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Abstract

This paper describes the application of a pedagogical model called “learning as a
research activity” [D. Gil-Pérez and J. Carrascosa-Alis, Science Education 78 (1994)
301–315] to teach a two-semester course on compiler design for Computer Engineering
students. In the new model, the classical pattern of classroom activity based mainly on
one-way knowledge transmission/reception of pre-elaborated concepts is replaced by an
active working environment that resembles that of a group of novel researchers under
the supervision of an expert. The new model, rooted in the now commonly-accepted
constructivist postulates, strives for meaningful acquisition of fundamental concepts
through problem solving —in close parallelism to their construction through history.
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1 Introduction

This paper describes the implementation of an adapted version of the learning as a research

activity model ([1, 2, 3, 4, 5]) to the subject of compiler design at the University of Alacant.

The need for trying a new teaching model arose two years ago when we confirmed our

realization that the combination of classical lecturing of theory and solved problems in the

classroom and open laboratory assignments was insufficient for most students to learn the

basic skills needed to successfully tackle new problems in the field. The learning as a research

activity model, which has been successfully applied to the teaching of science in secondary

school, was adopted, adapted, and applied to our subject. We have found the new model to

be more adequate, more successful, and more consistent with an engineering education style.

The classical model used in most universities in Spain to teach computer engineering

subjects such as compiler design could be simplified (in its extreme form) as follows. In

the classroom, the teacher tries his or her best to explain carefully the theoretical and

conceptual aspects of the subject, usually assuming —but seldom carefully checking— that

the students are familiar with a set of basic concepts on which the new material is based.

After that, some more lecturing time is devoted to showing, with as much detail as possible,

the teacher’s or a book’s solution to a handful of selected (intendedly representative) problems

or exercises. Laboratory work may be organized either around an open or closed structure,

but usually consists either in building one or more programs that implement the algorithms

and techniques taught in the classroom to solve a set of selected problems or in writing

applications according to some specified requirements. In addition, the teacher is available

during some scheduled office hours to assist students with their personal work.

Of course, significant deviations from this simplified model are observed: a few students

may interact with the teacher during an explanation, usually to ask him to repeat something,

or explain some passage better, or to point out a minor blunder; teachers may ask questions

to the students to try to make sure that they are following the explanation; the teacher’s

solution to a given problem may only be explained after students have had some time to

think about it, etc.

The average performance of students taught according to this model is usually low when

they are asked to solve new, open problems —a situation which will be common in a computer
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engineer’s professional practice— during, for example, written tests. When the proposed

problems depart from those whose solution was explained in the classroom, a large fraction

of students fail, either because the concepts involved have not been properly understood or

applied or because they are unable to design a strategy to deal with a previously unseen

situation1. In some cases, passing rates (grades) are higher than would be reasonable to

expect in view of these facts due to a lowering of standards during grading, especially when

teachers acknowledge that students have been working hard anyway.

Our early teaching practice was not very different from this cartoon and its results were

quite similar: we decided to give pass degrees to students who had clearly failed in spite of

having worked really hard. Since we had been appointed to educate future engineers who

should be successful when facing new problems in their computing profession, we decided

to reexamine our teaching practice. The learning as a research activity model was initially

considered mainly because of its emphasis in problem solving.

The next section outlines the main features of the learning as a research activity model.

Section 3 describes the particular situation in which compiler design is taught in our Uni-

versity. The application of the new model to our subject is explained in section 4. Future

developments and challenges are discussed in section 5. A course outline and a sample of

classroom material (translated from Spanish) are given in appendices A and B.

2 Learning as a research activity

This section will present a brief summary of the learning as a research activity model. The

reader interested in more details is referred to [1, 2, 3, 4, 5] Readers who are familiar with

Spanish should also check the book by Gil et al. [6].

2.1 Constructivism in science education

The learning as a research activity model is based on a constructivist approach, which is

widely considered to be a very important contribution to science education (see [7, 2]). Here

is what constructivists say about the learning process:

1This happens partly because solving problems is not an algorithmic process; teachers hide the trouble
they have had when solving problems and teach their solutions in the classroom instead of teaching how
they faced the task of solving the problems.
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• Learning is the construction of understanding. Understanding goes beyond mere re-

trieval and is based on the knowledge of relationships between concepts.

• If information items appear in isolation, they are easy to be forgotten or to become

inaccessible.

• All learning depends on prior knowledge. New concepts are learned in relationship to

previously learned concepts.

A pedagogical model motivated by constructivism has to take this description of the learning

process into account when designing classroom activity. As a consequence, a constructivist

approach to teaching relies on careful analysis and elicitation of concepts and ideas that may

exist prior to learning; anchoring new concepts in those preconceptions that may be useful;

challenging preconceptions that interfere with learning; and application of newly learned

concepts to new situations (this process is usually called conceptual change strategy). In

areas where misconceptions abound, conceptual change has to be used carefully to avoid

inhibiting student participation (“why say anything, we’re always wrong”).

