 
t; dX tk, by Case (l), we have t,, JX tk. Since tul JX tk, by Case (1) again, we 
have t,, *X tk. It is now clear that a simple induction shows that t, ax tk. 0 

We can now prove that SG[L] partially satisfies the third requirement of 
l-SG[L]. 

LEMMA 6. If tj reads-x-from ti, ti +X tk, and tj and tk are user transactions 
executing in the same view, then SG[L] has an edge from tj to tk. 

PROOF. tj reads x and tk writes x in the same view u. By the quorum relation 
q,[x, u] + q,[x, u] > n[x, u], there must be a copy x,% that tj accesses and tk writes. 
There are two cases to consider. 

(1) Suppose that tj directly reads-x-from ti. Since ti +X tk, then by the definition 
of +x, tk writes x, with a greater version number than the one ti assigns to 
the copies of x. By Lemma 2, the version number of a copy never decreases. 
Since t, directly reads the value of x written by ti and not tk, then it must be 
that tj accesses x, before tk writes it. Hence, by definition, SG[L] has an edge 
from tj to tk. 
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(2) Suppose that tj indirectly reads-x-from t;. Then there must be an update 
transaction t, such that t, directly reads-x-from t, and t,, reads-x-from ti 
(directly or indirectly). Since ti 3, tk, then, by Lemma 5, t, dX tk. Since 
tj directly reads-x-from t,, then, by Case (l), SG[L] has an edge from tj 

to tk. q 

Lemmas 1, 4, and 6 show that we can extend SG[L] into l-SG[L] by adding 
only the following edges: 

(1) If ti +X tj, and t; and tj are user transactions executing in different views, 
then add an edge from ti to tj. These are write edges. 

(2) If t, reads-x-from ti, t; =+X th, and tj and tk are user transactions executing in 
different views, then add an edge from tj to tk. These are reads-before edges. 

So SG[L] is extended into l-SG[L] by adding write edges and reads-before edges 
between user transactions executing in different views. 

Informally, the edges of SG[L] capture a serialization order between any two 
user transactions that issue physically conflicting operations. However, with our 
threshold and quorum assignments, a read x and a write x executing in different 
views do not necessarily physically conflict. The same holds for two write x 
operations. Thus, we extend SG[L] into l-SG[L], a graph that orders all the user 
transactions that execute logically conflicting operations, by adding write and 
reads-before edges between user transactions executing in different views. 

In the next section we prove that transactions executing in different views are 
serialized according to the view-ids of those views; that is, if u-id[t] < u-id[t’], 
then t is serialized before t’ in the global serialization order. 

4.2.2 Acyclicity of l-SG[L]. Since the log L is CP-serializable, SG[L] is acyclic. 
In this section we show that its extension l-SG[L] is also acyclic. We first prove 
that if SG[L] has an edge from transaction ti to transaction tj, then u-id[t;] I 
u-id[tj]. We then extend this result to the edges of l-SG[L]. 

LEMMA 7. If SG[L] has an edge from t; to tj, then u-id[tJ I u-id[tj]. 

PROOF. The edges of SG[L] are between transactions that execute physically 
conflicting operations. Let op;[~,] and opj[xs] be the two physically conflicting 
operations executed by ti and tja Since SG[L] has an edge from ti to tj, then 
opi[x,] <L opj[x,q]. Denote by ui the view of s when oni[x,] is executed, and by 
ui-id the view-id of vi. There are two cases to consider depending on whether 
ti is a user or update transaction: 

(1) ti is a user transaction. Therefore, when opi[x,] is executed, s must have 
a view ui = u[ti] with u;-id = u-id[t,]. When onj[x,] is later executed, 
s must have a view Uj with view-id uj-id such that uj-id 5 u-id[&]. Since 
opl[x,] <L opj[x,], Ui is installed at s before uj. But a site installs views with 
increasing view-ids; therefore, u;-id I uj-id. Hence, u-id[t;] zz u-id[tj]. 

