
LETTER Communicated by C. Lee Giles

Stable Encoding of Finite-State Machines in Discrete-Time
Recurrent Neural Nets with Sigmoid Units

Rafael C. Carrasco
Mikel L. Forcada
M. Ángeles Valdés-Muñoz
Departament de Llenguatges i Sistemes Informàtics, Universitat d’Alacant,
E-03071 Alacant, Spain

Ramón P. Ñeco
Departament de Ciències Experimentals i Tecnologia, Universitat Miguel Hernàndez,
E-03202 Elx, Spain

There has been a lot of interest in the use of discrete-time recurrent neu-
ral nets (DTRNN) to learn �nite-state tasks, with interesting results re-
garding the induction of simple �nite-state machines from input–output
strings. Parallel work has studied the computational power of DTRNN in
connection with �nite-state computation. This article describes a simple
strategy to devise stable encodings of �nite-state machines in computa-
tionally capable discrete-time recurrent neural architectures with sigmoid
units and gives a detailed presentation on how this strategy may be ap-
plied to encode a general class of �nite-state machines in a variety of
commonly used �rst- and second-order recurrent neural networks. Un-
like previous work that either imposed some restrictions to state values
or used a detailed analysis based on �xed-point attractors, our approach
applies to any positive, bounded, strictly growing, continuous activation
function and uses simple bounding criteria based on a study of the con-
ditions under which a proposed encoding scheme guarantees that the
DTRNN is actually behaving as a �nite-state machine.

1 Introduction

Therelationship between discrete-time recurrentneural networks (DTRNN)
and �nite-state machines (FSM) has been explored in a number of different
ways by many researchers in the past 10 years, although this relationship
has earlier roots (McCulloch & Pitts, 1943; Kleene, 1956; Minsky, 1967). All
of these early papers refer to neural networks made up of threshold units
(with steplike activation functions). More recently, Alon, Dewdney, and Ott
(1991), Indyk (1995), and Horne and Hush (1996) have studied in more de-
tail bounds on the number of threshold units necessary to implement an
FSM of a given number of states. Also, in a recent work, Kremer (1995) has

Neural Computation 12, 2129–2174 (2000) c° 2000 Massachusetts Institute of Technology

2130 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

shown that Elman’s (1990) simple recurrent nets (a class of DTRNN) using
threshold units can actually represent any deterministic �nite automaton (a
class of FSM).

The interest in the relationship between FSM and DTRNN is partly mo-
tivated by the fact that one can view DTRNN as state machines: a new state
for the hidden units is computed from the previous state, and the currently
available input in each cycle, and possibly an output, is computed in each
cycle too. One can say that DTRNN using activation functions other than
thresholds are state machines that are not restricted to be �nite. The archi-
tectural similarities between FSM and DTRNN will be discussed in detail
in the next section of this article.

Underthis intuitive assumption that beingnon�nite state machines them-
selves, DTRNN can emulate FSMs, a number of researchers set out to test
whether DTRNN with real-valued, continuous sigmoid activation functions
could learn FSM behavior from samples (Cleeremans, Servan-Schreiber, &
McClelland, 1989; Pollack, 1991; Giles et al., 1992; Watrous & Kuhn, 1992;
Maskara & Noetzel, 1992; Sanfeliu & Alquézar, 1994; Manolios & Fanelli,
1994; Forcada & Carrasco, 1995; Ti Lno & Sajda, 1995; Ñeco & Forcada, 1996;
Gori, Maggini, Martinelli, & Soda, 1998); and even compared the perfor-
mance of different architectures (Miller & Giles, 1993; Horne & Giles, 1995).
Theuseof sigmoid functions is motivated by theneed to haveerror functions
that are differentiable with respect to the weights so that gradient-descent
algorithms may be used for learning.

The results of these works show that DTRNN indeed may learn �nite-
state-like behavior from samples of that behavior, but some problems per-
sist. First, after learning, �nite-state-like behavior is observed for short input
strings (with lengths in the range of that of strings used for training); how-
ever, for longer input strings, the clusters observed for the values of the
hidden state vector (usually interpreted as the states of the FSM learned)
start to blur and �nally merge, leading to incorrect state representations and,
accordingly, incorrect output. This behavior is often referred to as instability,
and hampers the ability of trained DTRNN to generalize the learned behav-
ior (see Ti Lno, Horne, Giles, & Colingwood, 1998, for a theoretical analysis
of generalization loss). As a partial solution, some authors force learning to
occur in such a way that state values form clusters (Das & Das, 1991; Zeng,
Goodman, & Smythe, 1993, 1994; Das & Mozer, 1998). Second, when the
FSM to be learned has long-term dependencies, that is, outputs that depend
on inputs that have been presented very early during the processing of a
string, gradient-descent algorithms suffer from the problem of vanishing
gradients, which makes it dif�cult to relate late contributions to the error
to small changes in the state of neurons in early stages of string processing
(Bengio, Simard, & Frasconi, 1994).

Once the DTRNN has been trained, researchers use specialized algo-
rithms to extract FSM from the dynamics of the DTRNN;some usea straight-
forwardequipartition of neural state-space followed by a branch-and-bound

Stable Encoding of Finite-State Machines 2131

algorithm (Giles et al., 1992) or a clustering algorithm (Cleeremans et al.,
1989; Manolios & Fanelli, 1994; Gori et al., 1998). Very often the �nite-state
automaton extracted behaves correctly, and then does so, obviously, for
strings of any length. However automaton extraction algorithms have been
criticized (Kolen & Pollack, 1995; Kolen, 1994) in the sense that the extraction
of FSM may not re�ect the computation actually being performed by the
DTRNN. More recently, Casey (1996) has shown that DTRNN can indeed
“organize their state space to mimic the states in the . . . state machine that
can perform the computation” and be trained or programmed to behave
as FSM. Arai and Nakano (1996) stated that when in a DTRNN, the gain
of the sigmoid function reaches a certain �nite value, the DTRNN behaves
as a stable FSM1 and use this result to formulate a training method (Arai
& Nakano, 1996, 1997); however, they fail to provide a rigorous proof and
resort to an intuitive explanation. Also recently, Blair and Pollack (1997)
showed that an increasing-precision dynamical analysis may identify, in
the limit, those DTRNNs that have actually learned to behave
like FSM.

Finally, some researchers have set out to de�ne ways to program a sig-
moid-based DTRNN so that it behaves like a given FSM, that is, sets of
rules for choosing the weights and initial states of the DTRNN based on the
transition function and the output function of the corresponding FSM.

Omlin and Giles (1996a, 1996b) have proposed an algorithm for encod-
ing deterministic �nite-state automata (a class of FSM) in second-order re-
current neural networks such as the ones used by Giles et al. (1992). The
encoding is based on a study of the �xed points of the logistic sigmoid func-
tion. There are many similarities between their work and the one presented
here: the use of worst-case studies; the de�nition of low, high, and forbidden
state values; a similar scheme for choosing weights; and so on. One of the
main differences is the level on which the conditions for stable encoding are
expressed. We do not explicitly require our states to be structured around
�xed points of the activation function. Finally, weight schemes, although
very similar, are not completely identical.

Alquézar and Sanfeliu (1995) have shown that deterministic �nite-state
automata may be encoded in Elman (1990) nets provided that sigmoids tak-
ing and returning rational numbers are used (general real-valued sigmoids
are not allowed).2 Their construction will be generalized to real-valued sig-
moids and a larger class of FSM in this article. Their proof relies on con-
verting the deterministic �nite-state automaton (DFA) into a new DFA in
which all states are split in as many states as there are symbols in the input
alphabet of the DFA (as Minsky, 1967, did).

1 An in�nite value of the gain would correspond to the use of a step function; the result
in this case is well known (Minsky, 1967).

2 Kremer’s (1995) work used Elman nets with threshold functions, not sigmoids.

2132 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

Kremer (1996) has recently shown that a single-layer �rst-order recurrent
neural network with real sigmoid squashing functions returning values in
[0, 1] can represent the state transition function of any �nite-state automa-
ton, provided that the states are split as in the previous work. In contrast to
Alquézar and Sanfeliu’s (1995) and Omlin and Giles’s (1996a, 1996b) work
and to the approach used in this article, Kremer’s construction uses different
weights for each state neuron.

Frasconi, Gori, and Maggini (1996) have shownhow �nite-state automata
may be encoded in recurrent networks using radial basis functions instead
of sigmoids.

Recently, LS ṍ ma (1997) has shown that the behavior of any DTRNN using
threshold activation functions may be stably emulated by another DTRNN
using activation functions in a very general class that includes the sigmoid
functions considered in this article. LS ṍ ma provides constructive proof that
contains a prescription to compute the new values of weights. In a more
recent paper, LSṍ ma andWiedermann(1998) show that anyregular expression
of length l may be recognized by a DTRNN having H (l) threshold units.3

Combining both results, one obtains a prescription to encode any regular
expression into a sigmoid DTRNN so that it recognizes the corresponding
language. As will be discussed in more detail in section 8, LS ṍ ma’s (1997)
result may also be combined with existing results on the simulation of FSM
(Alon et al., 1991; Indyk, 1995; Horne & Hush, 1996) in threshold DTRNN to
extend them to analog DTRNN. This article gives a detailed description on
how to directly encode FSMs—including regular language recognizers—
into a variety of commonly used �rst- and second-order sigmoid recurrent
neural networks so that theweights for stable simulation are relatively small.
Small weights are of interest if the method is used to inject partial a priori
knowledge into the DTRNN before training it through gradient descent,
where activation function saturation would be a serious problem.

This article aims at expanding the current results on stable encoding of
FSM on DTRNN to a larger family of sigmoids, a larger variety of DTRNN,
and a wider class of FSM architectures by establishing a simpli�ed proce-
dure to prove the stability of a devised encoding scheme. Some of the results
presented have already been used by Kremer, Ñeco, and Forcada (1998) to
constrain the training of DTRNN so that they assume an FSM-like behavior.

Section 2 de�nes the classes of FSM and DTRNN that will be studied and
establishes architectural parallelisms between them; section 3 describes the
conditions under which a DTRNN behaves as an FSM and de�nes a general
encoding scheme based on these conditions and a set of suf�cient condi-
tions for the validity of the encoding; sections 4, 5, and 6 describe encoding
schemes for Mealy FSM, Moore FSM, and DFA; section 7 shows experimen-
tal results that support the proposed encodings and illustrate the suf�ciency

3 We thank an anonymous referee for calling our attention to this work.

Stable Encoding of Finite-State Machines 2133

of the conditions de�ning each particular encoding; �nally, concluding re-
marks and a table summarizing the encoding schemes (Table 6) may be
found in section 8.

2 De�nitions

2.1 Mealy and Moore Machines and Deterministic Finite Automata.
Mealy machines (Hopcroft & Ullman, 1979) are �nite-state machines that
act as transducers or translators, taking a string on an input alphabet and
producing a string of equal length on an output alphabet. Formally, a Mealy
machine is a six-tuple

M D (Q, S , C, d, l , qI) (2.1)

where

� Q D fq1, q2, . . . , q |Q|g is a �nite set of states.

� S D fs1, s2, . . . , s|S |g is a �nite input alphabet.

� C D fc 1, c 2, . . . , c |C |g is a �nite output alphabet.

� d: Q £ S ! Q is the next-state function, such that a machine in state
qj , after reading symbol sk, moves to state d(qj, sk) 2 Q.

� l : Q £ S ! C is the output function, such that a machine in state qj,
after reading symbol sk, writes symbol l(qj, sk) 2 C .

� qI 2 Q is the initial state in which the machine is found before the �rst
symbol of the input string is processed.

A Moore machine (Hopcroft & Ullman, 1979) may be de�ned by a sim-
ilar six-tuple, with the only difference that symbols are output after the
transition to a new state is completed instead of during the transition it-
self, and the output symbol depends on only the state just reached, that is,
l : Q ! C . The classes of translations that may be performed by Mealy ma-
chines and Moore machines are identical. Indeed, given a Mealy machine,
it is straightforward to construct the equivalent Moore machine, and vice
versa (Hopcroft & Ullman, 1979).

Deterministic �nite automata (DFA) (Hopcroft & Ullman, 1979) may be
seen as a special case of Moore machines. A DFA is a �ve-tuple

M D (Q, S , d, qI , F) (2.2)

where Q, S , d, and qI have the same meaning as in Mealy and Moore ma-
chines and F µ Q is the set of accepting states. If the state reached by the
DFA after reading a complete string in S¤ (the set of all �nite-length strings
over S , including the empty string l) is in F, then the string is accepted; if
not, the string is not accepted (or it is rejected). This would be equivalent

2134 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

to having a Moore machine whose output alphabet has only two symbols,
Y (yes) and N (no), and looking only at the last output symbol (not at the
whole output string) to decide whether the string is accepted or rejected.

2.2 Discrete-Time Recurrent Neural Networks. Discrete-time recurrent
neural networks (DTRNN)(see Haykin, 1998; Hertz, Krogh, & Palmer, 1991;
Hush & Horne, 1993; Tsoi & Back, 1997), may be viewed as neural state ma-
chines (NSM) and de�ned in a way that is parallel to the above de�nitions
of Mealy and Moore machines.4 A neural state machine N is a six-tuple

N D (X, U, Y, f, h, x0) (2.3)

in which

� X D [S0, S1]nX is the state-space of the NSM, with S0 and S1 the values
de�ning the range of outputs of the activation functions and nX the
number of state units.

� U D RnU de�nes the set of possible input vectors, with R the set of
real numbers and nU the number of input lines.

