
Efficient encodings of finite automata in discrete-time

recurrent neural networks∗

Rafael C. Carrasco, Jose Oncina, and Mikel L. Forcada

Departament de Llenguatges i Sistemes Inform�atics,
Universitat d’Alacant,

E-03071 Alacant, Spain.
E-mail: {carrasco,oncina,mlf}@dlsi.ua.es

Abstract

A number of researchers have used discrete-
time recurrent neural nets (DTRNN) to
learn finite-state machines (FSM) from sam-
ples of input and output strings; trained
DTRNN usually show FSM behaviour for
strings up to a certain length, but not be-
yond; this is usually called instability. Other
authors have shown that DTRNN may ac-
tually behave as FSM for strings of any
length and have devised strategies to con-
struct such DTRNN. In these strategies, m-
state deterministic FSM are encoded and
the number of state units in the DTRNN
is Θ(m). This paper shows that more ef-
ficient sigmoid DTRNN encodings exist for
a subclass of deterministic finite automata
(DFA), namely, when the size of an equiva-
lent nondeterministic finite automata (NFA)
is smaller, because n-state NFA may directly
be encoded in DTRNN with a Θ(n) units.

1 Introduction

The relationship between discrete-time re-
current neural networks (DTRNN) and
finite-state machines (FSM) has very deep
roots (McCulloch & Pitts 1943; Kleene 1956;
Minsky 1967). These early papers show the
equivalence of DTRNN with threshold lin-
ear units (TLU), having step-like transfer
functions, and some classes of FSM, and use
constructions which have a number of TLU
which is linear with the number of states
in the FSM. However, n units may be in

∗Work supported through grant TIC97-0941 of
the Spanish CICyT.

2n different states, which suggests that it
should be possible to encode m-state FSM
in DTRNN having O(logm) units, by us-
ing a distributed encoding of FSM states.
Following this suggestion, Alon et al. (1991)
(for first-order single-layer DTRNN) and
Horne & Hush (1996) (for first-order lower-
triangular DTRNN) have obtained better
bounds on the number of TLU, but the lower
bound is never as good as O(logm).

DTRNN may also be constructed using
real-valued sigmoid units. These DTRNN
may be in a nondenumerably infinite num-
ber of states at any time t, and so, they
may be expected to be capable of behaving
as FSM. Indeed, a number of researchers
have used sigmoid DTRNN to learn FSM
behaviour from samples (Cleeremans et al.
1989; Pollack 1991; Giles et al. 1992; Wa-
trous & Kuhn 1992; Maskara & Noetzel
1992; Sanfeliu & Alquézar 1994; Manolios
& Fanelli 1994; Forcada & Carrasco 1995;
Ñeco & Forcada 1996; Gori et al. 1998).
DTRNN are successfully trained to behave
as FSM for short input strings, but this be-
haviour is not stable for longer inputs. This
has motivated a number of researchers (Om-
lin & Giles 1996; Kremer 1996; Carrasco
et al. 1998; Kremer et al. 1998) to prove,
by giving a constructive proof, that DTRNN
may indeed stably behave as FSM for strings
of any length. All of the constructions may
be used to encode deterministic finite au-
tomata (DFA, a class of FSM used as lan-
guage acceptors) and use Θ(m) neurons for
m-state DFA. In particular, if Σ is the in-
put alphabet, first-order constructions re-
quire m|Σ| + 1 units and second-order con-
structions require m+ 1 units.

1

As with threshold DTRNN, one may won-
der whether it would be possible to find
more efficient encodings. Experimental re-
sults (see, e.g. Giles et al. (1992)) indeed
show that second-order DTRNN may learn
languages whose minimal DFA has m states
with less than m units.