(2) ti is an update transaction. From Figure 4, it is clear that when opi[X,] is 
executed, s must have a view ui with ui-id % u-id[t;]. If vi-id = u-id[&], 
then the proof of Case (1) can be applied to show that u-id[t;] 5 u-id[tj]. 
If ui-id < u-id [&I, then, immediately after the execution of oni[x,], s executes 
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inherit-uiew(u[&], u-id[ti]). Thus, s installs a view u! with view-id u(-id 2 
v-id[tJ. Since op;[x,] +, op, [x,~], tj is either the update transaction triggered 
by the installation of u,’ by s, or a user transaction or an update transaction 
that operates on s after the installation of ul. In the first case, u[t,] = ul and 
u-id[t,] = u:-id L u-id[t,]. Proof of the second case is similar to the proof 
of Case (1). When opj[xs] is executed, s must have a view u, with view-id 
vi-id I u-id[t,] and uj-id zz u/-id. Combining inequalities results in 
u-id[ti] I ul-id 5 vi-id I u-id[tj]. 0 

We now extend the previous lemma to edges in l-SG[L]. 

LEMMA 8. If l-SG[L] has an edge from ti to tj then u-id[ti] 5 u-id[tj]. 

PROOF. If the edge (ti, t,) is in SG[L], Lemma 7 implies that u-id[ti] I 
v-id[t,]. If the edge (tiy tj) is not in SG[L], then it is either a write edge or a 
reads-before edge between user transactions that execute in different views. If 
(ti, tj) is a write edge, then by definition t; ax tj. Thus, the version number 
assigned by t,, (u-id[ti], h;), is less than the one assigned by tj, (u-id[t,], hj), 
and therefore u-id[t;] 5 u-id[t;]. 

Hence, we only have to consider the case where (t;, tj) is a reads-before edge 
between two user transactions. In this case, there must be a transaction th such 
that ti reads-x-from t,, and th aX tj. There are two possible cases: 

(1) t; and t,, execute in the same view; that is, u-id[tj] = u-id[th]. Since th ax tj, 
then u-id[th] I u-id[t;]. Therefore, u-id[t;] 5 v-id[tj]. 

(2) ti and t,, execute in different views. Thus, ti indirectly reads-x-from t,,; that 
is, there must be an update transaction t, such that ti directly reads-x-from 
t, and t, reads-x-from th. Since user transaction t; directly reads-x-from t,, 
we have u-id [tU] = u-id [t;]. Since update transaction t, reads-x-from t,, and 
th +X t,, then by Lemma 5, t, ax t,. Thus, u-id[t,] 5 u.-id[tj] and u-id[ti] 5 
u-id[tj]. El 

We can now show that l-SG[L] is acyclic, and therefore L is one-copy 
serializable. 

THEOREM 1. l-SG[L] is acyclic. 

PROOF. For contradiction, suppose that l-SG[L] has a cycle. From Lemma 8, 
it is clear that for any two transactions ti and tj in this cycle, v-id [t;] = 
u-id[tj], and hence u[ti] = U[tj]. That is, all transactions in this cycle execute 
in the same view. Since SG[L] is acyclic, the cycle in l-SG[L] has at least 
one edge that is not in SG[L]. Thus, it has at least one reads-before or write 
edge between two transactions executing in different views, a contradiction. Hence, 
l-SG[L] is acyclic. 0 

5. OPTIMIZATIONS 

The basic protocol, presented in Section 4, is sufficient to ensure one-copy 
serializability. However, its implementation can incorporate several optimiza- 
tions to increase the protocol’s efficiency. In this section we describe two types 
of optimizations: those that increase data availability and those that reduce the 
costs of update transactions. 

ACM Transactions on Database Systems, Vol. 14, No. 2, June 1989. 



280 - A. El Abbadi and S. Toueg 

5.1 Increasing Data Availability 

In the basic protocol, the availability of an object x is limited by the fact that a 
user transaction executing in a view u is only allowed to touch (access, read, or 
write) copies that reside on sites with the same view v. Such a transaction is 
aborted if it cannot touch a quorum of copies residing on sites with this view. In 
this section we propose two approaches to relax this restriction. These optimi- 
zations are easy to integrate with the basic protocol. 

51.1 Relaxing the Read and Write Rules. With the basic protocol, a user 
transaction t executing in some view can only access and write copies residing 
on sites with the same view. To increase data availability, we first relax this rule 
for write operations, while maintaining the restriction on read operations. We 
then discuss relaxing the restriction on read operations. 

Relaxed Write Rule. A user transaction t executing in view v writes an object 
x by writing qU,[x, v] copies of x residing on sites in u and with a view whose view- 
id is less than or equal to v-id[t]. Once a copy x, is written by t, it rejects all 
operations issued by user transactions executing in views with view-ids less than 
v-id[t]. Furthermore, later views installed at site s must have a view-id greater 
than or equal to u-id[t]. 