� Y D [S0, S1]nY is the set of outputs of the NSM, with nY the number of
output units (it is assumed that the activation function of output and
state units is the same).

� f: X £U ! X is the next-state function, a feedforward neural network
that computes a new state x[t] from the previous state x[t ¡ 1] and the
input just read u[t].

� h is the output function, which in thecaseof a Mealy NSMis h: X£U !
Y, that is, a feedforward neural network that computes a new output
y[t] from the previous state x[t ¡ 1] and the input just read u[t], and in
the case of a Moore NSM is h: X ! Y, a feedforward neural network
that computes a new output y[t] from the newly reached state x[t].

� x0 is the initial state of the NSM, that is, the value that will be used for
x[0].

Most classical DTRNN architectures may be directly de�ned using the NSM
scheme; the following section shows some examples (in all of them, weights
and biases are assumed to be real numbers). In all of the following it will
be assumed that f and h are de�ned for all possible values of their argu-
ments. This is consistent with their implementation as feedforward neural
networks.

4 This parallelism is inspired in the relationship established by Pollack (1991) between
DFA and a class of second-order DTRNN, under the name of dynamical recognizers.

Stable Encoding of Finite-State Machines 2135

2.2.1 Neural Mealy Machines. A commonly used second-order recurrent
neural network (Giles et al, 1992; Watrous & Kuhn, 1992; Pollack, 1991;
Forcada & Carrasco, 1995; Zeng et al., 1993) may be formulated as a Mealy
NSM described by a next-state function whose ith coordinate (i D 1, . . . , nX)
is

fi(x[t ¡ 1], u[t]) D g

0

@
nXX

jD1

nUX

kD1

Wxxu
ijk xj[t ¡ 1]uk[t] C Wx

i

1

A , (2.4)

where g: R ! [S0, S1] is a sigmoid function and an output function whose
ith coordinate (i D 1, . . . , nY) is

hi (x[t ¡ 1], u[t]) D g

0

@
nXX

jD1

nUX

kD1

Wyxu
ijk xj[t ¡ 1]uk[t] C Wy

i

1

A . (2.5)

Throughout the article, a homogeneous notation will be used for weights.
Superscripts indicate the computation in which the weight is involved: the
xxu in Wxxu

ijk indicates that the weight is used to compute a state (x) from a

state and an input (xu); the y in Wy
i (a bias) indicates that it is used to compute

an output. Subscripts designate, as usual, the particular units involved and
run parallel to superscripts.

Another Mealy NSM is Robinson and Fallside’s (1991) recurrent error
propagation network, a �rst-order DTRNN that has a next state function
whose ith coordinate is given by

fi(x[t ¡ 1], u[t]) D g

0

@
nXX

jD1

Wxx
ij xj[t ¡ 1] C

nUX

jD1

Wxu
ij uj[t] C Wx

i

1

A , (2.6)

and an output function h(x[t ¡1], u[t]) whose ith component (i D 1, . . . , nY)
is given by

hi (x[t ¡ 1], u[t]) D g

0

@
nXX

jD1

Wyx
ij xj[t ¡ 1] C

nUX

jD1

Wyu
ij uj[t] C Wy

i

1

A . (2.7)

It is easy to show (using a suitable odd-parity counterexample in the way
described by Goudreau, Giles, Chakradhar, & Chen, 1994) that Robinson
and Hallside’s (1991) networks cannot represent the output function of all
Mealy machines unless a two-layer scheme like the following is used:

hi (x[t ¡ 1], u[t]) D g

0

@
nZX

jD1

Wyz
ij zj[t] C Wy

i

1

A (2.8)

2136 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

with

zi[t] D g

0

@
nXX

jD1

Wzx
ij xj[t ¡ 1] C

nUX

jD1

Wzu
ij uj[t] C Wz

i

1

A (2.9)

(i D 1, . . . , nZ) and nZ the number of units in the layer before the actual
output layer (the hidden layer of the output function). The new architecture
will be named an augmented Robinson-Fallside network in this article.

2.2.2 Neural Moore Machines. Elman’s (1990) simple recurrent net, a
widely used Moore NSM, is described by a next-state function identical to
the next-state function of Robinson and Fallside’s (1991) net, equation 2.6,
and an output function h(x[t]) whose ith component (i D 1, . . . , nY) is given
by

hi(x[t]) D g

0

@
nXX

jD1

Wyx
ij xj[t] C Wy

i

1

A . (2.10)

The second-order counterpart of Elman’s (1990) simple recurrent net has
been used by Carrasco, Forcada, and Santamar ṍ a (1996) and Blair and Pol-
lack (1997). In that case, the ith coordinate of the next-state function is iden-
tical to equation 2.4, and the output function is identical to equation 2.10.

2.2.3 Sigmoid Functions. When DTRNN are used to learn FSM behavior
from samples (Cleeremans et al., 1989; Pollack, 1991; Giles et al., 1992; Wa-
trous & Kuhn, 1992; Maskara & Noetzel, 1992; Sanfeliu & Alquézar, 1994;
Manolios & Fanelli, 1994; Forcada & Carrasco, 1995; Ñeco & Forcada, 1996;
Gori et al., 1998), a common choice is to use continuous, real-valued acti-
vation functions for neurons in the DTRNN; this allows the construction of
gradient-descent-based learning algorithms. Most researchers have used a
bounded sigmoid function called the logistic function:

gL(x) D
1

1 C exp(¡x)
. (2.11)

This function is strictly growing, de�ned for any real value, takes positive
values, is continuous, and is bounded by 0 and 1; as a consequence, it has an
inverse. We will consider a slightly more general class of sigmoid functions
in which any element g has the same four properties as the logistic:

� Strictly growing (g0 (x) > 0 8x 2 R)

� Continuous (limx!c g(x) D g(c), 8c 2 R)

� Positive (g(x) ¸ 0 8x 2 R)

Stable Encoding of Finite-State Machines 2137

� Bounded (between S0 and S1, with S1 > S0):

g: R ! [S0, S1]. (2.12)

2.2.4 High and Low Signals. Throughout this article, the output range
of all units, [S0, S1], will be partitioned in three subintervals (as in Omlin
& Giles, 1996a)—high: [2 1, S1], low: [S0, 2 0], and forbidden:]2 0, 2 1[—with
S0 < 2 0 < 2 1 < S1. The values of 2 0 and 2 1 will be determined later. Note
that the forbidden interval may in principle be arbitrarily small; the only
thing required by the above de�nition is that high and low values form
disjoint sets and therefore cannot be confused.

De�ning valid high and low signals and forbidden intervals is custom-
ary when designing devices with digital (discrete) behavior from analog
equipment such as integrated circuits based on semiconductors, so that as-
semblies of these circuits still show the correct digital behavior (see, e.g.,
Floyd, 1996), and indeed, the goal of this article is similar: we want to en-
sure �nite-state behavior in networks built from analog activation functions
(real sigmoids).

3 Encoding

3.1 Conditions for a DTRNN to Behave Like an FSM. Recently paper,
Casey (1996) (see also Casey, 1998) has shown that a DTRNN performing a
robust DFA-like computation (a special case of FSM-like computation) must
organize its state-space in mutually disjoint, closed sets with nonempty in-
teriors corresponding to the states of the DFA. These states can be taken to be
all of the points such that if the DTRNN is initialized with any of them, the
DTRNN will produce the same output as the DFA initialized in the corre-
sponding state. Casey (1996) uses robust emulation to mean correct emulation
even under the injection of bounded additive noise into states; a similar re-
sult is described by Maass and Orponen (1998), who also prove, as does
LS ṍ ma (1997), that any discrete neural net may be simulated by an analog net
even in the presence of bounded noise. When noise is not bounded (as, for
example, zero-mean gaussian noise), Maass and Sontag (1999) have shown
that DTRNN are not even capable of recognizing all regular languages, but
only a subset of them. Our article deals with the noiseless emulation of FSM
by DTRNN, although the results presented here could easily be generalized
to the case of bounded noise.

Casey’s (1996) formulation, which is closely connected to that of Pol-
lack’s (1991) dynamical recognizer, has inspired the following de�nition. A
DTRNN N D (X, U, Y, f, h, x0) behaves like an FSM M D (Q, S , C, d, l , qI)
when two sets of conditions, one relating to representation and intepreta-
tion (R1–R4) and the other to the dynamics of the DTRNN (D1 and D2), are
held.

2138 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

R1. Representation of state. Each state qi 2 Q is assigned a nonempty re-
gion Xi µ X such that the DTRNN N is said to be in state qi at time t
when x[t] 2 Xi . Accordingly, these regions must be disjoint: Xi \ Xj D ;
if qi 6D qj. There may be regions of X that are not assigned to any state.
That is, there exists a mapping5 F : Q ! 2X from states in Q into subsets
of X and a backward mapping J : X ! Q, which assigns a state in Q to
each valid state vector in X.

R2. Representation of input symbols. Each possible input symbol sk 2 S
is assigned a different vector uk 2 U (it would also be possible to assign a
nonempty region Uk µU to each symbol). We may say that there exists
a mapping G : S ! U from symbols in S into points in U.

R3. Interpretation of output. Each possible output symbol c m 2 C is as-
signed a nonempty region Ym µ Y such that the DTRNN N is said to
output symbol c m at time t when y[t] 2 Ym. Analogously, these regions
must be disjoint: Ym \ Yn D ; if c m 6D c n. There may be regions of Y that
are not assigned to any output symbol. This may be expressed by saying
that there exists a mapping H: C ! 2Y from symbols in C into subsets
of Y, and a backward mapping K : Y ! C , which assigns a symbol in C
to each valid output vector in Y.

R4. Correctness of the initial state. The initial state of the DTRNN belongs
to the region assigned to the initial state qI, that is, x0 2 XI .
Equivalently, J (x0) D qI .

D1. Correctness of the next-state function. For any state qj and symbol sk
of M, the transitions performed by the DTRNN N from any point in the
region of state-space Xj assigned to state qj when symbol sk is presented
to the network must lead to points that belong to the region Xi assigned
to qi D d(qj, sk); formally, this may be expressed as

fk(Xj) µXi 8qj 2 Q, sk 2 S : d(qj, sk) D qi, (3.1)

where the shorthandnotation fk(A) D ff(x, uk): x 2 Ag has been used.Us-
ing the mappings just de�ned, this is equivalent to saying thatd(qj, sk) D
qi , J (f(F (qj), G (sk)) D qi.

D2. Correctness of output. In the case of Mealy NSM, for any state qj and
symbol sk of M, the output produced by the DTRNN N from any point
in the region of state-space Xj assigned to state qj when symbol sk is
presented to the network belongs to the region Ym assigned to c m D
l(qj, sk); formally, this may be expressed as

hk(Xj) µYm 8qj 2 Q, sk 2 S : l (qj, sk) D c m, (3.2)

5 We thank one of the anonymous referees for having suggested the use of explicit
mappings between the FSM and its representation in the DTRNN.

Stable Encoding of Finite-State Machines 2139

where the shorthand notation

hk(A) D fh(x, uk): x 2 Ag (3.3)

has been used. This is equivalent to saying that l (qj, sk) D c m , K (h(F
(qj), G (sk)) D c m. In the case of Moore NSM, for any state qi, the output
produced by the DTRNN N from any point in the region, the condition
may be expressed as:

h(Xj) µYm 8qi 2 Q: l (qi) D c m, (3.4)

with h(A) D fh(x): x 2 Ag. Or, equivalently, l (qi) D c m , K (h(F (qi)) D
c m.

The regions Xi µ X, i D 1, . . . , |Q | and Ym µ Y, m D 1, . . . , |C | may
have an uncountable number of points because of being subsets of Rn with
nonempty interiors for some n. However, for a �nite input alphabet S , only
a countable number of points in the state (X) and output (Y) spaces are
actually visited by the net for the set of all possible input strings over S ,
denoted S¤, which is also denumerable.

DFA represent a special case. As noted in section 2.1.3, deterministic
�nite automata may be seen as Moore or Mealy machines having an output
alphabet C D fY , N g whose output is examined only after the last symbol
of the input string is presented, and it is such that, for a Moore machine,

l(qi) D
»

Y if qi 2 F
N otherwise,

(3.5)

and for a Mealy machine,

l(qi, sk) D
»

Y if d (qi , sk) 2 F
N otherwise. (3.6)

A region in output space Y would be assigned to each one of these two
symbols: Y Y , YN , such that Y Y \ YN D ;, and the output of the NSM
would be examined only after the whole string has been processed.

3.2 A General Encoding Scheme. To encode an FSM in a DTRNN, it
suf�ces to �nd a way of assigning an initial state x0, the regions Xi µX and
Ym µY, the input vectors uk , and the functions f and h so that it ful�lls all
the conditions given in the previous section.

We propose a simple scheme to encode FSM in DTRNN that is general
enough to be applied to a variety of FSM and DTRNN architectures (but ad-
mittedly neither the only possible nor the best one can design). This scheme
is based in the customary “corner” or “exclusive” scheme in which each

2140 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

FSM state qi is encoded by DTRNN state vectors having coordinate i close
to the highest possible output value of the sigmoid (S1) and all other coor-
dinates close to the lowest possible output value (S0); each output symbol
c m is encoded in a similar way, and input vectors uk are unit vectors in R |S |

having all their coordinates equal to 0 except for the kth coordinate, which is
taken to be equal to 1. As will be shown, it is not dif�cult to �nd architectures
and weight schemes for the DTRNN to so behave.