2.2 A methodological change

The new model goes one step beyond constructivism: in addition to conceptual change, a

methodological change is proposed. This is based on the hypothesis that misconceptions

(analysed mainly in physics and chemistry in the work of Gil-Pérez and Carrascosa-Alis [2])

are due to a “methodology of superficiality”, or “common sense”, that pervades everyday

thinking and lies quite far from the ways of science (and technology, we should add). The

main focus of the new method is on “problem solving”. Science and technology have ad-

vanced by creating knowledge, inventing new concepts and revising old ones in response

to new problems; it is proposed that a similar methodology could be applied in the class-

room. Concepts and theories should appear only after the problems that motivated them

are clearly stated and assumed by students. Classroom activity should encourage creative,

divergent thinking and a rigorous process of theoretical and experimental hypothesis check-

ing —the very ingredients of scientific and technological advance— towards the construction

of consistent bodies of knowledge.
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2.3 A metaphor: students as novice researchers

The resulting teaching/learning model is structured around the metaphor that sees students

as novice researchers (instead of passive receivers of previously elaborated knowledge), who

perform their research and construct their knowledge of the subject under the supervision

of an expert researcher, the teacher2. Classroom activity is structured around cooperative

work in small groups that later interact and confront their findings with those of the scientific

community (represented by the teacher and the books). A course is driven by a carefully

designed sequence of open problematic situations that motivate the students both to attack

them and to construct the concepts and techniques of the discipline.

It may be argued that it is impossible that students construct the knowledge of a whole

discipline by themselves. But the model does not expect them to do so either. Indeed,

a novice researcher (e.g., a Ph.D. student) does not construct the whole field he or she is

working in by himself or herself, but the dynamics of his or her research group allow the

newcomer to successfully and rapidly “catch up” through work and communication with

other researchers in his group. Even if students do not completely solve a posed problem,

their attempt and their advances (the study of the problem, the hypothesis they have for-

mulated, the strategies they have outlined) prepare them to meaningfully learn the concepts

and theory involved in its solution, because they clearly know “where the problem was”.

The information provided by the teacher or by other groups becomes more relevant because

it refers to problems that students have previously studied and tried to solve.

2Abboud [8] notes (our italics):

In the traditional method, the teacher structures the knowledge [...] and presents it to the
students. The teacher is the actor and the students are the recipients. The approach here [in her
programming course] is more student–centered, in that the student is an active participant in the
learning process. The teacher provides guidance and a stimulating and safe environment [...].
Learning becomes [...] the mechanism for the creation of new knowledge [...]. The classroom
becomes a laboratory, where the student joins actively in the analysis, hypothesis formulation,
and verification processes. [...] In this view, the learning becomes experiencing this process,
rather than getting the end result.
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2.4 Classroom activity

The classroom is organized in small groups (of about four students) that work each one of

the programmed activities for a while. When the teacher decides that the groups are ready

(through monitoring of their work), a “discussion in common”, moderated by the teacher,

takes place. The exact moment for this interruption depends on the pace of the class. For

the reasons given above, it is not necessary to wait until all groups complete the activity —it

may even be almost impossible due to the nature of the problem—; instead, the interruption

occurs when the teacher thinks that the students are ready to understand the solution given

to the problem by the scientific or technical community. This discussion allows the teacher

to summarize, correct, and synthesize the students’ proposals, add new information, and

prepare them for the next activity.

2.5 The role of evaluation

Everyone agrees in that evaluation has a central role in any teaching model. On the other

hand, students usually consider it to be one of the most important issues, because the way

they will be graded greatly influences the way they will organize their work; students will

focus mainly on those issues that will be taken into account when grading. Therefore, any

pedagogical change is incomplete without a parallel change in grading practices.

The teacher’s expectations on a given group of students are also critical to their learning

process. If the teacher assumes that a certain percentage of the group is bound to fail, this

will affect the way he or she teaches in a way that some students will probably consider

themselves to be in that percentage: the result is a self-fulfilling prophecy. On the other

hand, a teacher that expects all students to succeed will transmit this encouragement through

his or her ways of teaching.

The learning as a research activity model assigns evaluation a radical role, well beyond

equating evaluation to a mere measurement of achievement. Evaluation

• is continuous to maximize its influence in the learning process throughout the course;

• anticipates obstacles and helps students to eventually overcome them;
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• gives students an opportunity to know their achievements and their needs, that is, acts

as a positive reinforcement toward improving their learning process;

• informs students about their degree of accomplishment in a set of well-defined objec-

tives;

• considers methodological issues (the “how”) in addition to the acquisition of concepts

(the “what”) —this should be central to any learning process structured around prob-

lem solving—;

• includes the classroom atmosphere, the teacher’s attitude, etc.

An important issue affecting evaluation is the pervasiveness of what Novak [7] calls posi-

tivism. In positivist teaching practice, the only source of evaluation is the teacher: a solution

or an idea is good or bad if the teacher says so, independently of the fact that it may or may

not advance in the solution of the proposed problem(s) in a consistent way. Students are

used to years of positivist teaching practice, and tend to show their work to the teacher and

still tend to ask him or her whether it is “right” or “wrong”, when exposed to a construc-

tivist learning environment for the first time. In the new model, students are encouraged

to develop an attitude towards self-evaluation. They learn to check their own solutions for

consistency and to devise techniques to perform these checks.