A simple way to enforce this rule is to require a site with view u that processes 
a write operation of transaction t, where v # u[t], to immediately execute 
install-view(u[t], u-id[t]). Note that a read operation of object x executed by t 

must still access qr[x, u] copies residing on sites in u, with view u. The Relaxed 
Write rule still ensures one-copy serializability. The proof of correctness follows 
the one in Section 4, with some minor modifications. In particular, the proofs of 
Lemmas 1-4 do not change. The proof of Lemma 5 needs a slight modification 
that we leave to the reader. The proof of Lemma 6 does not change, and the 
proof of Lemma 7 is slightly modified as follows. 

LEMMA 7’. ZfSG[L] has an edge from ti to t,, then v-id[ti] 5 u-id[tj]. 

PROOF. The edges of SG[L] are between transactions that execute physically 
conflicting operations. Let opi[x,] and opj[x,] be the two physically conflicting 
operations executed by t; and tjo Denote by v; the view of s when opi[x,] is 
executed, and by vi-id the view-id of ui (vj and vi-id are similarly defined). Since 
SG[L] has an edge from ti to tj, then opi[x,] -+. opj[x,]+ But a site installs views 
with increasing view-ids; therefore, ~-id 5 vi-id. Irrespective of whether ti is a 
user or update transaction, our new rule ensures that when op;[x,] (opj[x,]) is 
executed, u;-id I v-id[t;] (uj-id 5 v-id[t,]). If u;-id = u-id[t;], then u-id[ti] I 
v-id[tj]. 

NOW suppose that ui-id < v-id [tile In this case, either opi[x,] is a write operation 
by a user transaction or op;[x,] is issued by an update transaction. In both cases, 
after the execution of opi[x,], no operation is executed until s installs a view u’ 
with view-id u’-id such that v-id[ti] % v’-id. Since tj is either the update 
transaction triggered by the installation of u’ by s, or a user transaction or an 
update transaction that operates on s after the installation of v’, then u’-id % 
vi-id. Hence, v-id[t;] 5 v-id[tj]. Cl 
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Finally the proofs of Lemma 8 and Theorem 1 do not change. 
Relaxing the read rule introduces a trade-off between availability and cost. To 

increase data availability, we could allow a user transaction executing in view v 
to read an object x by accessing copies that reside on sites with views other than 
v, even if this object is not read accessible in v. However, each read x must now 
access A,[x] copies of x, which possibly reside on sites with views other than v 
(instead of q,[x, v] copies that reside on sites in v with view v). 

Alternative Read Rule. A user transaction t reads an object x by accessing A,[x] 
copies of x residing on sites with a view whose view-id is less than or equal to 
v-id[t]. Once a copy X, is accessed by t, it rejects all write operations issued by 
user transactions executing in views with view-ids less than v-id[t]. Furthermore, 
later views installed at site s must have a view-id greater than or equal to v-id[t]. 

Either or both of the Relaxed Write or the Alternative Read rules may be used 
in a given system since they are independent of each other. With the Alternative 
Read rule, the proofs of Lemmas l-6 essentially remain the same. A minor 
modification is needed to the last paragraph of the proof of Lemma 7 ’ above. If 
op;[x,] is an access operation, then opj[x,] must be a write operation (since opi[x,] 
and op,[x,] are conflicting operations). By our Alternative Read rule, opj[Xs] 
cannot be executed until s installs view v’, where v-id[t;] I v’-id; hence, 
v-id[.$] 5 V-iO![tj]. 

The proof of Lemma 8 has to be modified as follows: 

LEMMA 8’. If l-SG[L] has an edge from ti to tj then v-id[ti] 5 v-id[tj]. 

PROOF. The original proof holds except in the case where (t,, t;) is a reads- 
before edge and ti uses the Alternative Read rule to read a value written by some 
th, where t,, +X tj . There are two cases to consider: 

(1) Suppose that ti directly reads-x-from t ,,. User transaction ti uses the Alter- 
native Read rule and accesses A,[x] copies of X, and user transaction tj writes 
qW[x, v] 2 A,,[x] copies of x (for some v). Since A,[x] + A,[x] > n[x] (the total 
number of copies of x), there must be at least one common copy X, that ti 

accesses and tj writes. Since th +X tj then, by the definition of J~, the copies 
of x that t,, writes have a smaller version number than the copies written by 
tj. By Lemma 2, the version number of a copy never decreases. Since ti 

directly reads-x-from th and not from tj , it must be that ti accesses x, before 
tj writes it. But once ti accesses x, using the Alternative Read rule, site s 
rejects all write operations issued by user transactions executing in views 
with view-ids less than v-id[ti]. Hence, v-id[t;] s v-id[tj]. 