If one would require DTRNN state values to be exactly S0 and S1, that
would require some weights to be in�nite, and the result would be similar to
not using sigmoids at all, but using steplike functions instead. If sigmoids
and �nite weights are used, neuron outputs are never exactly S0 and S1,
and this in turn “contaminates” further outputs due to feedback; this accu-
mulative “contamination” may in principle be such that outputs get so far
from S0 and S1 that the requirement of disjoint regions for each state may be
violated (a behavior that some authors call instability), but this is not always
necessarily the case. The encoding scheme proposed here establishes a way
to assign regions of DTRNN state-space to FSM states (and thus a way to
establish forbidden regions) and �xing weights to values such that DTRNN
transitions departing from points in region Xj with symbol sk always end
in Xi if d(qj, sk) D qi, that is, a scheme in which state “contamination” is
bounded to tolerable levels, and outputs are also guaranteed to be correct
(see the description of low, high, and forbidden intervals in section 2.2.4).
This is what some authors (e.g., Omlin & Giles, 1996b) would call a stable
encoding.

The “corner” scheme with tolerances is naturally related to the de�ni-
tion of low, high, and forbidden values for DTRNN states. The values of
2 0 and 2 1 will be chosen in each encoding to be as far as possible from
S0 and S1, respectively, to allow the smallest possible values for weights.
Moving away from saturating the sigmoids by using small weights and tol-
erance intervals around the limiting values S0 and S1 makes special sense
in a gradient-descent learning setting, because saturated sigmoids lead to
vanishing derivatives.

All of our sigmoid constructions use sets of weights that are either zero or
simple multiples of a single positive parameter H (H, ¡H; H /2, 3H /2), and
are such that in the limit H ! 1, they would behave exactly like classical
step-function constructions using weights that are zero or simple rational
numbers (1, ¡1, 1 /2, 3/2, etc.), taking state vectors to the exact corners of
state-space.6

The main assumption of all of our encoding schemes is the follow-
ing: there exist sets of values of 2 0, 2 1, and H such that the corresponding

6 It could also be said that our sigmoid constructions are obtained by using these
simple rational weights and setting H, the gain of all sigmoids, to a small �nite value that
still guarantees FSM-like behavior of the DTRNN. This is related to the result by Arai and
Nakano (1996) mentioned in section 1.

Stable Encoding of Finite-State Machines 2141

DTRNNs may be interpreted as behaving exactly like FSM. What follows is
a description of the common details of all the encoding schemes:

R1. Representation of state. The number of state units, nX , is taken to be
equal to the number of states in the FSM,7 |Q |. Each state qi 2 Q is assigned
a region Xi(2 0, 2 1) µX such that the DTRNN N is said to be in state qi at
time t when x[t] 2 Xi(2 0, 2 1). These regions are de�ned by

Xi(2 0, 2 1) D fx 2 X: xi 2 [2 1, S1] ^ xj 2 [S0, 2 0], 8 j 6D ig, (3.7)

that is, all the coordinates of vectors in Xi are low except for coordi-
nate i, which is high, and the region stands at a corner of the hypercube
X D [S0, S1]nX . These regions are disjoint because 2 0 < 2 1: Xi(2 0, 2 1) \
Xj(2 0, 2 1) D ; if qi 6D qj . There are points in X that are not assigned to any
region.

R2. Representation of input symbols. The number of inputs to the net-
work nU is chosen to be equal to the number of symbols in the input
alphabet, |S |. Each possible input symbol sk 2 S is assigned a vector
uk 2 U such that its jth coordinate, ujk, equals djk, that is, it is 1 if j D k
and zero otherwise. This is usually known as exclusive, one-hot, or unary
encoding of inputs.

R3. Interpretation of output. Thenumber of output units nY is chosen to be
equal to the number of symbols in the output alphabet, |C |. Each possible
output symbol c m 2 C is assigned a region Ym(2 0, 2 1) µY such that the
DTRNN N is said to output symbol c m at time t when y[t] 2 Ym(2 0, 2 1).
The regions are de�ned as follows:

Ym(2 0, 2 1) D fy 2 Y: ym 2 [2 1, S1] ^ yn 2 [S0, 2 0], 8n 6D mg, (3.8)

that is, all the coordinates of output vectors in Ym are low except for
coordinate m, which is high, and the region stands at a corner of the
hypercube Y D [S0, S1]nY . The use of identical values of 2 0 and 2 1 for
both state and output regions is not required but it is convenient because
it simpli�es the ensuing theoretical treatment. It is obvious that these
regions are disjoint, Ym(2 0, 2 1) \ Yn(2 0, 2 1) D ; if c m 6D c n, provided that
2 0 < 2 1. There are points in Y that are not assigned to any of the output
regions Ym.
As discussed in section 2.1.3 and later at the end of section 3.1, determin-
istic �nite automata may be seen as Mealy and Moore machines having
a two-symbol output alphabet C D fY , N g and whose output is exam-
ined only after the whole input string has been processed. In the general

7 As will be shown, some DTRNN architectures are computationally incapable of rep-
resenting all FSM, but in the cases studied, the original FSM M may be converted into a
new FSM M0 with a larger number of states that may itself be encoded in the DTRNN.

2142 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

encoding scheme used in this section, two output neurons would have
to be used to represent this computation. However, in the DFA case, it is
convenient (and parallel to the work by Omlin & Giles, 1996a, 1996b, and
Alquézar & Sanfeliu, 1995) to use a more distributed encoding in which a
single output neuron is used, since the state of the other neuron would be
its complement. In this case, YY D [2 1, S1] and Y N D [S0, 2 0]. Distributed
output schemes would in principle be adequate for output alphabets of
any size; our general encoding scheme uses an exclusive interpretation
of output because this is the common choice when DTRNN are used to
learn transductions of any kind, and also because it makes it easier to
derive the conditions for the DTRNN to behave like the corresponding
FSM.

R4. Correctness of the initial state. The initial state of the DTRNN N, is
x0 D fS0 C diI (S1 ¡ S0)gnX

iD1, which is in XI(2 0, 2 1) regardless of the choice
of 2 0 and 2 1 (any other state in XI (2 0, 2 1) would have been equally valid
but less convenient).

D1. Correctness of the next state function. The next-state function for all
the DTRNN architectures discussed here will be chosen to have a single
adjustable parameter H > 0. For any state qj and symbol sk of M, the
transitions performed by the DTRNN N from any point in the region
of state-space Xj(2 0, 2 1) assigned to state qj when symbol sk is presented
to the network must lead to points that belong to the region Xi(2 0, 2 1)
assigned to qi D d(qj, sk). Formally, this may be expressed as

f(H)
k (Xj(2 0, 2 1)) µXi (2 0, 2 1) 8qj, sk: d(qj, sk) D qi, (3.9)

where the superscript (H) expresses the parametric dependence on H.
This equation is derived from the general condition, equation 3.1, and
the de�nition of the regions assigned to each FSM state, equation 3.7.

D2. Correctness of output. The output function for all the DTRNN archi-
tectures discussed here will be chosen to have a single adjustable param-
eter, H > 0. In the case of Mealy NSM, for any state qj and symbol sk of
M, the output produced by the DTRNN N from any point in the region
of state-space Xj(2 0, 2 1) assigned to state qj when symbol sk is presented
to the network belongs to the region Ym(2 0, 2 1) assigned to c m D l (qj , sk).
Formally, this may be expressed as

h
(H)
k (Xj (2 0, 2 1)) µYm(2 0, 2 1) 8qj, sk: l(qj, sk) D c m, (3.10)

where the superscript (H) expresses the parametric dependence on H.
This equation is derived from the general condition, equation 3.2, and the
de�nition of the regions assigned to each FSM state, equation 3.7, and
each output symbol, equation 3.8. It would have been possible to use
different values of 2 0, 2 1, and H for output and state; this would allow

Stable Encoding of Finite-State Machines 2143

for the choice of smaller weight values but would duplicate the number
of parameters. In the case of Moore NSM, for any state qj, the output
produced by the DTRNN N from any point in the region of state-space
Xj(2 0, 2 1) assigned to state qj belongs to the region Ym(2 0, 2 1) assigned to
c m D l (qj). The condition may be expressed as:

h(H)(Xj(2 0, 2 1)) µYm(2 0, 2 1) 8qj: l (qj) D c m. (3.11)

This equation is derived from condition 3.4 and the de�nitions of the
regions assigned to each FSM state (see equation 3.7) and to each output
symbol (see equation 3.8).

Conditions R1 through R4 may be applied to all of the architectures and
will be assumed to be implicit in all of the encodings proposed; therefore,
we will focus on the dynamical conditions D1 and D2 to derive stability
conditions for each encoding.

If values of 2 0, 2 1, and H exist such that the conditions S0 < 2 0 < 2 1 < S1,
and the conditions derived for a particular DTRNN architecture from equa-
tions 3.9 and either 3.10 for a Mealy machine or 3.11 for a Moore machine are
met, then the DTRNN is guaranteed to behave like an FSM. Theproperties of
the class of sigmoid functions studied in this article, given in section 2.2.3, in
particular their monotonous growth, make it very easy to obtain conditions
on H, 2 0, and 2 1 in closed form.

These conditions are in general suf�cient but not necessary. One of the
reasons has been given in section 3.1: the set of all possible values of x and
y reachable by the DTRNN after reading any string over the alphabet S is a
denumerable set, whereas the above conditions work on nondenumerable
regions of nondenumerable state and output spaces. For example, the con-
ditions require even the worst (furthest from the corner) points of all regions
Xi(2 0, 2 1) to map onto the corresponding valid regions of state-space, while
it may be possible that those worst points are never reached from the initial
state x0 with any string over S . As a result, smaller values of H, and even
weight schemes in which all weights are not different (as in Kremer, 1996)
may still guarantee FSM-like behavior.

4 Encoding of Mealy Machines in DTRNN

4.1 Mealy Machines in Second-Order DTRNN. To encode Mealy ma-
chines in second-order DTRNN such as the ones described by equations 2.4
and 2.5, we will use nX D |Q |, nU D |S |, and nY D |C |. We propose two
possible constructions that correspond to two different versions of the next-
state function f(H)

k and the output function h(H)
k . The �rst construction uses

two sparse weight matrices, fWxxu
ijk g and fWyxu

ijk g, and a bias on each state and
output unit. Weights can only take two values, either H or 0, and all biases
are equal to ¡H /2. This construction is similar but not identical to the one

2144 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

proposed by Omlin and Giles (1996a, 1996b).8 The second construction uses
two dense weight matrices, fWxxu

ijk g and fWyxu
ijk g, but no biases. Weights can

take only two values, H and ¡H.

4.1.1 Using a Sparse Weight Matrix. In this construction9 all state and
output units are biased to assume low values by using a bias of ¡H /2;
for a state unit to assume a high value, it has to be excited by means of a
connection of weight H from a unit in a high state. The DTRNN is said to
be in state qi and outputting symbol c m at time t when its state vector x[t] is
in Xi(2 0, 2 1) and its output vector y[t] is in Ym(2 0, 2 1), that is, when all state
units are in a low state except for unit i and all output units are low except
for unit m. If the previous state x[t ¡ 1] was such that the DTRNN might be
said to be in state qj, then x[t ¡ 1] 2 Xj(2 0, 2 1) (only state unit j was high and
the rest were low). If the symbol presented at time t is sk, all the components
of the input vector u[t] are 0 except for component k. Thus, if d(qj, sk) D qi

and l (qj, sk) D c m, we want weights Wxxu
ijk and Wyxu

mjk to be high enough to
surmount the negative bias ¡H /2 and excite state unit i and output unit m
and all other weights Wxxu

i0 jk and Wyxu
m0 jk (i 6D i0 , m 6D m0) to be zero so that the

negative bias on all other state and output units brings them to a low state.
The resulting choice of weights is:

Wxxu
ijk D

»
H if d(qj, sk) D qi ,
0 otherwise,

(4.1)

Wyxu
ijk D

»
H if l (qj, sk) D c i,
0 otherwise,

(4.2)

Wx
i D ¡

H
2

, (4.3)

and

Wy
i D ¡H

2
. (4.4)

Now we want to �nd conditions on H, 2 0, and 2 1 such that the next-state
function and the output function of the DTRNN constructed in this way
are correct, that is, such that they satisfy conditions 3.9 and 3.10 (these are
conditions D1 and D2 in section 3.2). With this encoding, the dynamics of

8 They set some weights to ¡H.
9 This encoding has also been used by some of us to encode an extension of Mealy

machines (Ñeco et al., 1999) and to directly encode nondeterministic �nite automata without
converting them �rst to DFA (Carrasco et al., 1999).

Stable Encoding of Finite-State Machines 2145

the second-order recurrent neural network, represented by equations 2.4
and 2.5, may be studied in four cases: high and low states and high and low
outputs.

Condition D1: Correctness of the next state. For the particular next-
state function de�ned by equations 4.1 and 4.3, we will study the transition
d(qj, sk) D qi; that is, x[t ¡ 1] is any point in Xj(2 0, 2 1), u[t] D uk, and �nd
conditions on 2 0, 2 1, and H so that any resulting state x[t] is in Xi(2 0, 2 1).

The new state of neuron i is given by

xi[t] D g(X

l2Cik

Hxl[t ¡ 1] ¡
H
2

!