2.6 Syllabus design as a research activity

The design of the syllabus, conceived here as a sequence of activities carefully programmed

to enable the construction of knowledge on the part of students, becomes a research activity

itself. The program of activities has to be always open to reelaboration or even complete

restructuring; its current form is just the best try, based on hypothesis that are still to

be confirmed or rejected through careful classroom experimentation. The whole learning

environment is pervaded by a recurrent reference to research as a key activity: students are

expected to behave as novice researchers in the classroom, but teachers also become all-round

education researchers. This approach may motivate teachers to escape from the dull routine

of having to teach the same subject again and again and to look at teaching in a whole
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new light. The connection between research and teaching becomes especially important in

a university environment, where teachers are expected to perform in both areas.

3 Course and Audience

3.1 Students’ background and course organization

Compiler design is taught during the third year of the five-year Computer Engineering cur-

riculum of the Polytechnic School of the University of Alacant. The subject is organized

in two separately-credited one-semester subjects, Compilers I and Compilers II; the divi-

sion is mainly due to issues more related to University policy rather than to pedagogical

considerations. The subjects are also electives for students pursuing a three-year degree in

Computing.

The ACM/IEEE-CS Joint Curriculum Task Force Report [9, 10] defines an advanced

course on Programming Language Translation (sometimes called Compiler Design or Com-

piler Construction) which corresponds very closely with the compiler design subjects taught

at the University of Alacant3. The prerrequisites stated in the report are similar to those

established at the University of Alacant. The main difference is that the report proposes

as prerrequisites the basic knowledge units of Abstract Data Types (AL2), Recursive Al-

gorithms (AL3), Complexity Analysis (AL4) and The Software Development Process (SE2)

which are not considered prerrequisites for Compiler Design at the University of Alacant.

The fact that some of these subjects (AL2–4) are taught during the second year contributes

to overcome this drawback in our curriculum, but since subjects related to software engi-

neering are taught during the third and fourth years, our students know little about software

design and specification when they attend the compiler design course. Also, the lack of a

general subject on programming languages4 is an important shortcoming in our curriculum5.

3There is also a basic knowledge unit, Language Translation Systems (PL9), which has an introductory
purpose and hence is very limited in time.

4There is only a course on programming at a very introductory level which does not deal with programming
languages in general.

5Compilers I and Compilers II are the only mandatory subjects that deal with programming languages
and their processors (interpreters, compilers) in a general way, but not only in our University: an equivalent
situation occurs in most other universities in Spain. The whole situation places an enormous burden on the
subjects, which become more important to future engineers than its names would suggest in principle.
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Third-year students are supposed to have a solid background6 in the following subjects7.

• Discrete mathematics (AL2)

• Assembly Level Machine Organization (AR4)

• Languages, Grammars and Automata (PL7, PL8)

• Turing machines, decidability and recursive function theory (AL7)

Students meet weekly in two one-hour classroom sessions and in a single one-hour labo-

ratory session. Each of the semesters is assigned 15 weeks which usually become 13 due to

organizational problems. In course 1994–1995, 320 students enrolled initially, but roughly

220 followed the courses regularly. There were three classroom groups and ten laboratory

groups, with approximately 70 students per classroom group and 35 students per laboratory

group (there were four groups with 10 or less students). These large student numbers are

common in Spanish universities and become a serious challenge to any pedagogical innovation

enterprise.

3.2 Students’ behavior and positivism

Most of the problems we encounter when working with our students are due to their extended

exposure to positivist learning, teaching, and grading practices (see the discussion in sec-

tion 2.5). Indeed, current practices may date back to the Middle Ages, when the availability

of books was limited and the role of lecturers was mainly to dictate knowledge and that of

students to copy and learn this knowledge. This model of classroom dynamics is still alive

seven centuries later, even after the Gutenberg revolution and other technological advances.

The following list includes some preliminary observations about our students that most of

our colleagues would accept as basically correct:

• Students go to the classroom sessions to take verbatim notes of whatever the teacher

says, and use these notes as their main study material. Most of them never take the
6In our University, there is a complex system of course requirements, that may be summarized as follows:

students are required to get a “pass” or higher degree in six subjects to be eligible for grading, but not to
enroll, in Compilers I and II.

7We will strongly encourage a modification of our Computer Engineering curriculum to include the
prerrequisites stated in the ACM/IEEE-CS report [9].
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time to check their notes against what is found in manuals. Students seem to think

that the teacher expects them to uncritically regurgitate what they have been told as

exactly as they can (perhaps some of their teachers did), in radical agreement with

positivist teaching practice (see section 2.5).

• Accordingly, students are not used to think, that is, to apply their own knowledge to

situations that depart slightly from the examples discussed in the classroom. If a test

contains a simple but new problem that may be solved using the theory they have

tried to memorize, the most common result is that they fail to solve it, as explained in

section 1.

• Students are very passive in the classroom. They do not ask many questions, except

for “could you repeat, please?”. If the teacher asks a question to the class, all he or

she gets is silence; if the teacher asks a particular student, the usual answer is “don’t

know”.

3.3 Students as programmers

We find that, even after two years of instruction, our students are in general, simply said, bad

programmers. This shows clearly in our compiler design courses: we often encounter students

that seem to have acquired the main concepts and learned the basic techniques of compiler

construction but fail to build correct programs because of bad programming habits and

serious misconceptions about programming in general and the C programming environment

in particular8. We are unaware of the extent of this problem in other universities, but it

interferes strongly with our teaching practice. Some common problems include:

• Our students know very little about programming in the large9, and even less about

programming in a way that eases maintenance of a large software product. Our com-

piler assignments are probably some of the more complex programming projects they

8For example, a great fraction of our students do not know that getc and fgetc in stdio.h return int’s
instead of char’s. This causes serious problems when dealing, for example, with the end-of-file condition.