(2) Suppose that ti indirectly reads-x-from th. Then there must be an update 
transaction t, such that ti directly reads-x-from t, and t, reads-x-from th 
(directly or indirectly). Since th J, t,, then, by Lemma 5, t, 4, t, . Since ti 

directly reads-x-from t, using the Alternative Read rule, and t, 4x t,, then, 
by Case (l), v-id[t,] 5 v-id[t,]. 0 

5.1.2 Using Multiversions. Multiversion databases are widely known to in- 
crease data availability [ 18, 221. We can integrate multiversions into our protocol 
by simply associating with each copy a sequence of versions, each corresponding 
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to a different view (and view-id). The underlying concurrency control protocol 
that we now assume ensures CP-serializability at the level of the versions only 
(not at the level of copies or objects). The versions of the copy are ordered by 
their associated view-ids. Furthermore, each site maintains a sequence of views 
installed at that site, with their view-ids and corresponding quorums. For a user 
transaction t to execute, it first chooses a view U, and we say t executes in v (note 
that v does not have to be the most recent view installed at the initiating site). 
The latest view installed at site s is considered to be the view of s. 

With multiversions, an update transaction t, installing a new view v[tU], with 
view-id v-id[t,] is executed as follows: 

Update Transaction Rule. For each object x that is read accessible in v[tU]: 

(1) t, accesses A,[x] copies of X; each accessed site rejects any write x by user 
transactions executing in a view with a view-id less than v-id[t,]; 

(2) for each accessed copy, t, accesses the version with the highest view-id less 
than or equal to v-id[t,]; 

(3) t, determines vnmux, the maximum version number of the accessed versions, 
and reads the accessed version associated with vnmax; 

(4) t, writes the value read into the v-id [t,]th version of the local copy of X. The 
associated version number is (v-id[t,], I), where 1~ 0 is the smallest integer 
so that (v-id [tU], Z) is greater than or equal to vnmux. 

Note that, unlike the single version case, some sites accessed by t, may have a 
view whose view-id is greater than v-id[t,]. 

With multiversions, a user transaction t executing in view v observes the 
following write rule. 

Multiversion Write Rule. If object x is write accessible in view v, 

(1) t accesses qw[x, v] copies of x residing on sites in v; 
(2) for each such copy, t accesses the version with the highest view-id less than 

or equal to v-id[t]; 
(3) t determines vnmax, the maximum version number of the accessed versions; 
(4) t writes the v-id[t]th version of all the selected copies and updates their 

version numbers to (v-id [t], I), where 1~ 1 is the smallest integer such that 
(v-id [t], I) is greater than vnmux. 

A user transaction t executing in a view v must observe one of the following read 
rules, which represent another trade-off between cost and availability. 

Multiversion Read Rule 1. If object x is read accessible in view v, 

(1) t accesses qr[x, u] copies of x residing on sites in v and with a view whose 
view-id is greater than or equal to v-id[t]; 

(2) for each such copy, t accesses the v-id[t]th version; 
(3) t determines unmax, the maximum version number of the accessed versions, 

and reads the accessed version associated with vnmax. 
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With the second read rule, a user transaction t executing in view v can read x 
even if x is not read accessible in v. 

Multiversion Read Rule 2. t reads x by executing the first three steps of an 
update transaction. 

The Multiversion Read rules represent a trade-off between availability and 
cost. Using Multiversion Read rule 1, a transaction t executing in v can read x 
by accessing g,[x, v] copies of x that reside on sites that have installed view v (or 
a view with a higher view-id). In contrast, if t reads x using Multiversion Read 
rule 2, then it can access copies of x residing on any sites regardless of their 
views; however, t must access A,[x] copies (note that A,[x] 2 q,[x, v]). 