, (4.5)

where

Cik D fl: d(ql, sk) D qig, (4.6)

and,obviously, j 2 Cik. Theequation must ful�ll xi[t] ¸ 2 1 forx[t] 2 Xi(2 0, 2 1)
to hold. In the worst case, xj[t ¡1] contributes with the lowest possible high
signal (xj[t¡1] D 2 1), and the rest of the xl[t¡1] contribute with the strongest
possible low signal for all valid sigmoid functions, that is, S0 D 0; therefore,

g
¡

H
¡

2 1 ¡ 1
2

¢¢
¸ 2 1 (4.7)

guarantees a high state value for xi[t]. This worst case may indeed occur
when Cik D f jg. This will be important to explain some of the experimental
results shown in section 7.

On the other hand, for all other state units, i0 6D i, the signal has to be low,
xi0 [t] · 2 0. But some of the low signals at time t ¡ 1 may be high (far from S0
and closer to 2 0) and raise the value of xi0 [t], since there may exist states ql
such that d(ql, sk) D qi0 , which prescribe nonzero weight values Wxxu

i0lk D H;
these are the states in Ci0k (see equation 4.6). It is convenient to de�ne

Âx D max
j,k

|Cjk |, (4.8)

that is, the size of the biggest of such sets, which may be understood as
the maximum fan-in of each state in the transition diagram of the Mealy
machine. In the worst case, the Âx low signals have the highest possible
low value (2 0) and contribute through a weight H to weaken (increase) the
desired low signal for xi0 [t]. In that worst case, the equation de�ning the
state of xi0 [t] (according to equations 2.4, 4.1, and 4.3)

xi0 [t] D g

0

@
X

l2Ci0 k

Hxl[t ¡ 1] ¡
H
2

1

A (4.9)

2146 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

reduces to

g
¡

H
¡

Âx2 0 ¡ 1
2

¢¢
· 2 0, (4.10)

an equation that may be used to guarantee that all i0 6D i are low.

Condition D2: Correctness of the output. For the particular output func-
tion de�ned by equations 4.2 and4.4 we will study the processl(qj, sk) D c m;
that is, x[t ¡ 1] is any point in Xj(2 0, 2 1), u[t] D uk, and �nd conditions on
2 0, 2 1, and H so that any resulting output y[t] is in Ym(2 0, 2 1). If we proceed
analogously to the next-state study above, we obtain two conditions that
guarantee a high value of ym[t] and a low value for ym0 [t]—one identical to
equation 4.7 and the other one given by

g
¡

H
¡

Ây 2 0 ¡ 1
2

¢¢
· 2 0, (4.11)

with

Ây D max
m,k

|Dmk |, (4.12)

the maximum fan-in of the output function and

Dmk D fl: l (ql, sk) D c mg. (4.13)

Therefore, if one can �nd 2 0 and 2 1 such that S0 < 2 0 < 2 1 < S1 and such
that conditions 4.7, 4.10, and 4.11 are met, then the second-order DTRNN
with the dynamics de�ned by equations 2.4 and 2.5 and constructed ac-
cording to equations 4.1 through 4.4 behaves like the corresponding Mealy
machine. Conditions 4.10 and 4.11 may be ensured by a more stringent
condition,

g
¡

H
¡

Â2 0 ¡ 1
2

¢¢
· 2 0, (4.14)

with Â D max(Âx, Ây) (note that always Â · nX). The conditions derived
here are suf�cient but not necessary—due to the use of worst cases that may
not occur in general and to the merging of conditions into more stringent
ones—and thus, smaller values of H, larger values of 2 0, and smaller values
of 2 1 may still be adequate for the second-order DTRNN to behave like the
corresponding Mealy machine.

Due to the form of equations 4.7 and 4.14, not only sets of values of H,
2 0, and 2 1 can be found for any Â > 1 (for any Mealy machine), but it is also
the case that a minimum positive value of H can be found for each fan-in

Stable Encoding of Finite-State Machines 2147

Â. Clearly, reducing H increases 2 0 and reduces 2 1. One can directly search
for the minimum possible H and tabulate the results for each possible value
of Â. Note that conditions for H, 2 0, and 2 1 are independent of the size of
the input alphabet S . This will indeed be the case in all the constructions
presented in this article.

These values are easily obtained by realizing that the most stringent
condition is 4.14. One can turn it into an equation, solve for H, and take
@H /@2 0 D 0. The resulting equation reads

g¡1(2 0)

2 0 ¡ 1
2Â

D
1

g0
¡
g¡1(2 0)

¢ , (4.15)

with 0 < 2 0 < 1/2Â and g0 (x) the derivative of the sigmoid function. After
solving for 2 0 (for example, using an iterative formula), the resulting value
may be used in equation 4.14 to obtain the minimum value for H and in
equation 4.7 to obtain the corresponding value of 2 1.

In particular, g is the logistic function gL; then S0 D 0, S1 D 1, and the
resulting values of 2 0, 2 1, and minimum H for some values of Â are shown
in Table 1, where the superscripts C and ¡ on some numbers denote values
in�nitesimally smaller or larger than the one given. Taking into account that
1 /g0

L(g¡1
L (2 0)) D 2 ¡1

0 ¡ (1 ¡ 2 0)¡1, a possible iteration scheme is

2 0[t C 1] D (g¡1
L (2 0[t])

2 0[t] ¡ 1
2Â

¡ 1
1 ¡ 2 0[t]

!¡1

. (4.16)

A few iterations starting with an intermediate value in (0, 1 /2Â) such as
2 0[0] D 1/4Â are enough for any Â > 1.

As expected, the minimum H is a growing function of Â, shown in Fig-
ure 1,

H D g(Â), (4.17)

that grows slower than log(Â) (the ratiog(Â) / log(Â) is a decreasing function
of Â). On the other hand, 2 0 is a decreasing function of Â, shown in Figure 2,

2 0 D 2 (Â) (4.18)

which vanishes slightly faster than 1 /Â.
The forbidden interval (2 0, 2 1) is rather wide, except in the case Â D 1,

where it is in�nitesimally small. Section 7 shows experimental results that
illustrate the theoretical results obtained here.

Equation 4.7 corresponds to a worst-case situation that may indeed occur
when the only transition into an FSM state qi when reading a symbol sk
comes from a single state qj. In particular, if these transitions form loops

2148 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

Table 1: Minimum Values of Weights
and Limiting Values for Encoding a
Mealy Machine on a Second-Order
DTRNN with Biases Using the Logistic
Sigmoid Function.

Â H 2 0 2 1

1 4C 0.5¡ 0.5C

2 7.17799 0.0753324 0.965920
3 8.36131 0.0415964 0.982628
4 9.14211 0.0281377 0.988652
7 10.5829 0.0136861 0.994704

10 11.4664 0.00879853 0.996648

Note: The value of 2 0 is obtained through iter-
ation of equation 4.16; the corresponding val-
ues of H and 2 1 are obtained by directly solv-
ing equations 4.14 and 4.7, respectively.

Figure 1: The function g.

such as d(qi, sk) D qi, the DTRNN happens to iterate function g(Hx ¡ H /2),
which happens to have a �xed-point attractor exactly at x¤ D 2 1 if H is set
to the theoretical value. For those FSM, if H is set to a value that is slightly
lower than the theoretical value, then the attractor moves to a value x¤ < 2 1
and enters the forbidden interval, and after a few iterations, the DTRNN
develops invalid representations of state. However, for other FSMs that do
not show these loops, it may happen that a lower value of H may still be
compatible with the validity of all possible representations of state. This has
to be taken into account when interpreting some of the experimental results
in section 7.

Stable Encoding of Finite-State Machines 2149

Figure 2: The function 2 .

4.1.2 Using a Dense Weight Matrix. An alternative encoding10 uses no
biases, as in the original work by Giles et al. (1992). In this construction,
weights of H are used as in the same way as in the previous construction,
but weights of ¡H are used instead of 0. The effect of the negative weights
is to lower the value of a state or output unit when it has to be low, with a
similar effect to that of a negative bias.

The values of weights are thus given by:

Wxxu
ijk D

»
H if d(qj, sk) D qi

¡H otherwise (4.19)

and

Wyxu
ijk D

»
H if l (qj, sk) D c i

¡H otherwise
. (4.20)

The conditions for this construction to guarantee a correct next state and a
correct output are derived in a similar way as that of the previous section,
that is, from conditions D1 and D2 of section 3.2.

Condition D1: Correctness of the next state. When the Mealy machine
moves reads symbol sk, state xi[t] is computed as follows:

xi[t] D g

0

@
X

l2Cik

Hxl[t ¡ 1] C
X

l 62Cik

(¡H)xl[t ¡ 1]

1

A . (4.21)

10 Which has already been preliminarily presented by two of us (Kremer et al., 1998).

2150 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

If the 2ODTRNN may be said to be in state qj at time t ¡ 1, then x[t ¡ 1]
is in Xj(2 0, 2 1). If the input presented to it, u[t], is uk, representing sk, and
d(qj, sk) D qi, then the lowest value of xi[t]—which should be larger than 2 1
for x[t] to be in Xi (2 0, 2 1), that is, a valid neural representation of state qi in
the Mealy machine—is obtained when Cik D f jg (that is, d(ql, sk) 6D qi for all
l 6D j, a worst case that may never occur in a given automaton), xj[t¡1] D 2 1,
and all other xl[t ¡1], l 62 Cik are equal to 2 0. In this worst case, the following
inequality results:

g (H2 1 ¡ (|Q| ¡ 1)H2 0) ¸ 2 1. (4.22)

Now let us consider the values of all xi0 [t], i0 6D i at time t, which have to
be low (smaller than 2 0) for x[t] to be in Xi(2 0, 2 1), that is, a valid neural
representation of qi. The worst situation would be when d(ql, sk) D qi0 for
all ql except for qj. In this case,

xi0 [t] D g

0

@¡Hxj[t ¡ 1] C
X

l 6D j

Hxl[t ¡ 1]

1

A . (4.23)

The worst possible set of values for x[t ¡ 1] that is still in Xj (2 0, 2 1), that is, a
valid neural representation of qj[t] (the set of values leading to the highest
value for xi0 [t]), is obtained when xj[t ¡ 1] takes the lowest allowed value
(2 1), and all other xl[t ¡ 1], l 6D j take their highest allowed value (2 0). The
resulting inequality is

g (¡H2 1 C (|Q | ¡ 1)H2 0) · 2 0. (4.24)

Condition D2: Correctness of output. A parallel study of the output dy-
namics of this construction yields two conditions that are exactly equivalent
to equations 4.22 and 4.24.

Values for 2 0, 2 1, and H such that S0 < 2 0 < 2 1 < S1 and that ful�ll con-
ditions 4.22 and 4.24 guarantee that the 2ODTRNN constructed according
to equations 4.19 and 4.20 behaves exactly like the corresponding Mealy
machine.

To �nd the minimum value of H satisfying these equations for a given
|Q |, one may use a direct search in (2 0, 2 1) space. If g is the logistic function
gL, the solution is found to have symmetric low and high intervals,11 that

11 It is easy to prove why the solution for the logistic function gL satis�es 2 0 C 2 1 D 1:
let us suppose that we have 2 0 > 1 ¡ 2 1 and H satisfying both inequalities 4.22 and 4.24,
and de�ne 2 0

0 D 1 ¡ 2 1 ; clearly 2 0
0 < 2 0 and therefore equation 4.22 is also satis�ed by

the pair (2 0
0 , 2 1). Applying the transformation gL (¡x) D 1 ¡ gL (x) yields the inequality

gL (¡H2 1 C (|Q | ¡ 1)H2 0
0) · 1 ¡ 2 1 D 2 0

0 which shows that the pair (2 0
0, 2 1) also satis�es

equation 4.24.

Stable Encoding of Finite-State Machines 2151

Table 2: Values of Weights
and Limiting Values for En-
coding a DFA on a Second-
Order DTRNN Without Bi-
ases.

|Q| H 2 0

2 2C 0.5¡

3 3.11297 0.121951
4 3.58899 0.0753324
5 3.92227 0.0538956
6 4.18066 0.0415964
7 4.39206 0.0336391

10 4.86330 0.0210033
30 6.22427 0.00538437

Note: 2 1 D 1 ¡ 2 0 .

is, 2 0 C 2 1 D 1. In this case, equations 4.22 and 4.24 both reduce to

gL (¡H C |Q |H2 0) · 2 0, (4.25)

which may be solved similarly to equation 4.14 by realizing that it may be
rewritten as

gL

¡
2H

¡
|Q |

2
2 0 ¡ 1

2

¢¢
· 2 0. (4.26)

Solutions are, accordingly, H D (1/2)g(|Q | /2) and 2 0 D 2 (|Q| /2); that is,
values of H obtained for this construction are smaller than (less than half of)
those obtained for the construction in the previous section, and the forbid-
den interval is narrower.12 Some values are shown in Table 2. Experimental
results supporting the validity of this construction are given in section 7.

4.2 Mealy Machines in First-Order DTRNN. First-order, single-layer
Mealy neural state machines, also known as Robinson and Fallside’s (1991)
recurrent error propagation networks, de�ned by equations 2.6 and 2.7,
cannot perform all possible Mealy machine computation if an exclusive
interpretation of output (one neuron per output symbol) is used. This sec-
tion shows how to encode any Mealy machine in the modi�ed architec-
ture whose next-state function is computed by a single-layer feedforward

12 It is interesting to note here that for the case |Q | D 2, if instead of de�ning a forbidden
interval that �nally ends up being of zero measure, one simply divides the range (0, 1) of
the logistic function in two halves representing low and high signals, it may be proved
that any weight H > 0 still guarantees the correct behavior. This will be apparent in the
results shown in section 7.