9Making a medium-sized program may involve several months or years and requires some planification
and a lot of encapsulation (that is, one must design a module to be robust and encapsulated in order to
use it several months later, when one does not remember the little details and tricks one was aware of while
implementing it), and also requires a lot of separate module testing.
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face during their five-year curriculum10.

• They do not even know how to test systematically their own programs or how to

organize program modules so that they may be tested separately.

• Our students love using pointers and dynamic memory but do it in very unsafe ways

(only compatible with single-user environments such as DOS), usually resulting in

an infamous memory fault run-time error when the teacher tests their compilers (in a

multi-user environment such as Unix). This aspect is intimately related to the previous

one.

• They tend to “overimplement” the data structures they use in their compilers, mainly

because they try to use as much as possible of the code they have generated when

studying Abstract Data Types (C++ classes, etc.). Also, they tend to use code they

have previously written, regardless of whether it is needed or not. Their reliance on

not-thoroughly tested code sometimes results in the failure of their compiler-design

assignments.

• Most of them have computers at home where they use DOS-based C and C++ program-

ming environments that depart slightly or allow extensions with respect to standard C

and C++. Their compiler assignments, therefore, fail to compile or to work properly

in other environments.

• Students tend to produce compilers without having a hypothetical user in mind; in-

stead, their compilers use “classroom jargon” instead of a more user-oriented language,

for example, in error messages (“lparen found, relop or addop expected”). This

is related to their exposure to positivist (see section 2.5) teaching practices: they are

programming with the teacher in mind!

10Excepting, perhaps, their final-year programming project.
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4 Learning/teaching compiler design as a research ac-

tivity

4.1 Constructivism in teaching compiler design: preconceptions

In constructivist practice, one of the main tasks in the teacher’s work is the identification

of preconceptions that may have an influence in the learning process. Some of them may

be correct, and therefore may be used as anchors to new concepts [11]; some others are

misconceptions that may seriously interfere with the construction of new concepts if they

remain undetected and are not dealt with adequately.

4.1.1 On the persistence of misconceptions

As in other fields, we have found, however, that some misconceptions are very persistent:

even when they are detected and classroom and laboratory activity is designed to address

them before they interfere with the progress learning, they may reappear. An example that

we have found is that students think that left factoring and elimination of left recursion

are enough to transform any grammar into an LL(1) grammar, just a few months after one

of the laboratory assignments involved a grammar for which this did not work. A possible

source for this misconception may be the incorrect reception of a correct concept: no LL(1)

grammar may have left recursion or left common factors.

To make matters worse, we have found that compiler design textbooks do not seem to

take the possibility of this confusion seriously enough. Almost all books we have checked

([12, 13, 14, 15]) only make emphasis on eliminating ambiguity, left-recursion and (not all

books) common prefixes. Only Fischer and LeBlanc ([16], p. 126) and Aho, Sethi and Ullman

([17], p. 191) give an example of a grammar which has no left recursion and no common

prefixes but it is not LL(1), but in the case of [17] they give an ambiguous grammar, which

can also reinforce another misconception (see section 4.1.5).

4.1.2 On programming as an art (another preconception indeed)

In constrast with, say, aerospace engineering students, computer science students can build

and “test fly” their designs easily, even at home. This may be at the basis of a serious

preconception (Carrasco 1995, personal communication), according to which:
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• Programming is an art rather than a science.

• One does not need a rigorous planning of the strategy used to solve a problem before

one tries to make a program to solve it (the “design at the keyboard” syndrome).

• A good program is just a program that works for the person who wrote it (and perhaps

for the user), rather than a program that is readable, modular, extensible, etc.

4.1.3 Compile-time vs. execution-time

A common source of serious misconceptions regarding compiler design may be summarized by

saying that our students have trouble distinguishing compile time and execution time11. This

may sound too vague, but we are currently working on identifying elementary preconceptions

that may be at the basis of this confusion, which we have detected only very recently as one of

the key sources of interference with the students’ learning process. We hypothesize that the

confusion arises from the widespread use by students of integrated development environments

such as Borland C, where edition, compilation, execution, and debugging occur all in the

same box (in these environments, compilation, or even the whole compiling–linking–debugged

execution process is launched by pressing a hotkey, just as if it were another editor command).

Another possible cause is the fact that, in most of their experience, compilers run on the

same platform (machine, OS) as the objects it produces.

4.1.4 “Compilers first check syntax, then generate code”

Another preconception that we have detected may be formulated as follows: “compilers

initially check the syntax of the user’s program and, only if the program is correct, they go

ahead and compile it”. This may not seem a misconception as stated, but let us look at it

more carefully. It may collide with the key concept of syntax-directed translation, that is,

the idea that translation is driven by parsing or by a syntactic representation of the program

generated by a parser: students may think that parsing is just a consistency check that has

to be done to avoid problems during a subsequent translation process that does not rely on

11When writting syntax-directed translation schemes, a significative fraction of our students used an
attribute to evaluate the value of each expression (they only had to evaluate its type and address), that is,
they were executing the program while compiling it!
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syntax at all12.