It is the case that some regular languages
are more efficiently represented (in terms of
number of states) by NFA (nondetermin-
istic finite automata) than by DFA. Con-
sider, for example, the family of languages
Lk represented by the regular expressions
rk = (0(0|1)∗0(0|1)k)|(1(0|1)∗1(0|1)k) (the
languages of binary strings w whose (|w| −
k)-th bit is the same as the first). It is easy
to construct a NFA Nk having k + 4 states
for each Lk, that is, a number of states that
is linear with k. However, it is not difficult
to show that the size of the corresponding
minimal DFA grows exponentially with k.

In this paper, we show that any NFA
having m states may be stably encoded in
a second-order DTRNN (Giles et al. 1992;
Watrous & Kuhn 1992; Pollack 1991) having
m+ 1 states. As a result, any m′-state DFA
representing a regular language for which
a NFA having m < m′ states exists may
be encoded in second-order DTRNN more
efficiently than with the currently avail-
able schemes (Omlin & Giles 1996; Car-
rasco et al. 1998). Section 2 describes the
second-order DTRNN architecture that will
be used and defines nondeterministic finite
automata. The encoding scheme is defined
and justified in section 3. Finally, conclud-
ing remarks may be found in section 4.

2 Definitions

Nondeterministic finite automata: A
nondeterministic finite automaton (NFA) is
a five-tuple M = (Q,Σ, δ, qI , F) where Q =
{q1, q2, . . . , q|Q|} is a finite set of states, Σ =
{σ1, σ2, . . . , σ|Σ|} is a finite input alphabet,
δ : Q × Σ → 2Q is the next-state function,
such that a machine in state qj , after reading
symbol σk, may move to any of the states qi
in the set δ(qj , σk) ⊆ Q; qI ∈ Q is the initial
state in which the machine is found before
the first symbol of the input string is pro-
cessed, and F ⊆ Q is the set of accepting
states (the NFA accepts those strings lead-
ing to at least one state in F).

Second-order DTRNN: The single-
layer second-order DTRNN architecture
used in this paper is the same used by Omlin
& Giles (1996) and one of the architectures
used by Carrasco et al. (1998). The network
has nX state units whose values at time t
will be represented xi[t] (i = 1, 2, . . . , nX),
and reads nU inputs whose values at time t
are ui[t] (i = 1, 2, . . . , nU), and a single out-
put unit, whose value at time t is y[t]. In
each cycle, the network computes its next
state and output from the previous state and
the current input as follows:

xi[t] = g

 nX∑
j=1

nU∑
k=1

W xxu
ijk xj [t− 1]uk[t] +W x

i

 ,

(1)
and

y[t] = g

 nX∑
j=1

nU∑
k=1

W yxu
jk xj [t− 1]uk[t] +W y

 .

(2)
where g : R → [S0, S1] with S1 > S0 ≥ 0 is a
sigmoid function1, W xxu

ijk and W yxu
jk are real

weights, and W x
i and W y are real biases.

3 Encoding scheme

DTRNN as string acceptors: DTRNN
may be used as string acceptors by choos-
ing an appropriate encoding for inputs and
an interpretation for the output. The usual
choice for the input consists in taking nU =
|Σ| and using an exclusive (one-hot) encod-
ing for inputs, so that, when symbol σi is
input at time t, all uj [t] = 0 except for
ui[t] = 1. The usual interpretation for the
output (which is only examined after read-
ing the whole string) is that a high output
means acceptance and a low output means
rejection.

High, low, and forbidden values: Two
special values, ε0, ε1 ∈ [S0, S1] will be de-
fined so that the outputs of all units will be
taken to be low if they are in [S0, ε0], high if
they are in [ε1, S1] and forbidden otherwise.

1The usual choice for g(x) is the logistic function
gL(x) = 1/(1 + exp(−x)) which has S0 = 0 and
S1 = 1, but the treatment in this paper applies
to any g which is continuous, bounded and grows
monotonously.