2152 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

network of the form given in equation 2.6 and whose output function is
computed by a two-layer feedforward neural network of the form given in
equations 2.8 and 2.9.

The encoding will use nU D |S |, nY D |C |, nX D |Q | |S |, and nZ D |C | |S |.
The reasons for the last two choices will be clear in the following.

The construction de�nes a new Mealy machine M0 D (Q0 , S , C 0 , d 0 , l 0 , q0
I)

(the split-state, split-output Mealy machine) as follows:

� The new set of states is Q0 D Q £ S , that is, new states are pairs (qi , sk).

� The new set of outputs is C 0 D C £ S , that is, new outputs are pairs
(c m, sk).

� The new next-state function d0 : Q0 £ S ! Q0 is de�ned as follows:

d0 ((qi, sk), sl) D (d (qi , sl), sl), (4.27)

that is, the second component of each state in Q0 represents the symbol
that was read before reaching it.

� The new output function l 0: Q0 £ S ! C 0 is de�ned as follows:

l 0 ((qi, sk), sl) D (l (qi, sl), sl). (4.28)

� The new initial state q0
I is any of the states (qI , sk), sk 2 S .

It isnotat all dif�cult to show that the split-state, split-output Mealy machine
M0 performs the same �nite-state computation (transduction) as M, if all the
symbols in each of the sets f(c m, sk): sk 2 Sg output by M0 are interpreted
as c m. Note that after splitting, some of the states in Q0 and some of the
outputs in C 0 may be useless (states may be inaccessible from the initial
state or outputs may never be produced) and could be eliminated before
proceeding with the construction.

The proposed scheme encodes the split-state, split-output Mealy ma-
chine M0 , hence the need for nX D |Q0 | D |Q | |S | state units and nY D |C 0 | D
|C | |S | hidden units in the output function. Each state unit (resp., each hid-
den unit in the output function) is made to correspond to (and numbered
as) a state in Q0 (resp., an output in C 0). The values of weights and biases
(as generalized from Alquézar & Sanfeliu’s, 1995, construction of DFAs on
Elman, 1990, nets) for the next-state function are given by:

Wxx
ij D

»
H if d0 (q0

j , sk) D q0
i for some sk 2 S

0 otherwise,
(4.29)

Wxu
ik D

»
H if d 0 (q0

j , sk) D q0
i for some q0

j 2 Q0

0 otherwise,
(4.30)

Wx
i D ¡3H

2
, 8i D 1, . . . , nX. (4.31)

Stable Encoding of Finite-State Machines 2153

The construction works as follows: a state neuron i will be excited to a
high state only if both a state neuron j such that d 0(q0

j , sl) D q0
i for some sl is

high and an input k such thatd 0 (q0
l, sk) D q0

i for some q0
l is also high, because a

bias of ¡3H /2 has to be surmounted (the bias of ¡3H /2 is necessary because
we want the output of a unit to be high only when at least two inputs—one
from a state unit and another one from an input signal—contribute with
a value around CH). The split-state, split-output Mealy machines are such
that this is possible only if d 0 (q0

j , sk) D q0
i; otherwise, the bias will bring the

state unit i to a low state.13

The output function is de�ned by the following weight scheme:

Wzx
ij D

»
H if l 0 (q0

j , sk) D c 0
i for some sk 2 S

0 otherwise,
(4.32)

Wzu
ik D

»
H if l 0 (q0

j , sk) D c 0
i for some q0

j 2 Q0

0 otherwise,
(4.33)

Wz
i D ¡3H

2
8i D 1, . . . , nZ. (4.34)

The construction works similarly to the next-state function: a hiddenneuron
in the output section of the net, i, will be excited to a high state only if both a
state neuron j such that l 0 (q0

j , sl) D c 0
i for some sl is high and an input k such

thatl 0 (q0
l, sk) D c 0

i for some q0
l is also high, because a bias of ¡3H /2 has to be

surmounted. The split-state, split-output Mealy machines are such that this
is possible only if l 0 (q0

j , sk) D c 0
i ; otherwise, the bias will bring the hidden

unit i to a low state.
Finally, the output layer collects the activations of hiddenoutput nodes to

produce output that may be interpreted in an exclusive fashion. To achieve
this, each output unit m is biased with ¡H /2 to remain in a low state unless
it receives, through a weight of H, a high signal from one of the |S | hidden
units corresponding to symbol c m. The construction is as follows:

Wyz
ij D

»
H if c 0

j D (c i, sk) for some sk 2 S
0 otherwise,

(4.35)

Wy
i D ¡

H
2

8i D 1, . . . , nY. (4.36)

13 This next-state function construction differs from the one proposed by Kremer (1996)
in that the same parameter H is used for all weights. Kremer used different values for
each state unit, and the output interval of the logistic function [0, 1] was divided in low,
forbidden, and high interval in a symmetric fashion (2 0 C 2 1 D 1).

2154 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

In contrast to Alquézar & Sanfeliu’s (1995) construction, thenext-stateweights
and biases are given in terms of a single parameter (H) to simplify the con-
struction, but it would not be dif�cult to use different parameters and de�ne
conditions to determine their values; the conditions for stability are derived
from conditions D1 and D2 in section 3.2.

Condition D1: Correctness of the next state. Again, we want to �nd
conditions to ensure that whenever the DTRNN is in any state x[t ¡1] in the
region Xj(2 0, 2 1) corresponding to state q0

j and reads as input u[t] the vector
uk corresponding to symbol sk, it always produces a next state in region
Xi(2 0, 2 1) if d 0 (q0

j , sk) D q0
i, according to equation 3.9.

Taking into account the weight and bias prescriptions—equations 4.29
through 4.31—and the special characteristics of the split-state transition
function, equation 2.6 computes xi[t] as follows:

xi[t] D g(X

l2Cik

Hxl[t ¡ 1] ¡ H
2

!
, (4.37)

identical to equation 4.5, where

Cik D fl: d 0 (q0
l, sk) D q0

ig (4.38)

is the set of the indices of states that may contribute to the activation of
unit i (note that, due to the splitting of states, if state q0

i is reachable through
transitions involving symbol sk, it cannot be reached through transitions
involving other symbols). Obviously, q0

j 2 Cik. For x[t] to be in Xi(2 0, 2 1),
equation 4.37 must ful�ll xi[t] ¸ 2 1. The worst case is, as in section 4.1.1,
when xj[t ¡ 1] contributes the lowest possible high signal, 2 1 and all other
signals are the lowest possible low signal, that is, S0 D 0 (for any sigmoid
function in the class considered). In that case, we recover equation 4.7. The
conditions that ensure that all other xi0 [t], i0 6D i are low, that is, xi0 [t] · 2 0,
are identical to those discussed in section 4.1.1, and lead to a worst-case
condition identical to condition 4.10.

Therefore, if conditions 4.7 and 4.10 and S0 < 2 0 < 2 1 < S1 are met, it is
guaranteed that the augmented Robinson and Fallside network will always
exhibit the next-state behavior of the corresponding Mealy machine.

Condition D2: Correctness of the output. To ensure that the output is
correct, we have to ensure, �rst, that the units in the hidden layer represent
the split output of the split-state, split-output Mealy machine M0 correctly
and, second, that the output layer collects these representations correctly
into an output that may be interpreted in an exclusive fashion.

Let us call Z D [S0, S1]nZ the set of possible values of the hidden output
layer. A region Zi (2 0, 2 1) 2 Z will be assigned to each symbol c 0

i in C in the

Stable Encoding of Finite-State Machines 2155

same way as regions Yi(2 0, 2 1) 2 Y D [S0, S1] are assigned to each symbol c i
in C (see equation 3.8).

First, we want to �nd conditions to ensure that whenever the DTRNN
is in any state x[t ¡ 1] in the region Xj(2 0, 2 1) corresponding to state q0

j and
reads as input u[t] the vector uk corresponding to symbol sk, it always
produces a hidden output z[t] in region Zi(2 0, 2 1) ifl 0 (q0

j , sk) D c 0
i , according

to equation 4.9.
Taking into account the weight and bias prescriptions—equations 4.32

through 4.34—equation 2.9 computes zi[t] as follows:

zi[t] D g(X

l2Dik

Hxl[t ¡ 1] ¡
H
2

!
, (4.39)

very similar to equation 4.37, where

Dik D fl: l 0 (q0
l, sk) D c 0

i g. (4.40)

Obviously, q0
j 2 Cik . For z[t] to be in Zi(2 0, 2 1) equation 4.39 must ful�ll

zi[t] ¸ 2 1. The worst case is, as in section 4.1.1, when xj[t ¡1] contributes the
lowest possible high signal, 2 1 and all other signals are the lowest possible
low signal, that is, S0 D 0 (for any sigmoid function in the class considered).
In that case, we recover equation 4.7. The conditions that ensure that all
other zi0 [t], i0 6D i are low, that is, zi0 [t] · 2 0, are identical to those discussed
in section 4.1.1, and lead to a worst-case condition identical to condition 4.11
with

Ây D max
m,k

|Dmk |. (4.41)

That is, if conditions 4.7 and 4.11 and S0 < 2 0 < 2 1 < S1 are met, then the
DTRNN is guaranteed to produce a correct representation of output in the
hidden output layer, provided that the state representations are correct.

Second,we have to ensure that the output layer collects the hiddenoutput
representations in a way that it produces a correct output. We have to �nd
conditions ensuring that for anyc 0

j 2 C 0 , any z[t] 2 Zj(2 0, 2 1) is mapped into
an output y[t] 2 Yi if c 0

j D (c i, sk) for some sk 2 S .
Taking into account the weight and bias prescriptions (see equations 4.35

and 4.36), equation 2.8 computes the mth component of the output vector
according to

ym[t] D g

0

@
X

c 0
l D(c m ,sk)

Hzl[t] ¡
H
2

1

A . (4.42)

If m D i, the worst case for this equation (lowest possible value of yi[t]) is
when all zl[t] are 0 (S0 D 0 is the worst case for all sigmoids) except for zj[t],

2156 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

which is exactly 2 1. Since we want yi[t] to be high, that is, yi[t] ¸ 2 1, we
obtain the condition

g
¡

H
¡

2 1 ¡ 1
2

¢¢
¸ 2 1, (4.43)

which is identical to condition 4.7. If m 6D i, then we want ym[t] to be low.
The worst case for equation 4.42 (highest value of ym[t]) occurs when all
zl[t] have the highest valid value, 2 0. Since we want ym[t] to be low, that is,
ym[t] · 2 0, we obtain the condition

g
¡

H
¡

nU 2 0 ¡ 1
2

¢¢
· 2 0. (4.44)

As in section 4.1.1, the single condition, 4.14, ensures that all three condi-
tions—4.10, 4.11, and 4.44—are simultaneously ful�lled, but in this case

Â D max(Âx, Ây, nU). (4.45)

Therefore, if H, 2 0 and 2 1 are chosen according to conditions 4.7, 4.14, and
4.45, and S0 < 2 0 < 2 1 < S1, then the augmented Robinson and Fallside
network behaves like the corresponding Mealy machine. In the case of the
logistic function, g(x) D gL(x), the results obtained for H are identical to
those discussed in section 4.1.1.

5 Encoding of Moore Machines in DTRNN

5.1 Moore Machines in First-Order DTRNN. We will show that Moore
machines can be encoded in Elman’s (1990) simple recurrent nets, a class
of �rst-order neural Moore machines whose dynamics is de�ned by equa-
tions 2.6 and 2.10. Elman nets have been proved to be computationally
equivalent to any DFA if a step function is used (Kremer, 1995). The need
for a specialized output layer was explained earlier by Goudreau et al.
(1994), who showed that there are DFA whose computation cannot be rep-
resented on a �rst-order DTRNN without the additional layer. Alquézar
and Sanfeliu (1995) adapted Minsky’s (1967) construction and showed that
an Elman network with sigmoid functions taking and returning rational
numbers could stably represent a DFA. Here the construction is extended
to real-valued sigmoid functions and Moore machines.

The split-state Moore machine M0 equivalent to a Moore machine M is
de�ned analogously to the split-state, split-output Mealy machine of sec-
tion 4.2; the only difference is the output function, l 0 : Q0 ! C , which is
de�ned as follows:

l 0 ((qi, sk)) D l(qi). (5.1)

Stable Encoding of Finite-State Machines 2157

Accordingly, the encoding uses nU D |S | input lines as usual, nY D |C |
output lines, and nX D |S | |Q | state units. Condition D1 in section 3 leads
to the same conditions as in section 4.2, because the next-state function is
constructed identically: equations 4.7 and 4.10 and S0 < 2 0 < 2 1 < S1.
Therefore it suf�ces to consider condition D2 (correctness of output).