We have found that this misconception, even though it may seem unharmful, may weaken

the motivation of students when learning how to build parsers. The study of parsers is an

important and heavily technical part —consider LR parsing, for example— of most courses

on compiler design, and may be painful to learn outside the motivating frame provided by

the concept of syntax-directed translation.

Indeed, most textbooks do not seem to consider how powerful it can be to make the

concept of syntax-directed translation clear even before parsers are discussed. They just

reveal the block diagram of the compiler at the beginning of the book and dive tens or

even hundreds of pages deep into the description of the first two boxes in that diagram,

the scanner and the parser, without a clear motivation for the reader. We have designed

our classroom activities so that the concept that “obtaining a syntactic representation is

crucial to translation” appears very early in the course (just after studying the importance

of syntax as a tool to specify a language). Students tackle the problem of translating Pascal-

like arithmetic expressions to sequences of key presses for a simple calculator; they realize

that an easy way to do this is to either fully parenthesize the expression in advance or, what

is equivalent, to obtain a tree-like representation for the expression, so that evaluation order

(precedence, associativity) is clear before translation is attempted (see appendix B).

A related issue is that when textbooks give a block diagram of a compiler, dividing it in

a number of phases or passes, not all of the textbooks make emphasis on the very important

question that this is a conceptual division rather than an actual division, that is, that real

compilers are usually not divided in a number of separate phases and routines but instead

consist of coroutines (see [15, 18]).

4.1.5 Ambiguity

Another concept that students learn incorrectly is ambiguity. They insist in using this con-

cept to refer to LL(1) or SLR(1) parser conflicts caused by perfectly unambiguous grammars

that are not LL(1) or SLR(1)13 . This may be due to the fact that parser conflicts are usually

12Aho, Sethi and Ullman in their book ([17], p. 12) state: “After syntax and semantic analysis, some
compilers generate an explicit intermediate representation of the source program” (our italics).

13They seem to confuse ambiguity (applied to grammars) with nondeterminism (applied to parsers).
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illustrated by feeding ambiguous grammars into the algorithms that construct the parsing

tables (as in Aho, Sethi and Ullman [17], p. 191; see section 4.1.1). We have tried to be

careful when using examples, so that grammar ambiguity and parsing conflicts are presented

as orthogonally as possible.

4.1.6 Conclusions on preconceptions

These are just examples of the kind of preconceptions that, if left undetected, may seriously

compromise the success of a teaching strategy. A more systematic study of the elementary

misconceptions interfering with the learning of compiler design concepts is underway, and

will be published elsewhere.

4.2 Classroom sessions in a compiler design course

We applied the techniques described in section 2.4 to our compiler design course, and we

found that our students were able to solve —almost by themselves— the following problems14:

• enumerating the tasks a compiler performs when processing a program;

• designing an algorithm to decide whether a given string belongs to the language spec-

ified by a grammar or not ;

• translating an arithmetic expression to a sequence of keypresses for a pocket calculator;

• designing a grammar for simple expressions with numbers, parentheses and arithmetic

operators (+,−,∗,/), with the operator associativity and precedence of programming

languages like Pascal or C;

• designing an algorithm to obtain the initial symbol of the grammar from the input

string, following the inverse of a rightmost derivation.

At the end of each block of activities, once the main concepts are stated after the “dis-

cussion in common” of each activity, we propose our students some problems (application

activities) to apply the new concepts learned.

14See appendix B for a more detailed formulation and motivation of some of these problems. All of the
examples in this section belong to Compilers I.
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With this method, our students were capable of learning the basics of lexical analysis,

recursive-descent parsing, LL(1) parsing and intuitive shift-reduce parsing; the last con-

cept was used as a sound basis on which students were taught LR parsing and SLR parser

construction15. We have found that our students understood bottom-up parsing better than

students from previous years for two reasons: they had strongly worked about the problem

to solve, and they were highly motivated to learn the solution.

The subject of syntax-directed translation was also learned by our students using this

method: we began with an implementation-oriented strategy (it was very easy for the stu-

dents to insert translation actions into a recursive-descent parser), and then we inferred

from them the concepts of syntax-directed translation scheme (SDTS) and syntax-directed

definition. Our students also learned to do type checking, to generate code for expressions

with arrays and records, to translate a small subset of a Pascal-like language to code for

a stack machine, and to generate code for a virtual machine very similar to three-address

code. Finally, the translation of procedures and functions was discussed and worked thor-

oughly, and we finally explained concepts such as that of activation record to them (again,

they were not capable of finding the solution to function call compilation by themselves, but

having worked hard about the problem they were very prepared to “receive” it). As we will

see in the next section, we asked our students to write three small toy compilers in their

laboratory sessions. And, even though we did not explain anything about compilation of

Pascal-like procedures and functions (with procedures and functions declared inside them

and nested scoping rules), some of our best students were able to correctly compile this kind

of procedures (we had some interaction with them, but almost all of the work was theirs).