2

Encoding of NFA in DTRNN: The
DTRNN will have nX = |Q| state units and
will be interpreted as being in state qi ∈ Q
at time t if xi[t] is high, and as not being in
state qj ∈ Q if xj [t] is low. In this way, the
DTRNN, even if it is a deterministic device,
may be interpreted as being in more than
one state of the NFA. Accordingly, the ini-
tial states xi[0] are all chosen to be equal to
S0 except for xI [0], which will be S1. What
remains is defining a set of weights such that
the dynamics of states in the DTRNN mim-
ics that of the FSM for all values of t > 0
(the above choice of x[0] ensures correct be-
haviour at t = 0).

We will use a weight scheme similar to
that used by Omlin & Giles (1996) and Car-
rasco et al. (1998): W xxu

ijk = H if qi ∈
δ(qj , σk) and zero otherwise; W yxu

jk = H if
δ(qj , σk) ∩ F 6= ∅ and zero otherwise, all
W x
i = −H/2, and W y = −H/2, with H

a positive value to be determined in con-
junction with ε0 and ε1 so that DTRNN
states and outputs correctly represent FSM
states2.

Let us study a typical transition δ(qj , σk);
on the one hand, we want all xi[t] such
that qi ∈ δ(qj , σk) to be high whenever
both xj [t − 1] is high and uk[t] = 1 and
all other xi′ [t] to be low. Following eq. (1),
the new state of unit i is given by xi[t] =
g
(∑

l∈Cik Hxl[t− 1]− H
2

)
, with Cik = {l :

qi ∈ δ(ql, σk)}, and, obviously, j ∈ Cik. To
ensure xi[t] ≥ ε1 even in the worst case,
when xj [t − 1] contributes with the lowest
possible high signal (xj [t − 1] = ε1) and
the rest of the xl[t − 1] contribute with the
strongest possible low signal for all valid sig-
moid functions3, that is, S0 = 0, we have

g

(
H

(
ε1 −

1
2

))
≥ ε1. (3)

To ensure a low state for the rest of state
units, i′ : qi′ 6∈ δ(qj , σk), we must consider
that some of the low signals at time t−1 may
be “weak” (far from S0 and closer to ε0) and
raise the value of xi′ [t], since there may ex-
ist states ql such that qi′ ∈ δ(ql, σk), which
prescribe nonzero weight values W xxu

i′lk = H
(these are the states in Ci′k). Defining χx =

2This encoding uses a finite weight alphabet, and
thus, it may not be expected to optimal, as dis-
cussed by Alon et al. (1991).

3It has to be noted that this worst case may in-
deed occur when Cik contains only j.

maxj,k |Cjk|, as the size of the biggest of
such sets or maximum fan-in of each state,
the worst case occurs when χx low signals
have the highest possible low value (ε0) and
contribute through a weight H to weaken
(increase) the desired low signal for xi′ [t].
Using xi′ [t] = g

(∑
l∈Ci′k

Hxl[t− 1]− H
2

)
the worst case translates into

g

(
H

(
χxε0 −

1
2

))
≤ ε0, (4)

an equation that may be used to guarantee
that the states xi′ [t] are low.

A similar reasoning aimed at guarantee-
ing a correct value for the output y[t] of the
DTRNN yields two conditions: one identical
to eq. (3), and the other one given by:

g

(
H

(
χyε0 −

1
2

))
≤ ε0, (5)

with χy = maxk |Dk|, the maximum fan-
in of the output function and Dk = {l :
δ(ql, σk) ∩ F 6= ∅}.

Therefore, if one can find ε0 and ε1 such
that S0 < ε0 < ε1 < S1 and such that con-
ditions (3), (4), and (5) are met, then the
second-order DTRNN behaves as the corre-
sponding NFA. Conditions (4) and (5) may
be ensured by a more stringent condition,

g

(
H

(
χε0 −

1
2

))
≤ ε0, (6)

with χ = max(χx, χy) (note that always
χ ≤ nX). It has to be remarked that the
conditions derived here are sufficient but not
necessary —due to the use of worst cases
that may not occur in general, and to the
merging of conditions into more stringent
ones—, and thus, smaller values of H, larger
values of ε0 and smaller values of ε1 may still
be adequate for the second-order DTRNN to
behave as the corresponding NFA.