The output function is de�ned by the following weight scheme:

Wyx
ij D

»
H if l (q0

j) D c i

0 otherwise,
(5.2)

Wy
i D ¡

H
2

i D 1, . . . , nY, (5.3)

so that an output unit m is biased to be in a low state unless one of the state
units i such that l(q0

i) D c m is high enough to surmount that bias.
We want to �nd conditions to ensure that, whenever the DTRNN has

reached any state x[t] in the region Xi(2 0, 2 1) corresponding to state q0
i , it will

always produce an output vector y[t] in region Ym(2 0, 2 1) if l 0 (q0
i, sk) D c m,

according to equation 3.11.
Taking into account the weight and bias prescriptions (see equations 5.2

and 5.3), equation 2.10 computes the jth component of the output vector
according to

yj[t] D g

0

@
X

l: l 0 (q0
l
)Dc j

Hxl[t] ¡
H
2

1

A . (5.4)

If j D m, the worst case for this equation (lowest possible value of ym[t]) is
when all xl[t] are 0 (S0 D 0 is the worst case for all sigmoids) except for xi[t],
which is exactly 2 1. Since we want ym[t] to be high, that is ym[t] ¸ 2 1, we
obtain a condition identical to condition 4.7. If j 6D m then we want yj[t] to
be low. The worst case for equation 5.4 (highest value of yj[t]) occurs when
all xl[t] have the highest valid value, 2 0. Since we want yj[t] to be low, that
is, yj[t] · 2 0, we recover condition 4.11, with the maximum output fan-in Ây
de�ned as follows:

Ây D max
m

|Dm |, (5.5)

where

Dm D fl: l(q0
l) D c mg. (5.6)

As in section 4.1.1, a single condition, 4.14, ensures that both condi-
tions 4.10 and 4.11 are simultaneously ful�lled. In the case of the logistic
function, g(x) D gL(x), the results obtained for H are identical to those dis-
cussed in section 4.1.1.

2158 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

5.2 Moore Machines in Second-Order DTRNN. A Mooremachinemay
be straightforwardly encoded in a second-order Moore NSM (Blair & Pol-
lack, 1997; Carrasco et al., 1996) with a next-state function de�ned by equa-
tion 2.4 and an output function de�ned by equation 2.10 using nU D |S |,
nX D |Q |, nY D |C |:

� If the construction with biases de�ned in section 4.1.1 is used, then
the conditions to be ful�lled are S0 < 2 0 < 2 1 < S1, equation 4.7 and
equation 4.14, with Â D max(Âx, Ây), Âx de�ned by equation 4.8 and
Ây de�ned by equation 5.5 (but dropping the primes in equation 5.6).
The values of H for the logistic sigmoid function gL(x) are identical to
those obtained in section 4.1.1.

� If the construction without biases de�ned in section 4.1.2 is used, then
the conditions to be ful�lled are S0 < 2 0 < 2 1 < S1, equation 4.22, equa-
tion 4.24 and equation 4.11, with Ây de�ned as in equation 5.5. Note
that conditions 4.22 and 4.24 de�ne H as a function of the number of
states |Q|, whereas condition 4.10 de�nes H as a function of the maxi-
mum output fan-in Ây. To look for the minimum value of H ensuring
both conditions for a given FSM, one may look for the minimum H in
both sets of equations and then take the larger one. Note that even if
Ây · |Q |, the values of H de�ned by conditions 4.22 and 4.24 are much
lower, as discussed at the end of section 4.1.2, and therefore Ây is likely
to de�ne H in many cases.

6 Encoding of Deterministic Finite Automata in DTRNN

DFA will be encoded in DTRNN as a special case of Mealy and Moore
machines, with a single output neuron, as described in section 3, even when
DFA may actually be seen as outputting two different symbols, Y (input
string accepted) and N (input string not accepted). Any of the constructions
described for Mealy and Moore machines are valid, but here the output
neuron devoted to the rejection symbol N is eliminated. When using �rst-
order DTRNN, Elman nets will be used as Moore NSM, and the DFA will
be encoded as in section 5.1. When using second-order DTRNN, the most
convenient constructions are those described in sections 4.1.1 and 4.1.2,
where the DFA would be implemented as a Mealy machine. This section will
detail only the weight and bias prescriptions for output, because the next-
state functions are identical to those described in the sections mentioned.

6.1 Encoding DFA in Elman Nets. Encoding a DFA in an Elman net
is accomplished in the same way as for a Moore machine, as described
in section 5.1. The construction is therefore very similar to that used by
Alquézar and Sanfeliu (1995): a new split DFA M0 D (Q0 , S , d 0 , q0

I , F0) is built
from M D (Q, S , d, qi, F) (see section 2.1.3) by splitting states (Q0 , d0 , and
q0

I are de�ned as in section 4.2 and F0 D f(qi, sk): qi 2 Fg; then the next-

Stable Encoding of Finite-State Machines 2159

state function is encoded according to equations 4.29 through 4.31, and the
output function is constructed as follows:

Wyx
1j D

»
H if q0

j 2 F0

0 otherwise,
(6.1)

and

Wy
1 D ¡

H
2

. (6.2)

The de�nition of Ây used here is Ây D |F0 |, instead of equation 5.5. The
smallest values of H guaranteeing this construction with the logistic sigmoid
gL(x) are therefore identical to those obtained in section 4.1.1.

6.2 Encoding DFA in Second-Order DTRNN. Encoding a DFA in a
second-order net with biases is accomplished in the same way as for a
Mealy machine, as described in section 4.1.1; the construction is therefore
very similar to that used by Omlin and Giles (1996a, 1996b) but not identical.
The next-state function is encoded according to equations 4.1 and 4.3, and
the output function is constructed as follows:

Wyxu
1jk D

»
H if d(qj, sk) 2 F
0 otherwise,

(6.3)

Wy
1 D ¡H

2
. (6.4)

The de�nition of Ây used here is Ây D |F|, instead of equation 4.12. The
smallest values of H guaranteeing this construction with the logistic sigmoid
gL(x) are therefore identical to those obtained in section 4.1.1.

Encoding a DFA in a second-order net without biases is accomplished
in the same way as for a Mealy machine, as described in section 4.1.2. The
next-state function is encoded according to equation 4.19, and the output
function is constructed as follows:

Wyxu
1jk D

»
H if d(qj, sk) 2 F

¡H otherwise. (6.5)

The smallest values of H guaranteeing this construction with the logistic
sigmoid gL(x) are those given in Table 2.

7 Experimental Results

In this section we show results of experiments performed to estimate the
minimum value of H needed to ensure correct encodings of randomly gen-
erated Mealy and Moore machines. For each machine, we looked exper-
imentally for this value by searching for H(L), the minimum value of H
needed to ensure the correct behavior of the network for strings of length L.

2160 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

The experimental results shown in this section are not intended to prove
the validity of the constructions described in the previous sections, but
instead aim at illustrating it and also at showing that the upper bounds
given by the theoretical treatment are in many cases very high, due to the
imposition of necessary conditions based on worst-case situations that are
not expected to occur for most FSM and DTRNN.

Experimental results will be shown for the following constructions:

� Mealy machines in second-order Mealy NSM, with and without bias
(described in sections 4.1.1 and 4.1.2)

� Mealy machines in augmented Robinson and Fallside networks (�rst-
order Mealy NSM, described in section 4.2)

� Moore machines in Elman nets (described in section 5.1)

� Moore machines in second-order Moore NSM with biases (described
in section 5.2)

We have decided not to show any results for deterministic �nite automata
because they may be easily treated as special cases of Mealy and Moore
machines, as shown in section 6.

The results of three kinds of experiments will be shown:

� Experiments to estimate a value of H for small FSMby runningall input
strings up to a given length and depicting the asymptotic behavior of
H (section 7.1)

� Experiments to estimate a value of H for small FSM from random sets
of very long strings

� Experiments to show the correct behavior of H for large FSM

All of the experiments will be performed on binary input and output alpha-
bets in view of the result that the values of H do not depend on the size of
the alphabet.

7.1 Asymptotical Values of H for Small FSM. This section describes
the results of experiments performed to estimate the minimum value of
H needed to ensure a correct encoding of a �nite-state machine in each
of the encodings studied in this article. This value can only be estimated,
since there is just one obvious way of performing the experiments: directly
searching (to a given precision, 0.01 in our calculations) for the minimum
value of H needed to ensure correct behavior of the network for strings of
increasing length (this value is H(L)). The network is taken to be behaving
correctly for a given length L when the DTRNN produces correct output for
all strings of length L. In our experiments in this section, L D 1, . . . , 20.

We use two criteria to de�ne a correct output of the network: a weak
criterion, using a forbidden interval of zero measure (2 0 D 2 1 D 0.5), and a
strong criterion, using the theoretical forbidden interval computed for each

Stable Encoding of Finite-State Machines 2161

network (S0 < 2 0 < 2 1 < S1). As will be shown, the value of H(L), increases
with L, is always smaller than or equal to the theoretical upper bound Hth
estimated for the corresponding construction for all the lengths tested (up
to length 20), and seems to tend to stabilize around a value

Hexp D max
L>0

H(L) (7.1)

(the overall shape of H(L) vaguely resembles a noisy hyperbolic tangent in
most cases).

For each of the encoding schemes studied, 10 FSM (5 Mealy and 5 Moore
machines) with S D f0, 1g and C D f0, 1g with a given number of states
|Q | or with a given fan-in Â (depending on the encoding) were randomly
generated, and the values of H(L) for L D 1, 2, . . . , 20 were computed to a
precision of 0.01 for each one of the FSM. The number of states (resp., fan-in)
of the generated automata was |Q | (resp., Â) D 2, 3, 4, 7, 10. We have found
the same asymptotical behavior for all the size parameter values used in the
experiments.

We have found that the values of H obtained in our simulations are in
general very insensitive to the precision with which the calculations of the
states of each unit are performed (as tested using a parameter to control the
number of signi�cant digits returned by the sigmoid gL(x)). The only prob-
lematic case occurred when the minimum H(L) appeared to be a positive
in�nitesimal, that is, almost zero, for any length (this happens for two-state
Mealy machines in the dense-weight version of the 2ODTRNN encoding,
section 4.1.1, even though the theory prescribes an upper bound of 2); in
this last case, the results were strongly dependent on precision. We found
indeed that H(L) was a decreasing function of precision, and that it could
be made as small as desired by increasing the number of signi�cant �gures
used in the calculations.

In Figures 3 to 7 we show the results obtained for the FSM of size 10
(number of states |Q | or fan-in Â, depending on the construction). In these
�gures we represent normalized values of H(L) (i.e., H(L) /Hth, where H(L)
is the experimental value of H obtained for each string length and Hth is
the theoretical value of H obtained for each encoding). We show the results
using error bars with the minimum, average, and maximum value of the
normalized experimental H obtained for each encoding and string length
L, L D 1, 2, . . . , 20. The results for the other FSM of sizes 2, 3, 4, and 7 are
very similar; Table 3 summarizes the results for all these FSM, normalized
as H(20) /Hth.

It is important to comment on the fact that when the forbidden interval is
enforced, some constructions, all of them based in condition 4.7 (�rst-order
constructions and second-order constructions with biases), show experi-
mental values of H that are equal to the theoretical value. As discussed at
the end of section 4.1.1, this happens for some kinds of FSM with loops and
is due to the fact that for the theoretical values of H and 2 1, a �xed-point

2162 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

Figure 3: Minimum and maximum values of H(L) /Hth for �ve randomly gener-
ated Mealy machines of |Q| D 10 encoded in second-order Mealy NSM without
bias. Upper lines: theoretical 2 0 (see equation 4.25). Lower lines: 2 0 D 0.5.

Figure 4: Minimum and maximum values of H(L) /Hth for �ve randomly gen-
erated Mealy machines with Â D 10 encoded in second-order Mealy NSM with
bias. Upper lines: theoretical 2 0 and 2 1 (see equations 4.7 and 4.14). Lower lines:
2 0 D 2 1 D 0.5.

attractor exists at the very edge of the forbidden interval and any value of
H smaller than the theoretical value moves this attractor into the forbidden
interval.

7.2 Experiments with Long Strings. In this section we show experi-
ments to test the stability of the encodings described when long strings are

Stable Encoding of Finite-State Machines 2163

Figure 5: Minimum and maximum values of H(L) /Hth for �ve randomly gen-
erated Mealy machines with Â D 10 encoded in �rst-order Mealy NSM. Upper
lines: theoretical 2 0 and 2 1 (see equations 4.7 and 4.14). Lower lines: 2 0 D 2 1 D 0.5.

Figure 6: Minimum and maximum values of Hexp for �ve randomly generated
Moore machines with Â D 10 encoded in second-order Moore NSM with bias.
Upper lines: theoretical 2 0 and 2 1 (see equations 4.7 and 4.14). Lower lines: 2 0 D
2 1 D 0.5.

2164 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

 Ta
bl

e
3:

M
in

im
um

,M
ax

im
u

m
,a

nd
A

ve
ra

ge
H

(2
0)

/H
th

V
al

u
es

fo
r

25
R

an
d

om
ly

G
en

er
at

ed
M

ea
ly

an
d

M
oo

re
M

ac
hi

n
es

of
si

ze
s

2,
3,

4,
7,

an
d

10
an

d
A

ll
St

ri
ng

s
U

p
to

L
en

gt
h

20
.

M
O

O
R

E
M

A
C

H
IN

ES

A
rc

h
it

ec
tu

re
H

(2
0)

/H
th

fo
r2

0
D

2 1
D

0.
5

H
(2

0)
/H

th
fo

r
T

h
eo

re
ti

ca
l2

0
an

d
2 1

M
in

im
u

m
A

ve
ra

ge
M

ax
im

u
m

M
in

im
u

m
A

ve
ra

ge
M

ax
im

u
m

Fi
rs

to
rd

er
0.

00
25

0.
43

07
0.

69
12

0.
69

82
0.

95
57

1.
00

00

Se
co

nd
or

d
er

w
it

h
bi

as
0.

00
50

0.
53

07
0.

76
36

0.
91

37
0.