Multiversions increase data availability. To illustrate this increase in availa- 
bility (with respect to single version databases), we reconsider the example 
discussed in Section 3. Recall that object x has copies residing on sites s,, s2, 
and s3, and object y has copies residing on sites s2, s3, and sq. Furthermore, 
A,[x] = A,[x] = A,[y] = A,,[y] = 2, and initially in view v. = {sl, s2, s3, sI], 
q,[x, ~01 = G[Y, u01 = 1 and q&, ~01 = GAY, v01 = 3. 

Recall that in the single-version case, after the network partitions into P1 = 
(sl, sz), and Pz = (sg, s4), the sites in P1 have two options: (1) they either keep 
the old view v. = (sl, sz, s3, s4}, thus retaining the ability to read x and y, but 
losing the ability to write x, or (2) they install a new view vi = {si, s2} (with read 
quorum qr[x, vi] = 1, and qu,[n, vi] = 2), thus retaining the ability to read and 
write x, but losing the ability to read y. In contrast, with multiversions, the sites 
in PI can retain both the ability to execute transactions that read and write x, as 
well as transactions that read y. They install the new view v1 = (sl, s2), and 
execute transactions as follows. A read x or write x transaction issued in partition 
PI can be executed in the new view v1 (e.g., write x writes the v,-idth version of 
qW[x, v,] copies of x in v,). A read y transaction issued in partition PI can be 
executed in the old view v. (by reading the vo-idth version of q,.[y, vo] copies of 
y in vo). Note that with multiversions, in PI, a transaction can read and write X, 
by executing in new view vl, while another transaction can read x and y, by 
executing in view vo. At the same time, symmetrically, P2 can execute transactions 
that read and write y, and others that read x and y. In a single version database, 
no accessibility thresholds and quorum assignments allow both PI and P2 to 
execute these transactions. 

Multiversions increase data availability, but storing all the versions of each 
copy can be expensive. To reduce costs, the database may store only the most 
recent versions of each copy (more than one version but not necessarily all 
previous versions). In this case, some user transactions may need to access 
versions that were not saved, and thus be aborted. This intermediate scheme 
achieves lower availability than multiversions, at a lower cost. Wright studied 
the degree of availability provided by the class conflict protocol [24, 251 when 
two or more versions of a copy are stored, and showed an increase in data 
availability over the single-version case, without incurring the expensive overhead 
of storing all versions of a multiversion database. In ISIS [19], each copy keeps 
the two most recent versions for recovery purposes; by using our protocol, an 
increase in data availability can be achieved when these two versions are used. 
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5.2 Reducing the Cost of Update Transactions 

Various optimizations can be used to reduce the costs associated with update 
transactions. In this section, we present three such optimizations. We first 
eliminate the redundancy of read operations executed by update transactions 
that install the same view at different sites. Second, we reduce the granularity of 
update transactions by associating views with copies instead of with sites. We 
also show that this optimization results in an increase in data availability. Finally, 
we discuss methods for reducing the communication costs of access operations 
by storing copies in the form of logs of operations. 

5.2.1 Eliminating Redundant Update Transactions. Our first optimization 
eliminates the redundancy of read operations executed by update transactions 
installing the same view at different sites. Consider a set of sites installing the 
same new view. One site initiates the new view, and several others inherit it. For 
each read accessible object X, we previously required that all sites installing this 
new view to independently access A,[x] copies of x to update their local copy of 
x. This is clearly redundant and expensive: A single site could execute the update 
transaction and access A,[x] copies to update its local copy of x, and then 
propagate this updated copy to all other sites that want to install the same view. 
If the new view to be installed contains 1 copies of x, this optimization reduces 
by a factor of 1 the ‘<read cost” of updating all the copies of x during installation 
of this view. 

5.2.2 Reducing the Granularity of Update Transactions. The second optimi- 
zation reduces the granularity of update transactions. Thus far, we associated a 
view with each site. Therefore, to change the view of a site s, the update 
transaction initiated at s must update all the local copies of read accessible 
objects in the new view. As Herlihy pointed out, reducing the granularity of 
update transactions may have several advantages, and the quorum consensus 
protocol that he describes [18] performs updates on a per object basis, rather 
than per site. We can achieve the same goal simply by associating a view with 
each copy of an object instead of with each site. (This is equivalent to considering 
each copy as residing on a virtual site of its own.) Now each copy x, has its 
own view, consisting of a set of copies rather than a set of sites. To change the 
view of a copy x,, the update transaction initiated at s must only update the 
value of x,. 