4.3 Laboratory sessions

In parallel to classroom sessions, the students had to write several programs to pass the

course. These programs had three main objectives: to apply the concepts learned in the

classroom sessions; to study in depth the problems studied in the classroom sessions; and to

15The construction of canonical LR(1) and LALR(1) tables was not covered in our course because we think
these subjects are not very important; a student that knows and understands how to construct a SLR(1)
table can learn —by taking a look at a book— those complex constructions by himself or herself, and very
few people has made a LR(1) table or a LALR(1) table for a medium-sized language by hand, so we think
it is not very important to know how to do it.
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have the students build a medium-sized software project.

During year 1995–1996, our students will write:

1. a small program to deal with the end of file condition in different operating systems

2. a general parser for context-free grammars16 (even for ambiguous grammars)

3. a recursive-descent parser

4. a LL(1) parser

5. a SLR(1) parser

6. a small compiler for a toy language and a stack machine

7. a compiler for a Pascal-like language without procedures and functions, on the same

stack machine

8. a compiler for a language with procedures and functions which generated code similar

to three-address code

The assignments for this year’s course are more or less the same that students from the

1994–1995 course had to write, varying source languages and the way they are specified (we

want them to write the grammar); also, the last program (a compiler for a three-address

code) will have to be written using lex and yacc (or flex and bison).

4.4 Evaluation of students’ work

Continuous evaluation of work in the classroom is accomplished basically through self-

evaluation and inter-regulation (students have immediate information about their work in

the clasroom during the discussions in common); in addition, their notebooks are monitored

and corrected periodically, and an “open door” policy encourages them to discuss any class-

room activity with the teacher during an extended schedule of office hours. Evaluation is

completed through a couple of written tests in each semester, consisting in previously unseen

16We intend to show our students that the parsing problem is not a trivial one, and also that a general
parser is too inefficient for a compiler.
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open problematic situations, where the methodological approach to the solution is assessed

in addition to the quality of the solution produced.

The evaluation of laboratory work is based on weekly monitoring of each student’s work

in each one of the assignments, as well as on a carefully designed test set for each one of

the programs they produce. When an objective is not accomplished at a given point of the

course, there are more opportunities to reassess it, because most of the proposed work is

incremental in nature.

The teacher maintains a detailed record card for each student with all of this information,

as well as with subjective notes on the student’s performance or learning circumstances,

where available. The final grade will be based on a global assessment of the student’s

learning process and attitudes.

4.5 Results of the new model

The results we have obtained after applying the learning as a research activity pedagogical

model for one year are very encouraging: our students (and ourselves) have learned more

about compilers than students from previous years, and will more likely remember the basics

of compiler design and this course for several years. Also, we have been gratefully surprised

by the skills of our students in more occasions than we could have expected17. On the other

side, we have really enjoyed teaching compiler design this way, and we find ourselves actively

doing research in an area which is of high interest to us. We are planning to extend this

model to subjects other than compiler design, and we also want to involve as many teachers

from our department as possible in this teaching and learning model. We are also willing to

help teachers from other universities to try this method in their compiler design course (or

in any other course in computer science).

A brief list of the positive results we have obtained could be:

• Better understanding of complex concepts (like LR parsing);

• Higher motivation of students from this year with respect to previous years’ students18;

17We did not expect our students to easily find by themselves a general bottom-up algorithm for parsing,
or to design a grammar which reflects the associativity and precedence of Pascal or C, for example, but some
of them did!

18Abboud [8] notes the importance of motivation and self-confidence (our italics):
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• Ability to face new situations and problems.

Some of the problems encountered include:

• Students’ error messages are not adequate for an end user, because they are not used

to auto-evaluate their own programs as final products; also, we did not expect them

to fail in this subject, so we were not able to correct this problem on time in course

(1994–1995).

• Very few students were able to write correct SDTSs (syntax-directed translation schemes).

We think that this failure is caused by the inability of students to prove the correctness

of their SDTSs.

In addition, a survey taken after the first semester of 1994 (70 students answered out of

220) gave very encouraging results:

• 89% of students thought that the new method used in the classroom is better or much

better than classical teaching methods;

• 85% believed that active participation in classroom activity improves concept learn-

ing, whereas 89% believed that active participation helps understanding the teacher’s

explanations;

• 89% believed that working in groups is a good idea;

• 91% believed that they would be able to succesfully solve a real-life, open, compiler-

related problem;

• When judging course quality in a scale from 0 to 10, Compilers I had an average overall

mark of 7.1, compared to 4.7 for the rest of subjects they took.

A principle role of education is to empower students by providing them with the tools for learning,
thus building their confidence so that they can be in charge of their own growth and development.
If the instructor can provide an environment where a student can experience learning as a process,
then the student gains the confidence to learn and discover. The acquisition of information is
insufficient, rather it is the desire to learn and to have the tools to be in charge of one’s growth
that is the ultimate role of education.
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An interesting aspect is that 66% of the students considered themselves ’good’ or ’very

good’ at programming in C (in contrast with our findings: see section 3.3). We plan to take

a thorough survey at the end of year 1995–1996 to reassess our methodology and practice.

5 Future developments and challenges

We are currently working towards three directions:

Redesigning the program of activities: Sometimes, an activity which is designed to

lead the students to learn a new concept does not achieve its purpose and the students do

not learn the concept or learn a misconception. In that case, the teacher has to redesign

the activity on the fly and re-orient the discussion, or sometimes he or she has to drop the

activity and improvise a new one. The whole process has to be done while in the classroom,

and when the classroom session ends, the teacher has to rewrite that activity or block of

activities for the next year. The process may never converge, due to changing conditions

such as the students’ background, the teacher, or changes in previous activities.