97
42

1.
00

00

M
E

A
LY

M
A

C
H

IN
E

S

A
rc

h
it

ec
tu

re
H

(2
0)

/H
th

fo
r2

0
D

2 1
D

0.
5

H
(2

0)
/H

th
fo

r
T

h
eo

re
ti

ca
l2

0
an

d
2 1

M
in

im
u

m
A

ve
ra

ge
M

ax
im

u
m

M
in

im
u

m
A

ve
ra

ge
M

ax
im

u
m

Fi
rs

to
rd

er
0.

14
56

0.
53

20
0.

78
72

0.
93

18
0.

99
31

1.
00

00

Se
co

nd
or

d
er

w
it

h
bi

as
0.

00
78

0.
53

60
0.

76
22

0.
93

19
0.

98
29

1.
00

00

Se
co

nd
or

d
er

w
ith

ou
t

bi
as

0.
00

00
0.

37
48

0.
77

10
0.

02
50

0.
72

85
0.

89
95

N
ot

e:
T

h
e

le
ft

an
d

ri
gh

tp
ar

ts
of

th
e

ta
bl

e
d

if
fe

r
in

w
h

at
“c

or
re

ct
ly

cl
as

si
�

ed
”

m
ea

n
s:

co
rr

ec
ts

id
e

of
[0

,1
] w

it
h

n
o

fo
rb

id
d

en
in

te
rv

al
(2

0
D

2 1
D

0.
5)

on
th

e
le

ft
;i

ns
id

e
pr

ed
ic

te
d

h
ig

h
an

d
lo

w
in

te
rv

al
s

fo
r

st
ab

le
be

h
av

io
r

on
th

e
ri

gh
t.

Stable Encoding of Finite-State Machines 2165

Figure 7: Minimum and maximum values of Hexp for �ve randomly generated
Moore machines with Â D 10 encoded in Elman nets (�rst-order NSM). Upper
lines: theoretical 2 0 and 2 1 (see equations 4.7 and 4.14). Lower lines: 2 0 D 2 1 D 0.5.

presented to the network. We have used the same FSM as in the previous
section and looked for the minimum H needed to process correctly 200 ran-
domly generated strings of length 2000 (the same set of strings for all the
experiments). We call this value H2000 .

The values of H obtained in these experiments are the same values ob-
tained in the previous section or slightly larger. The maximum deviation
from the experimental H obtained for L D 20 is 0.02 for all the encodings.
This illustrates that the value of H(L) seems to stabilize around an asymp-
totical value that is very close to the value obtained for L D 20.

In Table 4 we summarize these results: normalized minimum, average,
and maximum experimental values of H2000 for all the FSM and DTRNN
encodings described, using the same FSM as in section 7.1. As in this sec-
tion, we used two criteria to de�ne a correct output of the network: a weak
criterion (using a forbidden interval of zero measure) and a strong criterion
(using a forbidden interval with the theoretical 2 0 and 2 1 obtained in the
previous sections). As in the experiments in section 7.1, we can see that the
values of H2000 /Hth obtained with the weak criterion are lower than the
values of H2000 /Hth obtained with the strong criterion. For the same encod-
ings as in section 7.1 (�rst order and second order with bias encodings), we
found that the maximum value of H2000 is exactly the theoretical upper limit
Hth obtained for the encoding, and the average H2000 /Hth is very close to
1.0. Most of the minimum values of H2000 /Hth are very close to zero because
the second-order constructions without biases for FSM of size 2 need a very
low value of H (see note 12).

2166 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

Ta
bl

e
4:

M
in

im
u

m
,

M
ax

im
u

m
,

an
d

A
ve

ra
ge

V
al

ue
s

of
H

20
00

/H
th

fo
r

5
R

an
d

om
ly

G
en

er
at

ed
M

ea
ly

an
d

M
oo

re
M

ac
hi

ne
s

fo
r

20
0

St
ri

ng
s

of
L

en
gt

h
20

00
.

M
oo

re
M

ac
h

in
es

A
rc

h
it

ec
tu

re
H

20
00

/H
th

fo
r2

0
D

2 1
D

0.
5

H
20

00
/H

th
fo

r
T

h
eo

re
ti

ca
l2

0
an

d
2 1

M
in

im
u

m
A

ve
ra

ge
M

ax
im

u
m

M
in

im
u

m
A

ve
ra

ge
M

ax
im

u
m

Fi
rs

to
rd

er
0.

00
14

0.
49

00
0.

72
18

0.
69

82
0.

95
82

1.
00

00

Se
co

nd
or

d
er

w
it

h
bi

as
0.

00
14

0.
56

98
0.

73
44

0.
93

19
0.

97
63

1.
00

00

M
ea

ly
M

ac
h

in
es

A
rc

h
it

ec
tu

re
H

20
00

/H
th

fo
r2

0
D

2 1
D

0.
5

H
20

00
/H

th
fo

r
T

h
eo

re
ti

ca
l2

0
an

d
2 1

M
in

im
u

m
A

ve
ra

ge
M

ax
im

u
m

M
in

im
u

m
A

ve
ra

ge
M

ax
im

u
m

Fi
rs

to
rd

er
0.

01
13

0.
51

37
0.

81
49

0.
93

19
0.

99
38

1.
00

00

Se
co

nd
or

d
er

w
it

h
bi

as
0.

46
04

0.
61

15
0.

71
91

0.
93

74
0.

98
69

1.
00

00

Se
co

nd
or

d
er

w
ith

ou
t

bi
as

0.
01

61
0.

57
48

1.
00

00
0.

02
50

0.
77

40
1.

00
00

Stable Encoding of Finite-State Machines 2167

7.3 Experiments with Large FSM. We have made experiments to test
the stability of the encodings with large FSM. We generated randomly 10
automata (5 Mealy and 5 Moore machines) with |Q | D 200 and, eliminating
the useless states, we obtained automata of sizes in the range 81–165. Us-
ing the same long strings as in section 7.2, we obtained the minimum H2000
needed to obtain the correct outputs, using the weak and the strong crite-
rion. The results obtained are shown in Table 5. In this table we show the
size parameters for each construction (minimum, average, and maximum)
and the normalized H2000 with the weak and strong criterion (minimum,
average, and maximum).

In all the experiments we can see that the experimental values of H2000
obtained are always lower than the theoretical H computed in previous sec-
tions for each architecture (i.e., H2000 /Hth · 1). The main difference with the
results reported in the previous section is that automata having very low
fan-in and therefore leading to very small values of Hth are now very un-
likely to appear. The results reported in this section illustrate again that the
upper bounds given by the theory are suf�cient to ensure a stable behavior
in the network even when the network size and string length are large.

8 Conclusion

We have completed the results by Omlin and Giles (1996a, 1996b) on stable
encoding of FSM on DTRNN to a larger family of sigmoids (in particular,
to any positive, strictly growing, continuous, bounded activation function),
a larger variety of DTRNN architectures (including various �rst-order and
second-order networks), and a wider class of FSM architectures (Mealy
and Moore machines), by establishing a simpli�ed procedure to prove the
stability of encoding schemes based in the classical one-hot representation of
states in the hiddenunits of DTRNN.A summary of the encodings described
in the paper is presented in Table 6.

Our formulation is basedon ideas put forward by Casey (1996)and earlier
by Pollack (1991). To justify the constructions, we have found it very natural
to speak about DTRNN in terms of Mealy and Moore neural state machines.
These constructions are based on bounding criteria, in contrast to the one by
Omlin and Giles (1996a), which relies on a detailed analysis of �xed-point
attractors (although, as one of the referees pointed out, the only way for the
activations of a neural unit to stay near one of the two saturation values is
through the existence of a near-saturation attractive �xed point (Li, 1992)).

We have performed extensive numerical experiments for the standard
logistic function that illustrate the validity of the results and show that for
some constructions, the weights prescribed by the theory are larger than
necessary, due to the fact that the worst cases used to derive them seldom
occur.

We plan to expand the work to study distributed—as opposed to one-
hot—encodings of state. Some of the results presented here have already

2168 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

Ta
bl

e
5:

M
in

im
um

,A
ve

ra
ge

,a
n

d
M

ax
im

um
V

al
u

es
of

H
20

00
/H

th
O

bt
ai

ne
d

fo
r

Fi
ve

R
an

d
om

ly
G

en
er

at
ed

M
ea

ly
an

d
M

oo
re

M
ac

hi
n

es
w

ith
| Q

| u
p

to
20

0
an

d
E

lim
in

at
in

g
U

se
le

ss
St

at
es

.

M
oo

re
M

ac
h

in
es

H
20

00
/H

th
fo

r
H

20
00

/H
th

fo
r

A
rc

h
it

ec
tu

re
Si

ze
2 0

D
2 1

D
0.

5
T

h
eo

re
ti

ca
l2

0
an

d
2 1

M
in

im
um

A
ve

ra
ge

M
ax

im
u

m
M

in
im

u
m

A
ve

ra
ge

M
ax

im
u

m
M

in
im

u
m

A
ve

ra
ge

M
ax

im
u

m

Fi
rs

to
rd

er
10

4
11

8
13

6
0.

54
42

0.
56

40
0.

57
25

0.
91

80
0.

92
31

0.
92

57

Se
co

nd
or

d
er

w
ith

bi
as

78
87

97
0.

62
85

0.
63

13
0.

63
43

0.
94

52
0.

94
58

0.
94

64

M
E

A
LY

M
A

C
H

IN
E

S H
20

00
/H

th
fo

r
H

20
00

/H
th

fo
r

A
rc

h
it

ec
tu

re
Si

ze
2 0

D
2 1

D
0.

5
T

h
eo

re
ti

ca
l2

0
an

d
2 1

M
in

im
um

A
ve

ra
ge

M
ax

im
u

m
M

in
im

u
m

A
ve

ra
ge

M
ax

im
u

m
M

in
im

u
m

A
ve

ra
ge

M
ax

im
u

m

Fi
rs

to
rd

er
10

0
11

0.
4

11
6

0.
59

10
0.

59
56

0.
60

30
0.

88
50

0.
88

62
0.

88
69

Se
co

nd
or

d
er

w
ith

bi
as

81
86

94
0.

62
94

0.
63

16
0.

63
46

0.
94

51
0.

94
57

0.
94

62

Se
co

n
d

or
d

er
w

it
h

ou
t

bi
as

14
9

15
7.

4
16

5
0.

72
42

0.
74

73
0.

77
96

0.
87

76
0.

88
02

0.
88

60

N
ot

e:
W

e
u

se
d

20
0

ra
n

d
om

ly
ge

n
er

at
ed

st
ri

n
gs

of
le

n
gt

h
20

00
.

Stable Encoding of Finite-State Machines 2169

 Ta
bl

e
6:

Su
m

m
ar

y
of

th
e

E
nc

od
in

gs
Pr

op
os

ed
in

th
e

A
rt

ic
le

.

N
um

be
r

FS
M

D
T

R
N

N
of

H
id

d
en

L
ow

H
ig

h
H

d
et

er
-

C
la

ss
A

rc
h

it
ec

tu
re

U
ni

ts
W

ei
gh

t
W

ei
gh

t
B

ia
s

m
in

ed
by

Se
ct

io
n

M
ea

ly
Se

co
n

d
or

d
er

| Q
|

0
H

¡
H

/2
fa

n-
in

4.
1.

1
M

ea
ly

Se
co

n
d

or
d

er
| Q

|
¡

H
H

0
| Q

|
4.

1.
2

M
ea

ly
R

ob
in

so
n-

Fa
lls

id
e

(|
Q

|C
| C

|)
| S

|
0

H

¡
3H

/2

or

¡
H

/2

Fa
n

-i
n

4.
2

M
oo

re
E

lm
an

| Q
||
S

|
0

H

¡
3H

/2

or

¡
H

/2

Fa
n

-i
n

5.
1

M
oo

re
Se

co
n

d
or

d
er

| Q
|

0
H

¡
H

/2
Fa

n
-i

n
5.

2

M
oo

re
Se

co
n

d
or

d
er

| Q
|

¡
H

or

0

H

0

or

¡
H

/2

Fa
n

-i
n

an
d

| Q
|

5.
2

2170 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

been used by some of us (Kremer et al., 1998) to constrain the training
of DTRNN so that they learn to behave as FSM from samples, to encode
nondeterministic �nite automata into second-order DTRNN (Carrasco et
al., 1999), and to encode an extension of Mealy machines into second-order
DTRNN (Ñeco, Forcada, Carrasco, & Valdés-Muñoz, 1999).

The results we have presented are related to those obtained by LS ṍ ma
(1997), who proves that the behavior of any DTRNN using threshold activa-
tion functions may be stably emulated by another DTRNN using activation
functions in a very general class that includes the sigmoid functions con-
sidered in this article. As one of the referees has pointed out, this result may
be combined with existing results concerning the encoding of �nite-state
machines in threshold DTRNN:

� A result by LS ṍ ma and Wiedermann (1998) shows that any regular ex-
pression of length l may be recognized by a threshold DTRNN having
H (l) units. The result is that a regular expression may be very ef�-
ciently encoded in analog DTRNN having activation functions more
general than ours. The main difference between this result and ours is
that we are interested in encoding �nite-state machines directly.

� Alon et al. (1991), Indyk (1995), and Horne and Hush (1996) show
that �nite-state machines with n states may be encoded in thresh-
old DTRNN having a number of units that grows sublinearly with
n. Combining this with LS´õ ma’s (1997) result, we obtain that �nite-state
machines may be sublinearly enncoded in analog DTRNN. However,
Alon et al.’s (1991) and Horne and Hush’s (1996) results, though more
ef�cient, are not as directly applicable to a given FSM as ours.