In addition to reducing the granularity of update transactions, assigning views 
to copies instead of sites also increases availability. This is illustrated by the 
example we considered in Section 3. Recall that x has three copies residing on 
sites s,, s2, and sg, and y has three copies residing on s2, s3, and s4. Furthermore, 
A,[x] = A,[x] = A,[y] = A,[y] = 2. Initially, all copies of x and y have the same 
initial view u0 = ixs,, xs2, xq3, Y+, Ye,, Y.~,, 1. After the network parti- 
tions into PI = {s, , s2 J, and P2 = (sg, s4}, instead of requiring all copies in PI to 
either keep their old view u. (thus retaining the ability to read x and y, but losing 
the ability to write x), or to form a new view u1 = (x,, , xsa, ys,) containing all 
copies residing on sites in P, (thus retaining the ability to read and write x, but 
losing the ability to ready), reducing the granularity gives us a third alternative. 
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Copy ys, may keep its old view uo, while copies x,, and xsz install the new view u, . 
Thus, a read x or write x transaction issued in partition PI can be executed in 
the new view u1 (e.g., write x writes qW[x, ul] copies of x). A ready transaction is- 
sued in partition P, can be executed in the old view uo, by reading qr[y, uo] copies 
of y. Hence, if we associate views with copies, instead of with sites, we allow 
read x, write x, and ready transactions to execute in PI. However, we note that a 
transaction that reads both x and y would not be able to execute in PI, since this 
transaction must choose to execute in u. or in u1 (but cannot execute in both). 

5.2.3 Reducing Communication Costs of Update Transactions. The third op- 
timization may be applied to reduce the communication costs of access operations. 
This reduces the cost of those update transactions that access many copies. A 
copy can either be stored explicitly as its complete current state, or as a log of 
operations executed on that copy [ 161. If objects are “large,” that is, the complete 
description of their state is large, the communication costs incurred in transfer- 
ring the whole state of a copy can be expensive. To reduce this communication 
cost, a sending site can send a log of all the operations on that object that the 
receiving site has missed. Suppose that a site s installs a view with view-id u-id, 
and must update copy x,, last written by transaction t. Then site s needs to 
receive only the sequence of write x operations executed by transactions in views 
with view-ids greater than u-id[t], but less than u-id. 

6. COMPARISON WITH OTHER WORK 

The first protocol to use the concept of “views” to decrease the costs of read 
operations was presented in [12]. In that protocol, whenever the communication 
topology changes, a two-phase protocol is first executed to ensure the consistency 
of views. Then, an update operation is initiated that updates the different copies 
to ensure the consistency of data. The cost of a separate view management 
protocol is a disadvantage of this method. We observe that while the update 
protocol is necessary to ensure consistency of data, the two-phase view manage- 
ment protocol is redundant. The approach taken in this paper eliminates the 
need for a separate view management protocol. 

In [ll] and [12], the write accessibility thresholds must satisfy the additional 
requirement that 2A,[x] > n[x] (in addition to threshold requirement (1)). With 
this extra requirement, when the network partitions at most one partition can 
write each object X. Furthermore, in [12], the read and write quorums are fixed 
to q,[x, u] = 1 and qW[x, u] = n[x, u] for all views u. Our new protocol allows more 
flexibility in the choice of quorums: each view may have different quorum 
assignments for the same object X, as long as they satisfy quorum relations (a), 
(3), (4), and (5). This, in addition to the greater flexibility in choosing the 
accessibility thresholds A,[x] andA,[x], and the optimizations outlined in Section 
5, provides the database designer with a larger degree of freedom in deciding the 
cost of operations, and the degree of data availability. 

The protocol presented in this paper also provides a greater degree of flexibility 
than the protocols proposed in [9] and [ 141. With each object X, Gifford’s protocol 
associates static read and write quorums Qr[z] and Qu1[3c] such that Qr[x] + 
Qw[x] > n[x] and 2Q,,[x] > n[x]. This is a special case of our protocol where all 
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the sites have the same view v that includes all the sites of the database, and 
where q,[x, v] = A,[x] = QJx] and qw[x, v] = A,[x] = Qw[x]. 