If g is the logistic function gL(x) = 1/(1+
exp(−x)), such values are easily found and
it is also the case that a minimum positive
value of H can be found for each fan-in χ.
Clearly, reducing H increases ε0 and reduces
ε1.

These values are easily obtained by turn-
ing condition (6) into an equation, solving
for H, and taking ∂H/∂ε0 = 0. The result-
ing equation may be iteratively solved for ε0
using

ε0[t+ 1] =

(
g−1
L (ε0[t])
ε0[t]− 1

2χ

− 1
1− ε0[t]

)
(7)

3

4

10

16

22

1 10 100 1000

η(x)

x

Figure 1: The function η (see text)

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

ε(x)

x

Figure 2: The function ε (see text)

(a few iterations starting with ε0[0] = 1/4χ
are enough unless χ is very close to 1, where
H = 4+ ε0 = 0.5− and ε1 = 0.5+). The
resulting ε0 is substituted in eq. (6) and (3)
to get the corresponding values of H and ε1.
The minimum H is a function H = η(χ) of
χ, shown in figure 1, that grows slower than
log(χ) (the ratio η(χ)/ log(χ) is a decreasing
function of χ). On the other hand, ε0 is
a decreasing function ε(χ) of χ, shown in
figure 2, which vanishes slightly faster than
1/χ.

It should be noted that the forbidden in-
terval]ε0, ε1[is rather wide, except in the
case χ = 1, where it is infinitesimally small.

4 Concluding remarks

We have constructively shown that nonde-
terministic finite automata may be directly
encoded in second-order DTRNN, so that
the network behaves exactly like the cor-
responding NFA for strings of any length.

For some regular languages, it is the case
that the number of states of a NFA ac-
cepting them is smaller than the number of
states of the corresponding minimal DFA; in
this case, an acceptor for the language may
be encoded in a smaller DTRNN using the
present approach. It is also the case that
for some languages it is very easy to write a
NFA; the current method allows to encode
it directly without having to convert it first
to a DFA (although it is perfectly useful for
DFA too). However, no general method to
devise an efficient NFA encoding for a given
language exists yet.

The apparently contradictory fact that we
seem to be encoding nondeterministic au-
tomata in a deterministic neural device de-
serves further comment: what the DTRNN
simulates is a partially distributed encoding
of an equivalent deterministic automaton,
an encoding in which the states of a NFA
may however be recognized. It would be in-
teresting to study for how large a fraction of
all regular languages there exist NFA encod-
ings which are more efficient than the corre-
sponding DFA encodings; this study would
have to be performed with a methodology
similar to those described by Alon et al.
(1991) and Horne & Hush (1996). If that
fraction does not vanish, it would imply that
n-state DFA may be generally encoded in
DTRNN having less than O(n) units4.

References

Alon, N., A. K. Dewdney, & T. J. Ott.
1991. Efficient simulation of finite au-
tomata by neural nets. Journal of the
Association of Computing Machinery
38(2):495–514.

Carrasco, Rafael C., Mikel L. For-

cada, M. Ángeles Valdés-Muñoz,
& Ramón P. Ñeco. 1998. Sta-
ble encoding of finite-state machines in
discrete-time recurrent neural nets with
sigmoid units. Technical report, Depar-
tament de Llenguatges i Sistemes In-

4After the acceptance of this paper we have be-
come aware of a paper (Š́ıma 1997) which proves
that any DTRNN using threshold units may be
converted into a topologically equivalent sigmoid
DTRNN which shows the same behaviour for any
time t; this implies that the bounds on the number
of units found by Horne & Hush (1996) and Alon
et al. (1991) are also applicable sigmoid DTRNN.

4

formàtics, Universitat d’Alacant, Ala-
cant, Spain. Submitted to Neural Com-
putation.