Team-oriented work: While in classroom sessions our students work in small groups,

laboratory work has to be presented individually, although the students can still work in

groups. We also think that the laboratory assignments may be too laborious for a single

student, so we are planning to let the students do the assignments in small groups (the same

groups formed for classroom sessions). One important reason to do this is that team-oriented

work is critical to problem solving19. The assignments would have to be redesigned, and we

would be much more demanding with some aspects —more related to software enginering

than to compiler design20— like specification, design, and documentation of each program.

19This aspect is also emphasized by other researchers, like Abboud [8] (our italics):

Activities that are useful and promote learning are group endeavors. Group projects, such as
working jointly on a problem, provide an environment to learn collaboration and skills that go
beyond the subject matter. Students perceive the need to communicate and start acquiring
that skill. They also learn to consider alternative approaches to problem solving, and to reflect
on them and evaluate them. Moreover, group dynamics provide a gain in self-knowledge and a
way to develop self-confidence.

20As stated in section 3.3, our students have a very shallow background on software engineering (not only
due to the organization of their curriculum), and we think we should also make emphasis on these aspects
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A simplistic application of this team-oriented approach might have a negative effect: lazy

students or (which is worse) less brilliant students may remain hidden into the groups and

they could even pass the course without having learned the basics of compiler design. A

solution to this problem would be an individual final exam, but we think that this solution

would not motivate these less prepared students to learn, it would only prevent them to pass

the course. Our current approach (team work in classroom sessions and individual work in

laboratory sessions) allows us to guide very closely each student’s work, which also gives us

a fair subjective impression of the student’s understanding of the basics of compiler design.

This new approach should include this individual feedback between the student and the

teacher, which is of high importance in our model (see section 2.5).

Project-oriented course: Another improvement would consist in proposing our students

a large project at the beginning of the course (which could be the design and implementation

of a compiler for a complete high-level language like Pascal or C, which would have to be

carried out by several groups of aproximately four students) and redesign the program of

activities to follow the project as closely as possible, that is, we should extract the common

problems of all the languages for which we would have proposed compiler projects and

construct a set of activities for them (in this part of the course the groups could work in

parallel); then we should design specific blocks of activities for each special construct of

each language (like pointers, register types, procedures and functions, etc.) and give one

of these blocks to each of the groups that is assigned to each compiler project. We could

even let the students design their own high-level language. We think this project-oriented

course would achieve the goal of teaching all students the basic techniques and algorithms

needed for compiler design, and also would develop the skills of the students for working

with a number of other groups, which involves previous specification and documentation of

the modules they are going to implement and also involves developing communication skills,

as recommended by the ACM/IEEE-CS Task Force report [9]. There would be coordination

meetings (Carrasco 1995, personal communication) between all small groups assigned to each

project.

while teaching compiler design, because building a compiler is a good opportunity to practice software
engineering techniques.
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The project-oriented approach would be very challenging due to the large amount of

students that attend our courses (aproximately 200 students per year). We intend to initially

try this project-oriented approach with a small fraction of all students.
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A Course outline

In this section we give an outline of the program of activities for year 1995–1996. Although

it covers basically the same subjects we covered in the program for year 1994–1995, we

have rewritten most of the activities and we have reordered some blocks both to address

the problems we had and to explore and correct some misconceptions detected during year

1994–1995. As we explained in section 5, this outline is open to future reorganization, in

order to improve the learning process. The relation between each block of activities and the

laboratory assignments listed in section 4.3 is also noted.

1. What are we going to study?: This block introduces the students to the pedagogical

model, tries to motivate them, explores their previous ideas about compilers, and

begins a study of what a compiler’s task is. Laboratory assignment #1, starts while

studying this block.

2. The construction of correct programs: Understanding the concept of programming

language syntax and learning ways of specifying it are two important aspects covered

in this block. Also, this block deals with the concept of a program’s syntax and with

ways it can be represented (trees, parses). This block also invites the students to

outline an algorithm to obtain a program’s syntax from the program itself. By the end

of this block our students will start to work on laboratory assignment #2 (a general

parser for context-free grammars).

3. Something like a compiler: This is a very important block. It has a double purpose: to

make our students learn that it is not possible to translate a program without knowing
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its syntax (structure), and to challenge a possible misconception: that compilers first

check syntax, and then generate code (see section 4.1.4). In this block, students outline

the workings of a small compiler (see appendix B, activity 23).

4. A program is more than a character string: This block basically covers the phase of

lexical analysis. The main objectives of this block are: to make our students aware of

the convenience of processing the program at a higher level than that of characters,

and to learn how to write the lexical specification of a language and how to implement

it both as program code and as transition diagrams.

5. Top-down analysis: This block is mainly dedicated to recursive-descent parsing. It also

covers subjects like transforming a grammar to make it suitable for top-down parsing,

detecting syntax errors as soon as possible, and writing good error messages. At the

end of this block students start to work on laboratory assignment #3, a recursive

descent parser.

6. Write a whole new parser for each new language?: This block covers table-driven LL(1)

parsing. It also makes emphasis on the connection between LL(1) parsers and push-

down automata, and, as in the previous block, this one covers the adequate detection

of syntax errors and the construction of good error messages. By the end of this block

our students start laboratory assignment #4, a LL(1) parser.