Eager and Sevick [9] introduced the Missing Writes Protocol, which is an 
extension of the Gifford protocol. Initially, transactions (called normal mode 
transactions) use a read-one, write-all protocol. When a transaction cannot 
execute due to a failure, it switches to failure mode, and for each object it uses 
read and write quorums QJx] and Qw[x], as in Gifford’s protocol. To ensure 
serializability, all failure mode transactions leave a missing write token at all 
copies they access or write. When a normal mode transaction encounters a 
missing write token, it switches to failure mode. This protocol is also a special 
case of our protocol with the thresholds set to A,[x] = Qr[x] and A,[x] = Qw[x]. 
Initially, all transactions execute in the normal view v, that includes all the sites 
of the database and has quorums q,[x, v,] = 1 and qlLI[x, v,] = n[x]. When a site 
detects a failure, it installs a failure view vf that include all the sites that it can 
communicate with, and with quorums q,.[x, vf] = Q,.[x] and qw[x, vf] = Qw[x]. As 
in [ 111 and [12], when the network partitions, the protocols in [9] and [14] allow 
at most one partition to write each object x. 

The protocol presented in this paper may also reduce the number of physical 
operations executed, compared to the protocols in [9] and [14]. For example, 
consider an object x with n[x] copies. Let Q,.[x] and Qw[x] be the quorums 
associated with x in any of the protocols in [9] and [ 141. To achieve the same 
level of availability as Gifford’s protocol does, we set the thresholds and quorums 
of our protocol to A,[x] = Q,[x], A,[x] = Qw[x], q,.[x, v] = A,[x], and q,[x, v] = 
n[x, v] + 1 - q,.[x, v], for all v. With these threshold and quorum assignments, 
any read or write operation on x that is executable using Gifford’s protocol is 
also executable with our protocol. Let P be a partition where all sites have view 
v = P. To write an object x in P, the protocol in [14] requires writing QUi[x] = 
n[x] + 1 - Q,.[x] copies, compared to writing qw[x, v] copies with our protocol. 
Note that qw[x, v] I Qw[x], since n[x, v] 5 n[x] and q,[x, v] = Q,.[x]. 

To achieve the same level of availability as the Missing Writes protocol does, 
we set the thresholds and the write quorum as above. To set the read quorum, 
we consider the views v, and vf that correspond to the normal and failure modes 
of the Missing Writes protocol. We set the read quorum of the normal view to 
q,[x, v,] = 1. For a failure view vf, we set q,[x, vf] = A,.[x]. This special case of 
our protocol will mimic the behavior of the Missing Writes protocol by switching 
to some failure view whenever the Missing Writes protocol switches to failure 
mode. In the normal mode, the cost of a write operation is the same for both 
protocols (both protocols write all copies of an object). In the failure mode, write 
operations may be less expensive with our protocol: It is easy to see that qw[x, vf] 
I Qw[x] since n[x, ur] 5 n[x] (vf is a subset of all sites). 

As in [ 111 and [ 121, our protocol never requires a read operation to physically 
access more than one copy, not even if the database partitions. This is in contrast 
to the protocols in [9] and [14], where each read is required to access more than 
one copy, in order to execute write operations in the presence of failures. A write 
operation on an object x cannot require the physical writing of more than n[x] - 
f copies, if it is supposed to execute despite the inaccessibility of f copies. For 
this case, the protocol in [14] requires that read operations always physically 
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access at least f + 1 copies. This is improved upon in [9] where these expensive 
read operations are necessary only when failures occur. 

To illustrate the possible choices of thresholds and quorums with our protocol, 
consider an object x with n[~] = 8. Let P be a partition where all sites have view 
u = P, and n[x, u] = 6. By setting the accessibility thresholds to A,[x] = 5 and 
A,[x] = 4 (thus satisfying threshold relation (l)), x is read and write accessible 
in P. The database designer has the following three possible choices for the read 
and write quorums of x in partition P:’ 

Quorums Choice I Choice II Choice III 

qsx, VI 1 2 3 
q&, VI 6 5 4 I 

All three choices satisfy the quorum relations (2), (3), (4), and (5). With choices 
I, II, and III a read operation on x physically accesses 1,2, or 3 copies, respectively. 

With the protocols in [9] and [14], to allow the writing of x in P one can set 
either Qw[x] = 6, in which case a read x has to access 3 copies (and a write x 
writes 6 copies), or Qw[x] = 5, in which case a read x has to access 4 copies (and 
a write x writes 5 copies). Note that with these protocols writing only four copies 
of x (as in our Choice III) is not allowed since four copies are not a majority of 
copies of X. With the protocol in [12], only Choice I is allowed. With the one in 
[ 111, only Choices I and II are allowed. 