Cleeremans, A., D. Servan-Schreiber,
& J. L. McClelland. 1989. Fi-
nite state automata and simple recur-
rent networks. Neural Computation
1(3):372–381.

Forcada, M. L., & R. C. Carrasco.
1995. Learning the initial state of a
second-order recurrent neural network
during regular-language inference. Neu-
ral Computation 7(5):923–930.

Giles, C. L., C. B. Miller, D. Chen,
H. H. Chen, G. Z. Sun, & Y. C. Lee.
1992. Learning and extracted finite
state automata with second-order re-
current neural networks. Neural Com-
putation 4(3):393–405.

Gori,

Marco, Marco Maggini, E. Mar-

tinelli, & G. Soda. 1998. Inductive
inference from noisy examples using the
hybrid finite state filter. IEEE Transac-
tions on Neural Networks 9(3):571–575.

Horne, B. G., & D. R. Hush. 1996.
Bounds on the complexity of recurrent
neural network implementations of fi-
nite state machines. Neural Networks
9(2):243–252.

Kleene, S.C. 1956. Representation of
events in nerve nets and finite au-
tomata. In Automata Studies, ed. by
C.E. Shannon & J. McCarthy, 3–42.
Princeton, N.J.: Princeton University
Press.

Kremer, Stefan C., 1996. A Theory of
Grammatical Induction in the Connec-
tionist Paradigm. Edmonton, Alberta:
Department of Computer Science, Uni-
versity of Alberta dissertation.

——, Ramón P. Ñeco, & Mikel L. For-

cada. 1998. Constrained second-
order recurrent networks for finite-state
automata induction. In Proceedings
of the 8th International Conference on
Artificial Neural Networks ICANN’98 ,
ed. by L. Niklasson, M. Bodén, &
T. Ziemke, volume 2, 529–534, London.
Springer.

Manolios, P., & R. Fanelli. 1994. First
order recurrent neural networks and de-
terministic finite state automata. Neu-
ral Computation 6(6):1154–1172.

Maskara, Arun, & Andrew Noetzel.
1992. Forcing simple recurrent neural
networks to encode context. In Proceed-
ings of the 1992 Long Island Conference
on Artificial Intelligence and Computer
Graphics.

McCulloch, W. S., & W. H. Pitts.
1943. A logical calculus of the ideas
immanent in nervous activity. Bulletin
of Mathematical Biophysics 5:115–133.

Minsky, M.L. 1967. Computation: Fi-
nite and Infinite Machines. Englewood
Cliffs, NJ: Prentice-Hall, Inc. Ch: Neu-
ral Networks. Automata Made up of
Parts.

Ñeco, R. P., & M. L. Forcada. 1996. Be-
yond Mealy machines: Learning trans-
lators with recurrent neural networks.
In Proceedings of the World Conference
on Neural Networks ’96 , 408–411, San
Diego, California.

Omlin, C. W., & C. L. Giles. 1996.
Constructing deterministic finite-state
automata in recurrent neural networks.
Journal of the ACM 43(6):937–972.

Pollack, Jordan B. 1991. The induc-
tion of dynamical recognizers. Machine
Learning 7:227–252.

Sanfeliu, A., & R. Alquézar. 1994.
Active grammatical inference: a new
learning methodology. In Shape and
Structure in Pattern Recognition, ed.
by Dov Dori & A. Bruckstein, Sin-
gapore. World Scientific. Proceed-
ings of the IAPR International Work-
shop on Structural and Syntactic Pat-
tern Recognition SSPR’94 (Nahariya,
Israel).

Š́ıma, Jiř́ı. 1997. Analog stable simulation
of discrete neural networks. Neural Net-
work World 7:679–686.

Watrous, R. L., & G. M. Kuhn. 1992. In-
duction of finite-state languages using
second-order recurrent networks. Neu-
ral Computation 4(3):406–414.

5