7. Bottom-up analysis: This block deals first with bottom-up parsing in general, and with

shift-reduce parsing in particular, and then covers the construction of SLR(1) tables.

It also deals with error detection and error messages. As in previous blocks, when this

one will be finished, our students laboratory assignment #5, a SLR(1) parser.

8. What are we going to study (II 21)?: After some blocks dealing with parsing, this

block recalls the subject of syntax-directed translation, and serves as an introduction

to semantic analysis and code generation.

21Due to the scheduling of the compiler design subject in two separate semesters, Compilers I and Compilers
II, this block is necessary as an introduction to the second subject.
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9. How can we use syntax to translate?: This block has two main objectives for our

students: to learn the basic techniques of syntax-directed translation, and to learn some

formalisms for specifying a translation, such as syntax-directed translation schemes

(SDTS) and attribute grammars. The implementation of SDTS on top-down and

bottom-up parsers (including yacc) is discussed. Students start to work on laboratory

assignment #6 (a small toy compiler) while working on this block.

10. Got to know these types before working with them: This block covers aspects related

to data types and their compilation, and introduces the notion of type system. The

construction of SDTS for type checking, the concepts of type equivalence and type

compatibility are also covered. Laboratory assignment #7 requires our students to

implement a type system in a compiler for a Pascal-like language, and that is why the

assignment starts when this block ends.

11. A thousand languages, a thousand machines ..., a million compilers?: This block is

mainly dedicated to the study of intermediate representations: abstract stack machine

code, syntax-based representations and three- or four-address code. Our students will

have to write a toy compiler generating three-address code (laboratory assignment #8)

by the end of this block.

12. Object code as good as hand-made?: In this block, students are introduced to object

code generation and optimization.

B A sample of classroom material

This section contains some activities extracted from the program we follow in our course.

The first two have been taken from block 1, the third from block 2, and the fourth from block

3. Each activity is followed by a small explanation of its purpose, that is, which concepts

we want our students to learn.

5. Put together all you know about compilers, and you will see that it is more than you
would have thought. What does a compiler exactly do? Why do programmers need
compilers? Why don’t we write our programs in assembler? Think about how you
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would explain it to someone who has only a basic knowledge about computer science.
Think also about the compilers you have worked with during past years.

This activity searches into the concept of compiler that our students have, and forces them

to make a definition of what a compiler is (that is, listing the tasks performed by a compiler).

After the discussion in common, it must be clear that compiling means translating from

one source language to an object language, and that a compiler is a programming-language

translator. The discussion should also deal with the advantages of high-level languages (data

types, type checking, flow-control instructions, etc.) versus low-level languages like assembly

language.

6. How would you completely specify a given compiler?. Think about compilers you
already know to make your specification more complete and accurate.

This activity serves to study in more depth the concept of compiler developed in the

previous activity. The specification schemes proposed by the groups will be discussed in

common and criticized by other groups. Every specification proposed should include the

basic elements (source language, object language, compiler’s host operating system, the

operating system where the object code will be executed, etc.).

20. How could you know how a given program has been built, stating from the program
itself and from the building rules (syntax) of the source language? How is this
operation usually named? Could you outline a general method to perform it? Try it
with a sequence of commas and letters to see if it is a sequence of letters. When it
is not, can we know why?

We intend to show the parsing as a method to reveal how a program has been built. Of

course, an important secondary effect of syntax-analysis should be to know if it is possible

to build the program from the syntax of the language, that is, to know whether the program

belongs to the language or not. In following activities we should show that it is more

important to obtain a representation of a program’s syntax than to simply say if it is correct

or not.

23. Imagine you are given an arithmetic expression (with integer and fixed point numbers,
additions, substractions, multiplications and divisions, and parentheses, with the syn-
tax, precedence and associativity of these operators in Pascal or C) and you are told
to evaluate the expression using this calculator:
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Min MR ÷

7 8 9

C

×

4 5 6 −

1 2 3

0 · =
+

2.34

The keys Min and MR are used to access to ten memories numbered 0 to 9. Thus,

the sequence Min 9 stores the value in the display into memory 9, and the sequence

MR 5 brings the value stored in memory 5 to the display. In all other aspects, this
calculator operates like a regular model. What sequences of keypresses would you use
to evaluate the following expressions?

• 3+4*5

• 3-4*(4+1)

• 1+2+3+4+5-6+7-8-9-10+12.45

• 10/(4-(2*0.11/0.1))

• (3+4)*5-4-3

• 10.3*(0.1+9.11*(2/0.05/3-8.25))

Try to design an algorithm (first try to act like an algorithm) that generates the
sequences of keypresses in a systematic way, reading the expression from left to right
and considering that the code generated must be correct for the calculator. Show
in detail which rules you have used to decide which part of the expression must be
evaluated before other parts, and why. How have you managed the ten memories?.

Before dealing with the compilation (translation) of a language, we can think about its

interpretation. In the case of expressions, this involves evaluating them before considering

how to translate them to a sequence of keypresses. In this activity we intend to show that

simply reading an expression from left to right is not enough to evaluate it on a pocket

calculator, and therefore our students have to study another approaches to the problem.
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