Note that whenever views change, our approach requires the execution of 
update transactions. With Gifford’s protocol there are no update transactions, 
but, as illustrated above, user transactions can be more expensive than with our 
method. We assume that the network topology does not change often, and hence 
update transactions are rare with respect to user transactions. This justifies a 
higher cost for update transactions, and a lower cost for user transactions. 

For multiversion databases, Herlihy [ 181 recently presented a generalization 
of Gifford’s quorum protocol called the quorum consensus protocol. Each copy of 
an object has several versions ordered by levels. Each object has a quorum 
assignment table with a sequence of quorum assignments. Each quorum assign- 
ment corresponds to a level. For a transaction to execute, it chooses a level, and 
uses the quorum assignments associated with that level to execute operations. 
The quorum assignments are restricted to satisfy the quorum intersection inuar- 
iant: “Each write quorum associated with level 1 must intersect with each read 
quorum associated with a level greater than or equal to 1.” 

One of the main advantages of the quorum consensus protocol is that it adjusts 
“lazily” to changes in the network on a per object basis. As we saw in Sections 
3.3 and 5.2, our protocol can achieve the same goals by using “on-demand” view 
tracking; that is, views are changed only when some “high-priority” transactions 
can no longer execute in the previous view, and associating views with copies 

’ This choice can be made dynamically by the initiator of the view u according to the current state 
and requirements of the database. The quorums chosen are then imposed on the other sites that 
inherit this view (by passing the chosen quorums via the update transaction executed by the initiator). 
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thus allows update transactions to be executed on a per object basis, only when 
necessary. 

There are trade-offs between our protocol and the quorum consensus protocol 
in terms of costs. The quorum consensus protocol is designed for multiversion 
databases. It must maintain a quorum assignment table and ensure that this 
table always satisfies the quorum intersection invariant. This overhead allows 
transactions to run at increasingly higher levels (by a process called inflation) 
without incurring update costs. However, to satisfy the quorum intersection 
invariant, read quorums must monotonically increase with respect to level 
number, thus making read operations more expensive at higher levels. Hence, 
objects eventually need to reduce the read quorums assigned to their higher 
levels. For this purpose, objects execute a process called deflation, which is similar 
to our update transaction. One advantage of our protocol is that there is no need 
to maintain a quorum assignment table. Furthermore, when a site decides to 
install a new view (to execute transactions at a “higher level” in Herlihy’s 
terminology [B]), it can freely choose the read and write quorums associated 
with the new view, without being restricted by an assignment that must satisfy 
the quorum intersection invariant for a given quorum assignment table. 

7. CONCLUSION 

In this paper we presented a new replica control protocol for reading and writing 
replicated data in spite of site and communication failures. The protocol uses 
views to ensure one-copy serializability as follows. First the protocol ensures that 
all transactions executing in each view are one-copy serializable (this is achieved 
by using intersecting read and write quorums). Then it ensures that all transac- 
tions executing in one view are serialized after all transactions executing in all 
views with lower view-ids; that is, transactions executing in different views are 
serialized according to view-ids (this is achieved by using the proper accessibility 
thresholds, and update transactions). In [lo], we show that this method for 
serializing transactions in replicated databases is an instance of a class of 
protocols that are defined by a general paradigm. We show that [9], [14], and 
[18] are also instances of the paradigm, and prove that any instance of the 
paradigm ensures one-copy serializability. 

The choice of accessibility thresholds, quorums, and views gives a large degree 
of flexibility in determining the availability of objects and the costs of executing 
read and write operations. First, one can choose the read and write accessibility 
thresholds for each object. These thresholds determine the read and write 
availability of each object in all views (depending on the number of copies in 
those views). To increase the read availability of an object, the read accessibi1it.y 
threshold is decreased, and vice versa. Second, for each new view installed during 
execution, one can choose a read and a write quorum for each object (that is read 
or write accessible in the new view). These quorums determine the costs of 
executing read and write operations for each object in each new view. Finally, 
the database designer may choose among several policies for deciding when to 
change views (following changes in the network topology), and which sites to 
include in the new views. These view-changing policies also determine the 
availability of different objects, and the cost of executing operations. 
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