� All of the constructions presented in this article work may also be
straightforwardly applied to threshold DTRNN using H D 1. LSṍ ma’s
(1997) result may convert these threshold DTRNNinto sigmoid DTRNN.
The resulting weights are basically twice as large as the ones obtained
in this article. This is due to the fact that LS ṍ ma’s construction is valid
for general threshold DTRNN, whereas our result takes advantage of
the fact that states and inputs are encoded in simple one-hot fashion.

We provide a detailed description on how to construct stable encodings
of a variety of FSM into a variety of commonly used �rst- and second-order
DTRNN and a way to choose weights that are relatively small, which may
be of interest when the construction will be followed by gradient-descent
learning. Weights are still rather large for gradient-descent learning, but as
section 7 shows, smaller values of H may still guarantee correct behavior.

Acknowledgments

This work has been supported by the Spanish Comision Interministerial
de Ciencia y Tecnolog´õ a through grant TIC97-0941. We also thank C. Lee

Stable Encoding of Finite-State Machines 2171

Giles, Stefan C. Kremer, Christian W. Omlin, José Oncina, and all of the
anonymous referees for their critical comments and ideas.

References

Alon, N., Dewdney, A. K., & Ott, T. J. (1991). Ef�cient simulation of �nite au-
tomata by neural nets. Journal of the Association of Computing Machinery, 38,
495–514.

Alquézar, R., & Sanfeliu, A. (1995). An algebraic framework to represent �nite
state automata in single-layer recurrent neural networks. Neural Computation,
7, 931–949.

Arai, K.-I., & Nakano, R. (1996). Annealing RNN learning of �nite state au-
tomata. In Proceedings of ICANN’96 (pp. 519–524).

Arai, K.-I.,& Nakano, R. (1997).Adaptive b-scheduling learning method of �nite
state automata by recurrent neural networks. In Progress in connectionist-based
information systems: Proceedings of the 1997 International Conference on Neural
Information Processing and Intelligent Information Systems (Vol. 1, pp. 351–354).
Singapore: Springer-Verlag.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is dif�cult. IEEE Transactions on Neural Networks, 5(2),
157–166.

Blair, A., & Pollack, J. B. (1997). Analysis of dynamical recognizers. Neural Com-
putation, 9(5), 1127–1142.

Carrasco, R. C., Forcada, M. L., & Santamar´õ a, L. (1996). Inferring stochastic
regular grammars with recurrent neural networks. In L. Miclet & C. de la
Higuera (Eds.), Grammatical inference: Learning syntax from sentences (pp. 274–
281). Berlin: Springer-Verlag.

Carrasco, R. C., Oncina, J., & Forcada, M. L. (1999). Ef�cient encodings of
�nite automata in discrete-time recurrent neural networks. In Proceedings
of ICANN’99, International Conference on Arti�cial Neural Networks (Vol. 2,
pp. 673–677).

Casey, M. (1996). The dynamics of discrete-time computation, with application
to recurrent neural networks and �nite state machine extraction. Neural Com-
putation, 8(6), 1135–1178.

Casey, M. (1998). Correction to proof that recurrent neural networks can robustly
recognize only regular languages. Neural Computation, 10(5), 1067–1069.

Cleeremans, A., Servan-Schreiber, D., & McClelland, J. L. (1989). Finite state
automata and simple recurrent networks. Neural Computation, 1(3), 372–381.

Das, S., & Das, R. (1991). Induction of discrete state-machine bystabilizing a con-
tinuous recurrent network using clustering. Computer Science and Informatics,
21(2), 35–40.

Das, S., & Mozer, M. (1998). Dynamic on-line clustering and state extraction: An
approach to symbolic learning. Neural Networks, 11(1), 53–64.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.
Floyd, T. L. (1996). Digital fundamentals (6th ed.). Englewood Cliffs, NJ: Prentice-

Hall.

http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299:5L.1127[aid=214802]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^298:6L.1135[aid=214803,csa=0899-7667^26vol=8^26iss=6^26firstpage=1135,nlm=8768390]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2910:5L.1067[aid=214804,cw=1]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^291:3L.372[aid=214805,csa=0899-7667^26vol=1^26iss=3^26firstpage=372]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299:5L.1127[aid=214802]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^298:6L.1135[aid=214803,csa=0899-7667^26vol=8^26iss=6^26firstpage=1135,nlm=8768390]

2172 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

Forcada, M. L., & Carrasco, R. C. (1995). Learning the initial state of a second-
order recurrent neural network during regular-language inference. Neural
Computation, 7(5), 923–930.

Frasconi, P., Gori, M., Maggini, M., & Soda, G. (1996). Representation of �nite-
state automata in recurrent radial basis function networks. Machine Learning,
23, 5–32.

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., & Lee, Y. C. (1992).
Learning and extracted �nite state automata with second-order recurrent
neural networks. Neural Computation, 4(3), 393–405.

Gori, M., Maggini, M., Martinelli, E., & Soda, G. (1998). Inductive inference from
noisy examples using the hybrid �nite state �lter. IEEE Transactions on Neural
Networks, 9(3), 571–575.

Goudreau, M. W., Giles, C. L., Chakradhar, S. T., & Chen, D. (1994). First-order
vs. second-order single layer recurrent neural networks. IEEE Transactions on
Neural Networks, 5(3), 511–513.

Haykin, S. (1998). Neural networks—A comprehensive foundation (2nd ed.). Upper
Saddle River, NJ: Prentice-Hall.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). 1991. Introduction to the theory of
neural computation. Redwood City, CA: Addison-Wesley.

Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages,
and computation. Reading, MA: Addison–Wesley.

Horne, B. G., & Giles, C. L. (1995). An experimental comparison of recurrent
neural networks. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in
neural information processing systems, 7 (pp. 697–704). Cambridge, MA: MIT
Press.

Horne, B. G., & Hush, D. R. (1996). Bounds on the complexity of recurrent neural
network implementations of �nite state machines. Neural Networks, 9(2), 243–
252.

Hush, D., & Horne, B. (1993). Progress in supervised neural networks. IEEE
Signal Processing Magazine, 10(1), 8–39.

Indyk, P. (1995). Optimal simulation of automata by neural nets. In Proceedings of
the 12th Annual Symposium on Theoretical Aspects of Computer Science (pp. 337–
348). Berlin: Springer-Verlag.

Kleene, S.C. (1956).Representation of events in nerve nets and�nite automata. In
C. E. Shannon & J. McCarthy (Eds.),Automata studies Princeton, NJ: Princeton
University Press.

Kolen, J. F. (1994). Fool’s gold: Extracting �nite state machines from recurrent
network dynamics. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Ad-
vances in neural information processing systems, 6 (pp. 501–508). San Mateo,
CA: Morgan Kaufmann.

Kolen, J. F., & Pollack, J. B. (1995). The observer’s paradox: Apparent computa-
tional complexity in physical systems. Journal of Experimental and Theoretical
Arti�cial Intelligence, 7, 253–277.

Kremer, S. C. (1995). On the computational power of Elman-style recurrent net-
works. IEEE Transactions on Neural Networks, 6(4), 1000–1004.

Kremer, S. (1996). A theory of grammatical induction in the donnectionist paradigm.
Unpublished Ph.D. dissertation, University of Alberta, Edmonton, Alberta.

http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-6125^28^2923L.5[aid=214810,csa=0885-6125^26vol=23^26iss=1^26firstpage=5]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^294:3L.393[aid=214811,csa=0899-7667^26vol=4^26iss=3^26firstpage=393]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^299:3L.571[aid=214812,csa=1045-9227^26vol=9^26iss=3^26firstpage=571]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1053-5888^28^2910:1L.8[aid=214815]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-6125^28^2923L.5[aid=214810,csa=0885-6125^26vol=23^26iss=1^26firstpage=5]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^299:3L.571[aid=214812,csa=1045-9227^26vol=9^26iss=3^26firstpage=571]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1053-5888^28^2910:1L.8[aid=214815]

Stable Encoding of Finite-State Machines 2173

Kremer, S., Ñeco, R. P., & Forcada, M. L. (1998). Constrained second-order recur-
rent networks for �nite-state automata induction. In L. Niklasson, M. Bodén,
& T. Ziemke (Eds.), Proceedings of the 8th International Conference on Arti�cial
Neural Networks ICANN’98 (Vol. 2, pp. 529–534). London: Springer.

Li, L.K. (1992). Fixed point analysis for discrete-time recurrent neural networks.
In Proceedings of IJCNN (Vol. 4, pp. 134–139).

Maass, W., & Orponen, P. (1998). On the effect of analog noise in discrete-time
analog computations. Neural Computation, 10(5), 1071–1095.

Maass, W., & Sontag, E. D. (1999). Analog neural nets with gaussian or other
common noise distribution cannot recognize arbitrary regular languages.
Neural Computation, 11(3), 771–782.

Manolios, P., & Fanelli, R. (1994). First order recurrent neural networks and
deterministic �nite state automata. Neural Computation, 6(6), 1154–1172.

Maskara, A., & Noetzel, A. (1992). Forcing simple recurrent neural networks to
encode context. In Proceedings of the 1992 Long Island Conference on Arti�cial
Intelligence and Computer Graphics.

McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

Miller, C. B., & Giles, C. L. (1993). Experimental comparison of the effect of order
in recurrent neural networks. International Journal of Pattern Recognition and
Arti�cial Intelligence, 7(4), 849–872.

Minsky, M. L. (1967). Computation: Finite and in�nite machines. Englewood Cliffs,
NJ: Prentice-Hall.

Ñeco, R. P., & Forcada, M. L. (1996). Beyond Mealy machines: Learning transla-
tors with recurrent neural networks. In Proceedings of the World Conference on
Neural Networks ’96 (pp. 408–411). San Diego.

Ñeco, R. P., Forcada, M. L, Carrasco, R. C., & Valdés-Muñoz, A. (1999). Encoding
of sequential translators in discrete-time recurrent neural nets. In Proceedings
of the European Symposium on Arti�cial Neural Networks ESANN’99 (pp. 375–
380).

Omlin, C. W., & Giles, C. L. (1996a). Constructing deterministic �nite-state au-
tomata in recurrent neural networks. Journal of the ACM, 43(6), 937–972.

Omlin, C.W.,& Giles, C. L. (1996b).Stable encoding of large �nite-state automata
in recurrent neural networks with sigmoid discriminants. Neural Computa-
tion, 8, 675–696.

Pollack, J. B. (1991). The induction of dynamical recognizers. Machine Learning,
7, 227–252.

Robinson, T., & Fallside, F. (1991). A recurrent error propagation network speech
recognition system. Computer Speech and Language, 5, 259–274.

Sanfeliu, A.,& Alquézar, R. (1994).Active grammatical inference: A newlearning
methodology. In D. Dori & A. Bruckstein (Eds.), Shape and structure in pattern
recognition. Singapore: World Scienti�c.

LS ṍ ma, J. (1997). Analog stable simulation of discrete neural networks. Neural
Network World, 7, 679–686.

LS ṍ ma, J., & Wiedermann, J. (1998). Theory of neuromata. Journal of the ACM,
45(1), 155–178.

http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2910:5L.1071[aid=214818,cw=1]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2911:3L.771[aid=214819,csa=0899-7667^26vol=11^26iss=3^26firstpage=771,cw=1,nlm=10085429]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^298L.675[aid=214822,csa=0899-7667^26vol=8^26iss=4^26firstpage=675,nlm=8624958]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0885-2308^28^295L.259[aid=214824,csa=0885-2308^26vol=5^26iss=3^26firstpage=259]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1210-0552^28^297L.679[aid=214825,csa=1210-0552^26vol=7^26iss=6^26firstpage=679]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^298L.675[aid=214822,csa=0899-7667^26vol=8^26iss=4^26firstpage=675,nlm=8624958]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1210-0552^28^297L.679[aid=214825,csa=1210-0552^26vol=7^26iss=6^26firstpage=679]

2174 R. C. Carrasco, M. L. Forcada, M. Á. Valdés-Muñoz, & R. P. Ñeco

Ti Lno, P., Horne, B. G., Giles, C. L., & Colingwood, P. C. (1998). Finite state ma-
chines and recurrent neural networks—automata and dynamical systems
approaches. In J. E. Dayhoff & O. Omidvar (Eds.), Neural networks and pattern
recognition (pp. 171–220). San Diego, CA: Academic.

Ti Lno, P., & Sajda, J. (1995). Learning and extracting initial Mealy automata with
a modular neural network model. Neural Computation, 7(4).

Tsoi, A. C., & Back, A. (1997). Discrete time recurrent neural network architec-
tures: A unifying review. Neurocomputing, 15, 183–223.

Watrous, R. L., & Kuhn, G. M. (1992). Induction of �nite-state languages using
second-order recurrent networks. Neural Computation, 4(3), 406–414.

Zeng, Z., Goodman, R. M., & Smyth, P. (1994).Discrete recurrentneural networks
for grammatical inference. IEEETransactions onNeural Networks, 5(2), 320–330.

Zeng, Z., Goodman, R. M., & Smyth, P. (1993). Learning �nite state machines
with self-clustering recurrent networks. Neural Computation, 5(6), 976–990.

Received November 16, 1998; accepted September 23, 1999.

http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0925-2312^28^2915L.183[aid=214826]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^294:3L.406[aid=214827,csa=0899-7667^26vol=4^26iss=3^26firstpage=406]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1045-9227^28^295:2L.320[aid=214828]
http://masetto.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^295:6L.976[aid=214829,csa=0899-7667^26vol=5^26iss=6^26firstpage=976]

